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Abstract

We present a cellular automata model developed to study the evolution of an infectivity nu-
cleus in several conditions and for two kinds of epidemiologically di�erent diseases. We analyse
the role of the model parameters, concerning the epidemiological and demographic aspects
of the problem, and of the evolution rules in relation to the spread of such infectious dis-
eases, the arising of periodic temporal modulations related to the infectivity and recovery fronts,
and the evolution of travelling waves. Among the obtained results we �nd analogies to endemic
situations and pandemics. c© 1999 Elsevier Science B.V. All rights reserved.

PACS: 02.50.Ey; 05.10.−a; 05.65.+b; 87.23.Cc
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1. Introduction

The literature on epidemic models is extensive, pointing to di�erent aspects related
to the subject. A great deal of work involves phenomenological description of a certain
epidemic situation [1–5]. There are several models dealing with the evolution of the
densities of the population groups involved, most of them being zero-dimensional. Such
models have studied, among several epidemical features, the existence of threshold
values for the spread of an infection [6,7], the asymptotic solution for the density of
infected individuals [8–10], the e�ect of stochastic uctuations on the modulation of
an epidemic situation [11], and, in some spatially dependent models, the geographic
spread of an epidemic [12,13].
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When describing an infection transmitted through person-to-person contact, the pop-
ulation is generally classi�ed into three groups: the S group, representing the portion
of the population that has not been a�ected by the disease but can be infected in case
of contact with a sick person; the I group corresponding to the group of individuals
already infected by the disease and who are also responsible for its transmission to
the susceptible group, and last the removed group R; related to those who recovered
from the disease and became permanently or temporarily immune or, eventually, those
who died from the illness and not from other causes. Among these infectious diseases
there are two main groups: those which confer immunity to the recovered individual,
most of them virus agent diseases (measles, chickenpox, mumps, HIV, poliomyelitis)
[14]; and those which do not confer immunity and in which, the individual once recov-
ered is susceptible again to infection; among them we �nd the bacterial agent diseases
(meningitis, plague, venereal diseases) and the protozoan agent diseases (malaria) [14].
As discussed above, several models have been proposed to explain di�erent epidemical
cases. The SIR model is applied to those diseases that do confer immunity, and the
cycle of a typical individual involves the susceptible (S), the infected (I), and the
recovered and immune (R) stages. The SIS model deals with those diseases that do
not confer immunity and the R stage is not considered. A model may or may not
take into account the vital dynamics of the population, depending on the characteristic
times of the development of the epidemic. This aspect of the models is expressed by
the inclusion of natality and mortality terms in the equations [14].
Historically, several examples of epidemic travelling waves are known. Among them

is the plague, or the Black Death [1,2], as it was known in Middle Ages Europe, and
which reduced the population of the continent to a quarter of its value at the beginning
of the epidemic. Other examples are the inuenza pandemic in the early 20th century
[3], and the spread of cholera in Asia and East Europe during the 1960s [5].
In this work we deal with diseases transmitted through person-to-person contact. We

analyse the propagation of an infective nucleus under several conditions and for both
SIS and SIR groups. Instead of a system of partial di�erential equations we consider a
cellular automata with discrete time steps and matrix elements con�guring a network.
The rules proposed for the evolution of the automata determine the state of an element
in terms of it own state and those of its neighbours at earlier time steps [15].
Among the reasons for considering a cellular automata instead of di�erential equa-

tions is that the computational time involved is considerably shorter. Besides, some
epidemiological features can be included in a more direct way through this approach,
such as the possibility of an external agent, and di�erent stages during the infective
period among others. The last possibility is considered through the division of the
infected period into three phases: incubation, when the individual is already infected
and infectious but presents no symptoms, proper infection, when the individual is in-
fectious and shows the symptoms, and latency, when the infected individual is not
infectious anymore but still has the symptoms. Finally, this model allows us to con-
sider several boundary conditions and drawings and to model the actual shape of a
certain geographical site in an easy way.
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The local aspect of the interaction between the individuals is taken into account
through the de�nition of an interaction radius. This means that an element of the
network is allowed to interact with a limited number of neighbours within a bounded
region.
In order to analyse the seasonal behaviour of certain epidemics we include the pos-

sibility of periodic rules governing the evolution of the automata. We look for the
possibility of an endemic situation, permanent in time and restrained in area, or a pan-
demic, a violent growing epidemic wave. One of our goals is to analyse the possibility
of spatio-temporal patterns in the behaviour of an epidemic, as pointed out in [4], after
some research on an isolated population, inhabiting an island.
In the next section we present the aspects related with the cellular automata, and then

we introduce the rules corresponding to di�erent kinds of diseases. Next we describe
the numerical results and �nally we draw some conclusions.

2. The cellular automata

We consider a two-dimensional network represented by a matrix, its elements, time
dependent, being identi�ed by a pair of subindexes. The state of each element is
univocally determined by two �elds: �ij(t) and uij(t). The �eld �ij(t) is related to the
epidemiological state of the element. The number of allowed states depends also on
the kind of disease considered and is described in more detail below. The �eld uij(t)
accounts for the state of the neighbourhood of certain element and is related to the
probability of transitions from the present state of an individual to another, that is, to
the contact and recovery rate, to put it within an epidemiological context. The rules
governing those transitions depend on the features of the disease to be modelled. In
this work we consider two main cases: diseases that confer immunity and those that do
not. In the following subsections we describe the valid evolution rules for each case
as well as considerations of particular validity.

2.1. Model without immunity

This model assumes that the disease does not confer immunity to infected individuals
after recovery. Each healthy individual is susceptible of being infected through contact
with sick ones. After the infectious period, the infected individual recovers and is
included in the S group again. It can be shown that the inclusion of vital dynamics in
this model does not a�ect the main results [16].
The equations for a typical adimensional SIS model can be written as

@S
@t
=−�IS + I + � − �S ;

@I
@t
= �IS − I − �I ; (1)
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where � is the contact rate,  the recovery rate and � a constant related to the vital
dynamics. As the following relation holds

S + I = 1 ; (2)

Eqs. (1) can be reduced to only one equation for I ,

@I
@t
= (�− (+ �))I − �I 2 : (3)

The solution for this equation is

I(t) =




exp[(+�)(�−1)t]
�[exp[(+�)(�−1)t]−1]=(�−1)+1=I0 for � 6= 1 ;
1

�t+1=I0
for �= 1 ;

(4)

where ! = �=(� + ) is de�ned as the e�ective contact rate, representing the average
number of adequate contacts during the period of infectiousness, and I0 is an initial
value. The asymptotic solution of this equations is

I(t)t→∞ =
{
1− 1=! if !¿1 ;
0 if !61 :

(5)

The cellular automata takes into account the same terms that are present in Eq. (1)
but in a somehow di�erent language. First, we note that the infected period is divided
into three stages: incubation, the infection proper and latency. Each time an individ-
ual is infected he goes through these three stages, staying on average in each one
a de�ned period of time. We call the characteristic time of the incubation stage ti,
that corresponding to the properly infected stage tp and tl that of the latency stage.
This formulation allows us to include cases where the incubation or the latency stages
could be neglected in a general way . The rules governing the evolution of the cellular
automata are

�ij(t + 1) =




�ij(t) + 1 if 0¡�ij(t)¡ti + tp + tl ;

�ij(t + 1) = 0 if �ij(t) = ti + tp + tl ;

�ij(t + 1) = 0 if �ij(t) = 0 and uij(t + 1)¡h ;

�ij(t + 1) = 1 if �ij(t) = 0 and uij(t + 1)¿h

(6)

for �ij(t); where h is a random number within the interval [0; 1] and with probability
distribution p(h); that is de�ned for each case, while the equation for uij(t) is

uij(t + 1) =
1
N


∑

fn

Iij(t) e−1 +
∑
sn

Iij(t) e−2 +
∑
tc

Iij(t) e−3 + · · ·

 : (7)

The successive terms correspond to sums over the �rst, second and further neighbours
respectively and N corresponds to a normalization constant,

N =
1

4(e−1 + e−2 + e−3 + · · ·) :
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This series is truncated according to the choice of the interaction radius. The �eld Iij(t)
is de�ned as

Iij(t + 1) =

{
F(�ij(t)) if �ij(t)¿1 ;

0 if �ij(t) = 0 ;
(8)

where F(t) is a positive real function F(t): (0; ti + tp + tl)→ R +. The role of F(t) is
to assign to a certain individual an e�ective infectiousness as a function of its state,
letting us distinguish between non-infectious and infectious individuals. Besides, the
varying infective power during the three stages of the infected period is assigned by
F(t); time dependent.
Many infectious diseases, including measles, mumps, rubella, chickenpox, poliomyeli-

tis, diphtheria, pertussis, gonorrhea and inuenza, have been observed to show peri-
odicity and other oscillatory behaviours. For example, there were yearly outbreaks of
chickenpox and mumps from 1929 to 1970 in New York City [17]. In order to take
into account this type of behaviour we also consider periodic modulations of p(h);
accounting for seasonal oscillations of the incidence of some diseases over the popu-
lation, that is highly related with an oscillatory behaviour of the contact rate. In the
corresponding case for the SIS model, the solution of Eqs. (1) shows that the number
of infected and of susceptible individuals oscillates around the stationary value for the
case when � is a constant [14]. We can see that F(t) and p(h) in the automata rules
play the role played by ! in the SIS model.

2.2. Model with immunity

This model assumes that the disease under study confers immunity to infected in-
dividuals after recovery. Once the infected individual recovers, he is included in the
R group temporarily or permanently. The inclusion of vital dynamics changes quali-
tatively the behaviour of the system [16]. In this subsection we discuss two di�erent
cases. First, we consider the simplest situation, when after the infective stage, the in-
dividual recovers and stays immune for a lifetime. This situation is associated with the
SIR model. The equations for a typical zero-dimensional SIR model can be written as

@S
@t
=−�IS + � − �S ;

@I
@t
= �IS − I − �I ;

@R
@t
= I − �R ;

(9)

where the recovered individuals are considered no longer as a (positive) contribution
for the S group, but instead for the R one. Eqs. (9) can be written as a set of two
equations for I and S; because the one for R is not coupled to them. Clearly, the
behaviour of this model is more complex than the one studied above.
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The rules governing the evolution of the cellular automata for the present case are
the following:

�ij(t + 1) =




�ij(t) + 1 if 0¡�ij(t)¡ti + tp + tl ;

−1 if �ij(t)¿ti + tp + tl ;

0 if �ij(t) = 0 and uij(t + 1)¡h ;

1 if �ij(t) = 0 and uij(t + 1)¿h :

The �eld uij(t) adopts the same form as before

uij(t + 1) =
1
N


∑

fn

Iij(t) e−1 +
∑
sn

Iij(t) e−2 +
∑
tc

Iij(t) e−3 + · · ·

 (10)

and

Iij(t + 1) =

{
F(�ij(t)) if �ij(t)¿1 ;

0 if �ij(t)60
(11)

as in the former case, F(t) is a positive real function F(t) : (0; ti + tp+ tl)→ R + and
F(t)=0 for x outside the interval (0; ti+ tp+ tl). A more general case is represented by
the SIRS model, when the immune period is �nite and of length tr . After this period
of time the individual becomes susceptible again. In such cases the rules governing the
cellular automata are

�ij(t + 1) =




�ij(t) + 1 if 0¡�ij(t)¡ti + tp + tl ;

−1 if �ij(t) = ti + tp + tl ;

�ij(t)− 1 if − tr6�ij(t)¡0 ;
0 if �ij(t)¡− tr ;
0 if �ij(t) = 0 and uij(t + 1)¡h ;

1 if �ij(t) = 0 and uij(t + 1)¿h :

When tr → ∞ we have the former case (SIR models) as a particular situation; when
tr = 0 we are in the case related to SIS models and when tr 6= 0 the situation is
associated with SIRS models.
In contrast with the case analysed in the previous subsection, we have to distinguish

between cases with or without vital dynamics. In the present work we do not include
vital dynamics. This feature will be taken into account in a future work.

3. Numerical results

In this section we present the results obtained for both cases. The main goal was
di�erent in each model. While the main feature to be analysed in models without
immunity, which are described �rst, is the asymptotic mean density of the infected
individuals, Ia, and the existence of threshold values, in models with immunity the
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objective is to �nd numerically travelling pulses of epidemic. In each case we draw
a comparison with the results obtained through ordinary di�erential equations [16]. In
all the simulations we have considered 1000 realizations over a 100× 100 lattice with
the initial condition

uij(0) = 0 ∀i; j (12)

and

�ij(0) =

{
ti if

√
(50− i)2 + (50− j)265 ;

0 elsewhere :
(13)

In order to study the e�ect of the occupation number on the evolution of an initial
focus, we take a random distribution with a given density over the whole lattice with
the exception of the sites occupied by the initial focus, taken as the same identical
initial condition in all the cases. We consider Dirichlet boundary conditions.

3.1. Models without immunity

As pointed out above, the main interest in this case is to analyse the asymptotic level
of infected individuals as the relevant parameters of the problem vary in certain range.
As a �rst step and recalling Eqs. (6) and (8), we choose ti= tp= tl=2, p(h) ≡ 1; and

F(�ij(t)) =

{
f if �ij(t)¿0 ;

0 if �ij(t) = 0
(14)

thus studying the e�ect on Ia of f only. We consider interactions between �rst neigh-
bours, neglecting further contributions. A deeper analysis shows that the main results
are only a�ected quantitatively but not qualitatively by this approximation. The nu-
merical results obtained in this step show clearly, as can be seen in Fig. 1, a phase
transition for a certain critical value fc. Below this value the infection cannot be sus-
tained and the epidemic gradually fades. But for values above fc the epidemic evolves,
the infected individuals density, I(t); reaching a stationary mean value. The analysis
of the behaviour of Ia as a function of f shows the transition to a new phase. Near
fc, Ia(f) can be �tted with a critical-like power-law curve

Ia = A|f − fc|� :
The procedure for obtaining the best �t is well described in [18].
The next step is to consider the incubation and latency times, setting fi = fl = 0.

For this case

F(�ij(t)) =



fi if 0¡�ij(t)6ti ;

fp if ti¡�ij(t)6ti + tp ;

fl if ti + tp¡�ij(t)6ti + tp + tl :
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Fig. 1. Asymptotic density of infected individuals as a function of f. In the inset we show the scaling of
the data with a power-like curve A|f − fc|�. With A = 14540 ± 5:2 × 102, fc = 0:2916 ± 0:6 × 10−3 and
� = 0:534± 1:7× 10−2.

The results are very similar to those obtained in the former case, as can be seen in
Fig. 2. The main di�erences are the displacement of the critical value fc and a di�erent
value for the critical exponent �.
Now we study the case when p(h) is periodically modulated, accounting for a sea-

sonal oscillation of the incidence of some diseases over the population. We de�ne

p(h) =



1 if t ∈ [

nT ;
(
n+ 1

2

)
T
)
;

3
2h
1=2 if t ∈ [(

n+ 1
2

)
T ; (n+ 1)T

)
;

where T is the period of this oscillation and ti = tp = tl = 2, F(t) is de�ned as in
Eq. (14), and n= 0; 1; 2; : : : . In this way we obtain a p(h) modulated in time. While
the constant value represents a stage or a period over which the infectiousness of
the disease remains �xed, the shape of p(h) within the interval [(n + 1

2)T ; (n + 1)T )
corresponds to another for which, due to a set of epidemiological related factors, the
disease turns more infective. The selection of p(h) is not unique and the one used in
this work was chosen in order to show in a more apparent way the e�ects of such
modulation.
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Fig. 2. Asymptotic density of infected individuals as a function of f. In the inset we show the scaling of
the data with a power-like curve A|f − fc|�. With A = 10530 ± 6:2 × 102, fc = 0:6513 ± 0:5 × 10−3 and
� = 0:569± 1:8× 10−2: SIS model with latency.

We analyse the oscillatory behaviour of I; as a function of a given initial occupa-
tion of the lattice, di: We want to compare our results with the observed oscillatory
behaviour of the evolution of certain diseases and its relation with the population den-
sity of the infected areas. Indeed, in [4] the authors describe the di�erent structures
adopted by the seasonal behaviour of measles in communities with di�erent population
densities. These communities are divided into three groups according to their density
being high, medium or low. In all the cases the occurrence of temporal peaks of in-
fection is observed, but with di�erent properties. In large communities the epidemic
waves show a periodic behaviour, with peaks mounted over a constant background
which represents the endemic stable level. We will refer to this background level as
the endemic background density. In the smallest communities the behaviour is com-
pletely irregular and discontinuous, and the occurrence of peaks is almost exclusively
associated to external factors. Within intermediate communities the behaviour of the
epidemic presents periodic but isolated peaks, that is, without endemic periods between
them. Based on these results we de�ne two quantities to be analysed: (a) the relative
endemic background of the epidemic I0; as the ratio between the endemic background
density and the initial density or occupation number, di; and (b) the relative amplitude
of the peak Ip, calculated as the standard deviation of the oscillatory density over the
initial density di.
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Fig. 3. Relative endemic background value, I0; vs. di for three di�erent values of f. (A) f = 0:8, (B)
f = 0:9, (C) f = 1:0. SIS periodic model.

The �rst result obtained is that for the period of oscillation chosen (100 time steps),
the epidemic cannot be sustained when f¡0:8. In Fig. 3 we show the behaviour of I0
as a function of di for di�erent values of f. For f¿0:8 we �nd that as the occupation
of the lattice, di; increases from 0 to 0.6, I0 decreases. This tendency is reversed for
di¿0:6; when I0 begins to grow until a saturation level for di = 1. This fact shows a
particular behaviour of the system around di = 0:6; that is revealed in a much clearer
way when we analyse the non-monotonic behaviour of Ip. As can be seen in Fig. 4,
Ip has a high peak near di = 0:6 that can be associated to a phase transition. Previous
works [19], have shown that local epidemic models with immunization are in the same
universality class as percolation cluster growth models. The percolation threshold for
square lattices is equal to 0.593 [20]. In our periodic SIS model, though there is no
real immunization, an e�ective immunization can be achieved in those periods when
the probability of infection is very low.
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Fig. 4. Asymptotic peak amplitude over initial density vs. di , for three di�erent values of f (as in Fig. 3).
SIS periodic model.

3.2. Models with immunity

Here we analyse both the presence of travelling waves and the asymptotic level of
the density of individuals never a�ected by the epidemic, for di�erent sets of values
for the relevant parameters. We also study the behaviour of the front velocity as a
function of di. As in the former case we begin with ti =tp = tl = 2; p(h) ≡ 1; and

F(�ij(t)) =



f if �ij(t)¿0 ;

0 if �ij(t)60 :

Again, we consider interactions between �rst neighbours, neglecting further contribu-
tions.
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Fig. 5. (A–C) Three consecutive stages of the evolution of the cellular automata for the SIR model, separated
by 100 time steps. Light gray, dark gray and black indicate susceptible, infected and removed individuals
respectively. (D) Asymptotic state of the cellular automata for the SIS model. Gray and black indicate
susceptible and infected individuals respectively.

The observed behaviour of the system is qualitatively di�erent from that of the
case analysed previously. The numerical results show the presence of travelling waves
and the occupation of almost all the lattice by the removed group once the epidemic
wave has passed through. In Fig. 5 we can observe four stages of the evolution of
the epidemic, showing the epidemic wave and the presence of islands of susceptible
individuals, places that have not been a�ected by the epidemic. This fact is due to the
random process that governs the evolution rules of the cellular automata. The density
of such islands, Sa; depends strongly on f, a fact developed in Fig. 6, where we plot
the asymptotic density of susceptible individuals, representing those not reached by the
infection. The presence of a phase transition for a certain critical value fc is again
observed. Above this value the stationary mean number of una�ected individuals goes
to zero. But for values below fc the value of Sa grows, reaching a stationary mean
value bounded by Sa(0); the initial number of susceptible individuals. The analysis of
the behaviour of Sa versus f shows a phase transition. Near fc, Sa(f) can be �tted
with a critical-like power-law curve

Sa = Sa(0)− A|f − fc|� :
The observed tail in the inset of Fig. 6 can be easily explained. We consider an initial
infective nucleus that grows initially infecting some individuals who after some time
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Fig. 6. Asymptotic density of the una�ected individuals as a function of f. In the inset we show the scaling
of the data with a power-like curve Sa(0)−A|f−fc|�. With A=40859± 13563, fc =0:3771± 6:7× 10−3
and � = 0:61± 0:11.

Fig. 7. Propagation velocity of the epidemic travelling wave as a function of di .
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become immune. Depending on the values chosen for the parameters the nucleus will
grow or collapse but there is always a small number of infected individuals as a result
of the initial transient condition. These infected individuals account for the tail in Fig. 6.
Finally we analyse the velocity of propagation of the travelling wave for several

values of di. We plot the radius of the infective front as a function of time obtaining
a curve that can be linearly �tted, with low errors in the coe�cients resulting in a
well-de�ned value for the velocity. The results are shown in Fig. 7, where two regimes
for the behaviour of the velocity can be observed.

4. Conclusions

There are so many aspects to be studied when considering an epidemiological model
that the analysis must be necessarily limited. We have chosen to analyse di�erent
epidemiological features in each one of the models presented in this work. When
presenting the rules governing the cellular automata we said that the function F(t) was
related to the infectiousness of the epidemic. In the subsequent analysis we have de�ned
F(t) as a Heaviside like function adopting di�erent constant values, f, and also varying
according to the stage of the infective period being that of latency or of incubation. This
form for F(t) is the simplest choice but it allowed us to perform the desired analysis.
A more complex form for F(t) can be chosen in order to model the evolution of a
speci�c epidemic. First, we have studied the SIS model. We have analysed the e�ect of
the value of f on the stationary mean density of infected individuals, �rst setting the
incubation and latency times equal to zero and then considering the infective period
as divided in three stages of equal length. Actually, the latent stage can be considered
as an e�ective short time immunity. Its e�ect is to lower the value of the stationary
mean infective density for a given value of f. From the point of view of our model,
the e�ect of the incubation period is not so apparent, but by choosing an adequate
and more speci�c shape for F(t) during the incubation period, the essential features
of a particular epidemic could be represented through the cellular automata. Also, the
incubation period can be more relevant if mobility is added to the model and the
individuals have the ability to recognize the infected ones presenting symptoms, and
move away from them. In that case, to be studied in a future work, the lapse of time
between the moment when one individual becomes infectious and that when he can be
recognized as sick could be of non-negligible importance. The existence of a threshold
for the propagation of an epidemic is a well-known result when modelling a disease
by the SIS model. We have found that the threshold value for f depends on the
duration of the infective period and on the existence or not of latentcy and incubation
stages. The curve obtained for the stationary mean density of infected individuals near
that threshold value shows the existence of a phase transition. In that region the data
has been �tted with a critical-like power-law curve. This aspect is more related to
cellular automata than with epidemics, but we have analysed the e�ect of latency and
incubation on the critical exponent value, which is larger when those are considered.
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Next we studied the e�ect of periodic modulation on the rules governing the cel-
lular automata. The main goal here was comparing our results with those obtained
for the periodic behaviour of measles in [4] from direct observation on an isolated
population. In that work the authors describe the structures adopted by the epidemic
depending on the density of the population of a certain community. According to its
population density, communities can be divided into three main groups, the periodic
evolution of an epidemic adopting distinct features in each one. While in densely popu-
lated communities the epidemic waves show a periodic behaviour, with peaks mounted
over an endemic background, in the smallest communities the behaviour is completely
irregular and discontinuous attributing the occurrence of peaks almost exclusively to
external factors. The behaviour in intermediate communities can be associated with an
intermediate behaviour between that of the former two cases, with periodic but not
continuous peaks, without endemic periods between them. We have de�ned two quan-
tities: the relative endemic background of the epidemic, I0; and the relative amplitude
of the peak, Ip. We have found that there is a transition near di = 0:6; that may be
associated with the percolation threshold for square lattices, equal to 0.593 [20]. The
endemic background grows for di¿0:6; while the amplitude of the peaks becomes
lower. This means that as the initial density increases, the ratio between the endemic
background and the peaks decreases. This result agrees with that presented in [4]. For
densely populated communities the endemic value is relatively high with small peaks
mounted over it, while for smaller communities the relative amplitude of the peaks is
much higher, the endemic value being almost zero. The results for di¡0:6 show that
while the endemic background remains low, the amplitude of the peaks tends to zero
monotonically as di decreases, leading us to state that a high peak can appear only
due to an external uctuation. The peak around di=0:6 in Figs. 3 and 4 is of bounded
amplitude due to the �nite size of the lattice. Further analysis should be done in order
to determine the possibility of a divergence around this point for bigger lattices.
Though the same analysis done for the SIS model can be also done for the SIR model

we decided to study numerically other features not found in the former. We analysed
the surge of travelling waves of infection and their propagation velocity. We studied
the case when the acquired immunity is permanent. The non-deterministic behaviour
of the cellular automata due to the random character of h leads to the appearance of
islands of susceptible individuals that have not been a�ected at all by the epidemic.
The stationary mean density of these individuals as a function of f has been plotted
in Fig. 6, behaving like Is in the SIS model. We have found an apparent change near
f= 0:37: In that region the curve was �tted with a critical-like power-law curve. The
remaining tail can be attributed to the transient evolution of the cellular automata from
the initial condition. In the �rst steps the initial infectious nucleus evolves infecting
its neighbours and then growing or collapsing depending on the values chosen for the
parameters. Due to this initial stage there is always a remainder of removed individuals.
Finally, we have studied the propagation velocity of the travelling wave as a function

of di. We have found that the velocity increases monotonically, but shows two di�erent
regimes. It grows at a high rate for di¡0:6; and more slowly for di¿0:6: From the
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point of view of the epidemic aspects this result agrees with the fact that the epidemic
nucleus generally appears in a densely populated area, advancing at a certain speed
and reaching other regions with lower population density as its propagation velocity
decreases [4]. Taking into account that we are modelling the problem through cellular
automata, the change of regime in the behaviour of the velocity around di = 0:6 may
be associated with the threshold percolation density for square lattices [20].
The vital dynamics and mobility, considering di�usive and transport terms, will be

included in a future work.
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