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Cellular-automaton decoders for topological

quantum memories
Michael Herold1, Earl T Campbell2, Jens Eisert1 and Michael J Kastoryano3

We introduce a new framework for constructing topological quantum memories, by recasting error recovery as a dynamical process

on a field generating cellular automaton. We envisage quantum systems controlled by a classical hardware composed of small local

memories, communicating with neighbours and repeatedly performing identical simple update rules. This approach does not

require any global operations or complex decoding algorithms. Our cellular automata draw inspiration from classical field theories,

with a Coulomb-like potential naturally emerging from the local dynamics. For a 3D automaton coupled to a 2D toric code, we

present evidence of an error correction threshold above 6.1% for uncorrelated noise. A 2D automaton equipped with a more

complex update rule yields a threshold above 8.2%. Our framework provides decisive new tools in the quest for realising a passive

dissipative quantum memory.
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INTRODUCTION

Prolonging the lifetime of quantum information stored in a
quantum device is a monumental challenge. Yet, it is the
necessary first step in the effort to scale up quantum computing
and quantum communication to a commercially viable level. As
quantum coherence is intrinsically fragile, it is clear that increased
robustness of the encoded information needs to rely heavily on
quantum error correction.1,2 Topological codes in particular have
emerged as the most promising quantum error correcting codes,3

where the toric code4,5 is a paradigmatic example. However, in
three or fewer dimensions, excitations propagate at little energy
cost under thermal dynamics, rapidly corrupting the encoded
information.6 Schemes based on sequential measurements of the
system’s error syndromes, and subsequent elimination of errors
have been suggested to preserve the logical subspace.
When performing active error correction, it is essential for

the decoding process to be much quicker than the decoherence
time. Prior proposals have focused on the development of
efficient decoding algorithms,7–9 or decoders with high error
thresholds.10,11 Some of them offer the possibility of parallelization
enabling a runtime logarithmic in the system size.8,12 This
improves prospects, but still requires a computer with commu-
nication between many spatially separated cores. By incorporating
a message routing system into a lattice of cores, such long-range
communication can be achieved with only nearest-neighbour
connections. However, the complexity, time lag, and communica-
tions traffic of such a system is not fully understood and has not
been simulated. Hence, key obstacles remain.
In this work, we propose an entirely new approach towards

designing topological quantum memories that naturally incorpo-
rates parallelization. Our design can be implemented via classical
hardware composed of small local memories and a small set of
local operations only depending on neighbouring memories and
neighbouring physical qubits, without constituting universal local

processors13,14 or demanding an explicit message routing system.
That is, we develop simple cellular automata that efficiently
perform active error correction on the toric code. The operational
principles of our automata are based on the mediation of
attractive long-range interactions between excitations. That way,
excitations will tend to collapse together rather than to extend
out and create logical errors in the code. Inspired by classical
electrostatics and gravitational fields, we identify local update
rules that induce such error correcting long-range fields.
We provide extensive numerical analysis of three specific

decoders, two of which use a 2D automaton and the third using
a 3D automaton. Two of our decoders have comparable threshold
values to more conventional decoders that require more
sophisticated hardware. We also provide detailed analysis of the
equilibration and propagation characteristics of the fields
generated by the automata, which justifies the choice of tunable
parameters in our decoders. Finally, we study a class of long-range
fields and their decoding capabilities, and observe that certain
fields are too long-range to reliably identify excitation pairs.
Our schemes share some features with other proposals which

add an auxiliary system in order to enforce suppression of error
creation.15–22 Prior proposals typically use quantum auxiliary
systems instead of classical auxiliary systems for studies of self-
correcting memories, where full numerical investigations are
prohibitively difficult. Our class of models in some sense combines
the benefits of active and of passive memories. Indeed, provided
that the cellular automaton update rules do not change in time,
the decoding process can be interpolated down to continuous
time. In this setting error correction acts simultaneously with error
creation, effectively preventing the creating of long error strings.
This would amount to a dissipative self-correcting memory.23,24

In this work, we focus on decoding devices but it should be clear
that our design incentives promise a generalisation to new
schemes of dissipative self-correction.
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MATERIALS AND METHODS

The main purpose of this work is to present a fundamentally new class of
decoders for the 2D toric code. The toric code has the important feature
that it can be considered as a physical model with purely local interactions.
In this model, the physical spins reside on the edges of a periodic L× L
lattice, which we henceforth denote V , and the stabiliser operators act on
the four neighbouring spins in the star or plaquette formation (see
Supplementary Material for a brief review of the toric code). Errors in the
toric code appear as strings, where only the end points of the strings are
revealed in the error syndrome measurements. We will refer to these

endpoints as anyons, and they have the role of excitations in a classical
statistical model.3,25 An error configuration is successfully decoded if all
anyons are paired, such that all anyon paths are contractible loops on the
torus. Throughout, we assume independent single site Pauli-spin X and Z
errors at a rate p. In this way both error sectors decouple, and we can treat
them independently. Here we consider only X errors, the Z errors can be
treated identically.
The decoders we propose were conceived with the following goal in

mind: To arrive at purely local update rules that are as simple as possible.
By this we mean that the decoding can be implemented with simple local
units of computation that depend only on nearest neighbours. The most
natural model for this type of computation is a cellular automaton, which is
indeed the nature of our class of decoders. In particular, we will consider
an auxiliary cellular automaton, whose purpose is to communicate
long-range information between anyons, that enables local decisions to
correct errors in the toric code (see Figure 1).

The automaton extracts anyon information from the physical qubits via
local stabiliser measurements at each cell of the toric code lattice V , the
resulting outcome is stored in some local registry, which we label qE(v). The
automaton also uses an auxiliary classical system on another lattice Λ, and
at each cell x∈Λ and at each time t it stores a real number ϕt(x). We will
refer to the auxiliary system as the field generated by the ϕ-automaton.
The simplest auxiliary lattice has cells coinciding with the toric code cell
(so Λ ¼ V), but we also consider larger dimensional auxiliary systems
provided they include the toric code as a sub-lattice V � Λ. Every auxiliary
lattice considered herein is either a 2D torus, so ΛffiV , or a 3D torus with
the x3= 0 plane coinciding with the toric code lattice. To simplify later
expressions, we extend the domain of qE to the whole auxiliary lattice with
the understanding that anyons never leave the toric plane, so qE(x) = 0
whenever x3≠0.
The system’s configuration at any given time is the triple {E, qE, ϕ}, where

E is the actual error configuration. Assuming ideal measurements, qE is
redundant as it is determined by the error configuration. The dynamics of
the system are divided into update sequences, labelled by τ, in which
{E, qE, ϕ} evolve. Each update sequence is subdivided into c+1 elementary
steps, first there are c repetitions of a ϕ-update (in which only ϕ changes),
followed by a single anyon update (a partial error correction where E and
hence also qE change). As lattice cells only interact with their nearest
neighbours, these elementary update rules must be local. In a single
ϕ-update from time t to t+1, the field ϕt+1(x) can only depend on ϕt(x),
qE(x) and values ϕt(y) where y is a neighbour of x. For each excited cell
(where qE(x) = 1) the anyon update rule decides whether the anyon hops to
an adjacent site, and being similarly local, this rule depends only on ϕ

V

�

V

�

Figure 1. Schematic presentation of the cellular automaton decoders. (a) The toric code on a periodic lattice controlled by a classical cellular
automaton decoder on a 2D lattice. Blue spheres represent the physical qubits and the green boxes represent the elementary cells of the
automaton. The communication between cells and with the syndrome measurements (anyons) is nearest neighbour, indicated via connecting
tubes. (b) A 3D cellular automaton decoder with the central layer hosting the toric code. (c) The field, encoded in the cellular automaton,
generated by the anyons of the toric code. Regions with a larger density of anyons have a larger field value. The profile of the field will depend
on the specific characteristics of the automaton dynamics. The cellular automaton performs two tasks: (i) it updates the field in order to
propagate information between distant anyons; and (ii) it moves the anyons in the direction of largest field gradient. (d) Logical information
associated with one decoding run. The red diamonds are the ends of error strings, the orange lines are the actual physical error lines, and the
blue dotted lines are the recovery paths dictated by the decoder.
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values at adjacent sites. With good design of update rules, the ϕ values will
meditate information between anyons about the location of their closest
potential partners. Later, we derive suitable updates rules, which can be
roughly be characterised as: take the average of your neighbours and add
the charge. This corresponds to a local discretisation of Gauss’ law.
To fuse nearby anyons we desire that each anyon moves towards

regions of higher field intensity. A natural way to achieve this is with the
anyon update rule: find the adjacent cell with (unique) largest field value,
then move there with probability 1/2. We also considered alternative
anyon updates, but none yielded higher thresholds than this simple and
intuitive strategy. Physically, an anyon hopping from x to y is implemented
by a Pauli X applied to the qubit on the lattice edge separating cells x and
y. All anyon hops occur in parallel resulting in partial correction of the error
string E, to a new string E0 and the anyon distribution similarly updates to
qE0 . This process only removes anyons, with two anyons on the same site
cancelling, eventually removing all anyons and so completing a whole
error correction cycle. The ratio between the number of ϕ-updates per
anyon update is labelled c, and can be understood as the speed of
propagation of the field. We will call c the field velocity. A pseudocode of
our algorithm is provided in the Supplementary Material.

RESULTS

Numerical results

We numerically benchmarked our decoders using uncorrelated X
and Z flip noise with error probability p. We say that a decoder is
asymptotically working if it exhibits an error correction threshold
pth. That is to say, if popth then increasing the lattice size linearly
exponentially suppresses the probability of the decoder creating a
logical error by mismatching anyons. Numerically, the threshold
appears as a crossing for various lattice sizes, such as in
Figures 2a,b. Further numerical results showing details of error
suppression are provided in the Supplementary Material.

Our results are summarised in Table 1. We present three
decoders called the 2D, 2D* and 3D automata. The 2D* and 3D
cases yield asymptotically working decoders, whereas the simple
2D decoder only suppresses errors up to a finite size lattice
(e.g., L~ 60, Figure 2c). Although the 2D decoder is expected to be
most suitable for modest storage needs, no strict asymptotic
threshold exists. We consider two more decoders using precisely
the same update rules, but different only either in how these
updates are composed or in the lattice they are implemented on.
The 2D* ϕ-automaton keeps the 2D lattice, but alters how updates
are composed by letting c increase with each sequence τ, which
increases the ratio of field updates to anyon updates as time
increases. We find the 2D* ϕ-automaton has a threshold of ~ 8.2%
(Figure 2a). Our second variant is the 3D ϕ-automaton, which
keeps c constant in time, but implements the field updates on a
3D lattice. The toric code remains 2D, but is embedded in a plane
of the 3D ϕ-automaton (Figure 1b). The 3D ϕ-automaton exhibits
a noise threshold at ~ 6.1% (see Figure 2b). Although c is constant
in time, it must scale logarithmically with L. These thresholds are
only a few percent below the best thresholds using a centralized
computing architecture. Further numerical data on performance
below threshold is presented in the Supplementary Material.
Ideally, we would like all update rules to be completely

independent of the system size L, and not to change throughout
sequences. Yet, we find that this is not possible within the
framework of ϕ automaton decoders. Indeed, simulations show
that in order for the decoder to converge in a time, which is sub
exponential in L, the field has to have propagated a distance of
order log(L), which corresponds to a lower bound on the field
velocity c≥ cmin~ log2(L). The dependence on log(L) can be
understood by the fact that maximal clusters of errors below
the error threshold are of order log(L) (see refs 26,27 and
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Figure 2. Performance of ϕ-automaton decoders. (a) Threshold plot for the 2D* and (b) the 3D ϕ-automaton decoder. The decoder fail rate
decreases with system size below threshold and increases above threshold. The number of samples in a ranges from 2,800 samples per point
for larger system sizes to 21,000 samples for smaller system sizes. In b the sample size per point is at least 20,000. The points were fitted using
a universal scaling law.37 (c) 2D decoder fail rate as a function of lattice size L and field velocity c for P= 6%. For very small c the decoder has a
large fail rates due to self-interaction (see corresponding paragraph for details). At large c, the decoder also fails because of a stationary field
with excessively long range. There exists a sweet spot around c∈ [5,15] and L∈ [20,80]. (d) Average number of sequences required for a 2D*
and 3D ϕ-automaton decoder to remove all anyons with P= 1%. The lines represent best fits using a logβ(L) function for the 2D* decoder and
log(L) for the 3D decoder. The optimal fit yields β≈ 2.5.
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Supplementary Material), and the decoder must collapse these
maximal clusters in a time proportional to their size. If c were to be
taken independent of L, then beyond a critical cluster size, the
field contribution due to an anyon’s self-interaction would
dominate the contribution from the anyons at the other end of
the cluster. Self-interaction prevents constant c decoders from
converging in a time polylogarithmic in L, and the phenomena is
discussed in detail later. Thus, in any field-based model, the field
velocity must scale with the system size. Later in the article, we
give an explicit lower bound on c, which is derived from the
equilibration properties of the ϕ-automaton.
Given that we want our class of decoders to be adaptable to a

setting where measurement data are regularly refreshed, it is
desirable to have update rules that are invariant throughout
sequences. However, this appears not to be possible when the
fields are restricted to two spatial dimensions (Figure 2c). The
ϕ-automaton decoder works asymptotically in three or higher
dimensions because of the steady state profile of the field. Indeed,
the steady state poisson field of a single charge scales as log(r) in
two dimensions and as r2–D in higher dimension, where r is the
distance from the source charge. From numerical simulations, we
are lead to conclude that the 2D equilibrium field is too long
range, and tends to break the cluster structure of the anyons by
extending error strings rather than shrinking them. In higher
dimensions the field profile decays steeply enough so that this is
not the case. We also later address whether there is a proper
threshold between the log(r) and the 1/r decaying fields.
Should we not be concerned with the field velocity changing

across sequences, the 2D* ϕ-automaton decoder is preferable as it
exhibits a higher threshold and can more easily be implemented
in an integrated circuit type architecture.28,29 With c increasing
linearly at each update sequence, this allows elements within the
clusters to pair up, while simultaneously preventing the field from
extending across clusters. The main mechanism responsible for
the success of the 2D* decoder is analogous to the ‘Expanding
Diamonds’ decoder from refs 30,31.
Finally, in Figure 2d we summarise the runtime estimates of our

two working ϕ-automaton decoders. The 3D decoder completes
an error correction cycle, pairing all anyons, in the order of log(L)
update sequences, while the 2D* decoder terminates after
~ log2.5(L) sequences. This can be seen as very strong evidence
that the typical maximal error cluster is indeed of size ~ log(L), and
that our decoders collapse these clusters in optimal time. The 2D*
decoder has a runtime ~ log2.5(L) sequences as the value of c
needs to exceed ~ log2(L) before the ϕ-automaton can transmit
information across a maximal cluster to collapse it. It should be
noted that our estimate of the exponent of 2.5 is based on fitting a
polylogarithmic function using 11 data points, and could be
slightly off. Finally, each sequence is composed of c field updates
and one anyon update, and so we can also quantify runtime in
units of updates. For the 3D decoder, log(L) sequences with
c= 10 · log2(L) gives a runtime of order log3(L) updates. For the

2D decoder log2.5(L) sequences with c ¼ 1þ τ=5, we sum over
τ ¼ 1; ¼ ; log 2:5 Lð Þ to get a runtime of order log5(L) updates. Note
that for the 3D decoder the runtime implies that asymptotically
the vast majority of cells in the third dimension is not reached by
any field information. Therefore the size of the third dimension
has to scale as log3(L) only.

The ϕ-automaton

In this section we explore in detail the local update rules of the
ϕ-automaton from physically motivated considerations. The key
idea is to emulate a long-range field, such as from Newton’s law of
gravitation or Coulomb’s law, which mediates an attractive force
between the excitations of the toric code. In nature such long-
range forces emerge from simple local dynamics in the field. Here
we achieve the same effect on a discrete lattice governed by a
cellular automaton. The notion of mutually attracting particles
with equal charge rather corresponds to gravitational fields,
but we will stick to a language that is mainly inspired by
electrodynamics.
To elaborate on this analogy, we detour into electrostatics,

where the electric field is the gradient of a scalar potential Φ.
Gauss’ law simplifies to Poisson’s equation

∇
2
ΦðxÞ ¼

X

D

j¼1

d2
ΦðxÞ

dx2j
¼ qðxÞ; ð1Þ

where D is the spatial dimension and q is the charge distribution.
The only isotropic solution of Poisson’s equation with a single
charge at the origin is

ΦðxÞ ¼
- log r for D¼ 2;
r2 -D otherwise;

�

ð2Þ

where r=dist(x, 0) denotes the distance of some lattice site x from
the source charge at the origin. The minus in front of the
logarithm is chosen to ensure that Φ is convex for all D. The variety
of long-range behaviour motivates the use of Φ as an information
mediator. Our goal is now to approximate Φ via a cellular
automaton.
A convenient discretization of the derivative is d: ϕ(x)→ϕ(x+1/2)

−ϕ(x− 1/2). Applying this prescription twice yields the double
derivative d2: ϕ(x)→ϕ(x+1)+ϕ(x− 1)− 2ϕ(x). On a D-dimensional
square lattice Λ, this generalises to the discrete Laplacian operator

∇
2ϕðxÞ ¼ - 2DϕðxÞ þ

X

〈y;x〉

ϕðyÞ; ð3Þ

where the sum 〈y, x〉 is over all cells y neighbouring cell x; so all y
for which dist(x, y) = 1.
We proceed by specifying a set of dynamical equations, or

ϕ-automata update rules, whose stationary distribution satisfy
the discrete Poisson equation ∇

2ϕ(x) = Cq(x). Here the role of the
charge is replaced by anyonic excitations, and we identify q with
qE. Note that only gradients of ϕ will be considered meaningful
for anyon movement, and so fields differing by an additive
constant are deemed equivalent. Invoking the Jacobi method,32

we consider the following ϕ-automaton update rule

ϕtþ1ðxÞ ¼ ð1 - ηÞϕtðxÞ þ
η

2D

X

⟨y;x⟩

ϕtðyÞ þ qEðxÞ; ð4Þ

where 0oηo1/2 is a smoothing parameter we can freely choose
and for convenience the unit charge is set to C=− 2D/(1− η).
These update rules are manifestly local. We can cast equation (4)
as a matrix equation ϕt+1=Gϕt+qE, which should be read as

ϕtþ1ðxÞ ¼
X

y

Gx;yϕtðyÞ þ qEðxÞ; ð5Þ

where G is a doubly stochastic block circulant matrix encoding

Table 1. Summary of results for ϕ-automaton decoders

2D 2D* 3D

Lattice (Λ) L× L L× L L× L× L
Field velocity (c) τ indep. 1þ 0:2Uτ 10·log2(L)
Threshold (pth) N/A 8.2% 6.1%
Required sequences τRTð Þ N/A o(log2.5(L)) o(log(L))

τ refers to the sequence index, where each sequence contains c+1

elementary updates per cell. The decoder terminates after τRT sequences

on average. For the 2D* decoder the rules for the field updates can be

thought of as time-dependent since c increases with τ. The smoothing

parameter as defined in equation (4) is η= 1/2.
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the ϕ-automaton update steps. This reformulation allows us to
leverage the machinery of matrix analysis.33

Stationary states and equilibration

Assume for now that the anyon configuration is fixed. By
recursively iterating equation (5), we get

ϕt ¼ Gtϕ0 þ
X

t - 1

m¼0

GmqE : ð6Þ

It is easy to see that in general the ϕ-automaton satisfying
equation (4) does not converge, since the total field values build
up steadily due to the charges. Indeed, when Q ¼

P

xqEðxÞ
denotes the total charge present in the lattice, the total field
increases by Q with each field update. However, it is important
that the gradient of the field equilibrates towards a fixed value.
With this in mind, we define ~ϕt to be the rescaled version of ϕt

such that ϕ~tðxÞ ¼ ϕtðxÞ - K , where the constant K is chosen such
that

P

xϕ
~
tðxÞ ¼ 0.

The matrix G can be diagonalized by Fourier transform
(Supplementary Material), allowing us to obtain a unique solution.
We find that the stationary field produced by a single anyon at the
origin is

φðxÞ :¼ lim
t-1

ϕ~tðxÞ ¼ L-D
X

kAΛ;k≠0

ð1 - λkÞ
- 1
eikUx; ð7Þ

where the sum is over all Fourier components except the zero
vector and λk are the eigenvalues of the matrix G,

λk¼ 1 - ηþ
η

D

X

D

j¼1

cos ðkjÞ: ð8Þ

The k= 0 term is excluded from the sum in equation (7), which
would provide an additive constant to the field. By omitting this
term we fix the normalisation so that

P

xφðxÞ ¼ 0. It is also easy to
see that the stationary distribution of a charge at cell y is given by
φðx - yÞ. By linearity, the ϕ-automaton satisfies the superposition
principle of fields, and hence the stationary distribution of a
collection of charges is just the sum of the distributions of each
individual charge. That is, ϕ~1ðxÞ ¼

P

yqEðyÞφðx - yÞ.
The distance between ~ϕt and

~ϕ1 (as measured by Euclidean
distance) can be shown by using matrix inequalities to decrease

exponentially fast, so that (details in Supplementary Material)

:~ϕt -
~ϕ1:

2
�e - ðηπ2=DÞt=L2:~ϕ0 -

~ϕ1:
2
; ð9Þ

where the distance is measured in the vector 2-norm :u:2
2
¼ uUu.

This would suggest a relaxation time of the ϕ-automaton of the
order of L2, which can be understood as diffusive spreading of
information. In the following section we will argue that the
relevant contribution of the field converges in a time much faster
for our decoders, because we are only interested in information
propagating on distance scales of the order log(L), the maximal
error cluster size.

Self-interaction

The ϕ-automaton carries information about distant anyons
through local update rules. As has already been hinted at in the
previous section, information takes time to propagate through the
field, and the most relevant manifestation is in the pernicious
phenomenon that we refer to as self-interaction. The field around
an anyon is generated both by distant, potential partner anyons,
but also by itself. This is a feature shared by all field theories. We
can understand this self-interaction by considering two close-by
anyons A and B, as in Figure 3. Our story begins with anyon A
moving in the direction of largest local field gradient, towards
anyons B. After anyon A has moved, it leaves behind its own field,
which will typically be a local maximum of the ϕ-automaton. In
order for anyon A at the end of the following sequence to again
move in the direction of anyon B, the field gradient generated by
anyon B has to be larger than the residual self field gradient
around the cell of anyon A. We call this phenomenon self-
interaction, and next derive conditions on the field velocity to
prevent this from occurring.
Suppose anyon A starts at the origin and anyon B is at

cell y. Assuming the initial configuration is at equilibrium,
ϕ0ðxÞ ¼ φðxÞ þ φðx - yÞ. After anyon A moves, the field begins
to relax towards ϕ1ðxÞ ¼ φðx - eÞ þ φðx - yÞ, where e is a unit
vector in the direction of anyon B. We want to estimate the time
required before the field gradient generated by anyon B is larger
than the self-interaction of anyon A. In other words, assuming
ϕ0ðxÞ ¼ φðxÞ þ φðx - eÞ, after what time do we have

ϕtðxÞ -ϕ1ðxÞj j�gl; ð10Þ

where gl is the gradient at the origin due to a charge at a distance
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Figure 3. Self-interaction. A setup with two isolated anyons A and B, and their fields in a self-interaction cycle. Suppose that the fields
from each anyon starts in its stationary configuration (a). After one anyon update move, anyon A moves in the direction of largest field
gradient towards anyon B. (b) Immediately after anyon A moves, the field which it leaves behind is much larger that the field from anyon B.
(c) After a certain number of field updates, the residual self field from anyon A decreases, but might still tell the anyon to move in the wrong
direction (d).
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l=dist(0, y). It is not difficult to see that the left hand side of
equation (10) does not depend on the field from anyon B.
A straightforward, but lengthy, calculation (in the

Supplementary Material) shows that for all ϵ40

ϕtðxÞ -ϕ1ðxÞj j�ϵ ð11Þ

whenever

tZχðxÞϵ - 2=ðD - 1Þ; ð12Þ

where χ is a function of position, but is independent of t
(see Supplementary Material for the exact form). Considering the
second anyon at point y = e, it creates a field gradient near the first
anyon (at the origin)

∇φðx - yÞ9
x¼0

¼
X

j

ðφð - yÞ -φðej - yÞÞUej ; ð13Þ

where {ej} is an orthonormal basis of unit vectors. Therefore, we
must require that

χð0Þϵ�9∇φðx - yÞ9
x¼0

9 :¼ gl: ð14Þ

By percolation arguments, the maximum cluster size of anyons
can be argued to typically be order l~ log(L). Given that the
gradient is of the order ll–D, require ϵ~ logl–D(L),

cZccrit � log 2ðLÞ; ð15Þ

where the dependence on D has now cancelled.

The field profile

We already discussed in detail that when the field velocity c is kept
invariant throughout sequences, the 2D and 3D decoders exhibit
fundamentally different behaviour. Here we supplement these
results by investigating another decoder model, not a cellular
automata, to investigate the large c regime when fields are always
close to stationary solutions. In order to address this question, we
consider a class of power law potentials

ΦðrÞ ¼ r - α ð16Þ

for α40.
We simulate anyon movements in these perfect fields, by

inserting the sum of all anyon fields by hand, instead of simulating
it locally by a cellular automaton. We alternate between these
instantaneous field updates and the anyon update rule as defined
before. For α= 1 we expect a behaviour similar to the decoder
with 3D ϕ-automaton. The benchmark presented in Figure 4b
indeed shows a threshold at pth~ 6.3%, which is very close to the
threshold of ~ 6.1% seen for the 3D ϕ-automaton. This indepen-
dently confirms that our choice of finite c is sufficiently large for
equilibration between distinct anyon moves.

Seeking to understand the transition between the 2D and the
3D stationary field behaviour, we consider various values of α and
lattice sizes for fixed p= 5% in Figure 4a. In general the decoder
fail rate reduces with increasing α. This supports our claim that
fields with a shorter range are more suited for efficient shrinking
of errors. However, our main observation is that for αo0.5 the
decoders fail rate increases drastically with the system size L. This
means that the decoder does not exhibit a threshold above p= 5%
for αo0.5. Although it is difficult to certify numerically, for
0.5≤ α≤ 0.7 we did not either find an indication of a threshold at
any p up to lattice size L= 400.
From these observations we infer that there has to exist a

critical αT such that Φ provides a asymptotically working decoder.
For values of α below the transition, the increased contribution
from far away anyons leads to the misidentification of error
strings. Recall that anyons move according to the maximal field
gradient of r− α, which is proportional to r− (α+1). The total field at a
point is the sum of the contributions from all of the anyons, hence
for an infinite lattice the gradient is only guaranteed to be finite
for 1/rβ, when β42. Only for α41 does the gradient have a well-
defined value asymptotically. Hence we expect αT= 1 for the 2D
toric code. This intuition is further supported by a simple
simulation of the 1D toric code (i.e., the repetition code), where
we observe a clear transition at α= 0, which corresponds to a
gradient of 1/r. Here we have allowed for values of α≤ 0 by setting
ΦðrÞ ¼ - r - α for αo0 and Φ ¼ - log ðrÞ for α= 0.
We highlight that very high values of α are not favourable in

general, as they require increased precision in the field resolution.
Meanwhile, we expect that the 3D ϕ-automaton always gives rise
to a field with slightly shorter range than 1/r (i.e., α41). Therefore,
the 3D ϕ-automaton seems to be sitting exactly at the sweet
spot, providing a functioning long-range ϕ-field decoder with a
maximally robust field.

DISCUSSION

In this work, we have introduced a new class of decoders that pair
anyonic excitations by mediating long-range information through
an auxiliary field. The field, and the anyon movement, is generated
by a cellular automaton, in such a way that the decoder has an
intrinsically parallelised architecture. We have observed that the
attractive interactions mediated by the cellular automaton can
stabilise topological states. Further we have found indications that
the stability exhibits a phase transition in the long-range
parameter of the attractive field. We have identified two particular
decoders within this class that exhibit an error threshold, one
requiring a 3D auxiliary system with homogeneous update rules,
with an error threshold above 6.1%, and another with a 2D
auxiliary system and time dependent update rules with an error
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threshold above 8.2%. When below threshold both decoders also
show noise suppression reducing exponentially with lattice size.
Our schemes have two main conceptual limitations in their
present formulation. First, the processing cost is determined by
the field velocity c that must scale polylogarithmically with the
system size L. Second, the field needs a precision sufficient to
distinguish the presence of an anyon distance ~ log(L) away.
Encoding the field digitally, this is achieved by a local field register
of log2(L) bits at every field site. At the same time, it is important to
emphasise once again that the communication requirements are
minimal, relying on nearest-neighbour communication only,
requiring no wiring or long-distance communication. Next we
discuss in detail how these costs compare with other approaches,
and we will see that such logarithmic costs are generic.
The first, and most common approach to decoding errors

is primarily designed for a serial computing architecture.
Compared with these proposals our threshold values are only
modestly smaller than the best decoders using Monte Carlo
techniques10,11 or the minimum weight perfect matching
algorithm,34 but are comparable to recent popular proposals
based on real-space renormalization techniques8,9 or so-called
expanding diamonds.30,31 However, our cellular automata
decoders have a strict locality neighbourhood, and are hence
potentially very attractive for implementations of topological
quantum memories in integrated circuit type architectures, as
were recently proposed in refs 28,29. Serially designed decoders
allow for some parallelisation, and in some instances can even be
adapted to run on a network of communicating cores.12 On the
face of it these parallelised variants are similar to our proposal, but
such schemes still need long-range communication between
cores and this is achieved locally by routing communications
across a network of cores. Such messages must be communicated
over roughly log(L) distances and consequently also incurring
order log(L) time lag. The advantage of our proposal is twofold.
First, we require no explicit message routing system and so our
decoder could be implemented using considerably simpler cores,
allowing for greater miniaturisation. Second, we have numerically
benchmarked the runtime of our proposal, whereas prior
proposals for parallelisations have not been simulated and so
the roughly logarithmic runtime has not yet been confirmed.
These merits occur because we take a bottom–up approach which
is parallel from the start, rather than attempting an ad hoc
modification of existing serial decoders.
The second class of ideas is also based on cellular automata. It is

commonly believed, that quantum error correction in two
dimensions is related to the positive rates conjecture for classical
systems in 1D. In analogy to the seminal work of Gacs13,35 on the
resolution of the positive rates conjecture, one could expect
that there exists a local cellular automaton decoder with update
rules that are strictly system size independent. Harrington
sketches such a programme for toric code decoders,14 but only
gives explicit details for a scheme with logarithmic overhead.
Unfortunately, in Gacs’ original work, the proven noise threshold is
prohibitively small (~2− 1,000), although the actual threshold
might be considerably larger.35 Hence, the requirements might
render the proposal practically infeasible. Furthermore, Gacs’ or
Harrington’s update rules are more complicated than ours, again
requiring more sophisticated computing hardware. Our proposals
are based on physically motivated rules, have high thresholds with
only logarithmic system size dependences for local parameters,
and are therefore fully adequate for realistic implementations.
Our proposed 3D decoder and the analysis of the field profile is

based on a working principle that is fundamentally different from
all previous classes of approach. It is the only proposal that could
be implemented on a simple multi-core architecture with cores
storing a single variable and mundane I/O protocols (no message
routing). The surprising result of our work is, that all the
information that is required for local decoding decisions can be

encoded in a physically motivated, attractive scalar field. The
propagation of information using a field also implies intrinsic
robustness against small deviations in field values and updates.
Indeed, preliminary results indicate that our scheme also works if
the local rules are applied asynchronously, relaxing the require-
ment for perfect synchronous operation of the decoding unit.
We have focused on some specific instances of cellular

automata decoders working against a particular noise model,
but the research project opens up many new possibilities within
the same paradigm. The space of potential cellular automata is
vast, small variations such as to anyon movement rules or lattice
geometry could have substantial consequences on performance.
Gauss’ law has proved an invaluable tool to our intuition, but it
was just a guide, and departures from an electrostatic mindset
could prove rewarding. We expect our models to be naturally
robust to certain types of more invasive errors, because the field
encodes global information in a smooth and local manner.
Nevertheless, a more detailed study of correlated noise and errors
in the measurements and in the field would be a valuable
extension of the present study. The latter two points are especially
interesting as stepping stones towards extending our proposal to
a passive dissipative quantum memory. Exploring this wealth
of decoder models will surely reveal many technological
opportunities and a rich world of varied automata behaviours.36
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