
Hu et al. Nutrition & Metabolism 2010, 7:47

http://www.nutritionandmetabolism.com/content/7/1/47

Open AccessR E V I E W

© 2010 Hu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attri-
bution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

ReviewCellular cholesterol delivery, intracellular 
processing and utilization for biosynthesis of 
steroid hormones
Jie Hu†, Zhonghua Zhang†3, Wen-Jun Shen and Salman Azhar*1,2

Abstract
Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of 

secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are 

synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. 

These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, 

maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid 

hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure 

the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for 

steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the 

mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma 

lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; 

and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent 

insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, 

events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol 

transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and 

function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for 

steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner 

mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to 

pregnenolone (the common steroid precursor) takes place.

Introduction
Cholesterol is a starting material for the biosynthesis of

steroid hormones; these fat soluble, low molecular weight

substances play diverse and important physiological

functions (Table 1). There are five major classes of steroid

hormones: testosterone (androgen), estradiol (estrogen),

progesterone (progestin), cortisol/corticosterone (gluco-

corticoid), and aldosterone (mineralocorticoids). Testos-

terone and its more potent metabolite

dihydrotestosterone (DHT), progesterone and estradiol

are classified as sex-steroids, whereas cortisol/corticos-

terone and aldosterone are collectively referred to as cor-

ticosteroids [1-3]. All these steroid hormones are

synthesized from cholesterol through a common precur-

sor steroid, pregnenolone [1-3], which is formed by the

enzymatic cleavage of a 6-carbon side-chain of the 27-

carbon cholesterol molecule, a reaction catalyzed by the

cytochrome P450 side-chain cleavage enzyme (P450scc,

CYP11A1) (Fig. 1) [4-6]. The adrenal gland produces

both corticosteroids and androgens (dihydroepiandoster-

one [DHEA], and androstenedione); aldosterone is

mainly produced by the cells of the zona glomerulosa

layer, cortisol/corticosterone is principally produced by

the adrenocortical cells of the zona fasciculata layer and

adrenal DHEA whereas androstenedione is synthesized

by cells of the zona reticularis layer (Table 1) [1,7-9]. The

ovarian granulosa cells mainly secrete progesterone (and

its metabolite 20a-hydroxyprogesterone) and estradiol;
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Table 1: Major steroids and their physiological functions

Steroidogenic Tissues Trophic Hormone Steroids(s) Physiological Functions

Ovary

Granulosa cells FSH Estradiol Estrogen, a principal female sex steroid, required for growth and 

ovulation, responsible for secondary female sex characteristics, regulator 

of cardiovascular physiology, bone integrity and neuronal growth

Luteinized Granulosa/

luteal Cells

LH Progesterone A progestin, required for follicular growth and ovulation, responsible for 

changes associated with luteal phase of the menstrual cycle, essential for 

the establishment and maintenance of early pregnancy

Theca-interstitial Cells LH Testosterone 

Androstenedione

Androgens, precursors for estrogens, transported into granulosa cells, 

where they are converted into estardiol and other estrogens by 

aromatase (CYP19A1) enzyme

Testis

Leydig cells LH Testosterone The most prevalent male sex hormone (androgen); testosterone and its 

biologically active form, dihydrotestosterone (DHT) are necessary for 

normal spermatogenesis and development, responsible for secondary 

sex characteristics, responsible for increased muscle mass, sexual 

function, body hair and decreased risk of osteoporosis

Adrenal gland

Z. glomerulosa Cells ACTH, K+ 

Angiotensin II

Aldosterone The principal mineralocorticoid, raises blood pressure and fluid volume, 

enhances sodium reabsorption in the kidney, sweat gland, stomach and 

salivary gland and also enhances excretion of potassium and hydrogen 

ions from the kidney.

Z. glomerulosa Cells ACTH Cortisol The dominant glucocorticoid in humans (in rodents, the major 

glucocorticoid is corticosterone), elevates blood pressure and Na+ 

uptake, involved in stress adaptation, regulates carbohydrate, protein 

and lipid metabolism nearly opposite to that of insulin, influences 

inflammatory reactions and numerous effects on the immune system.

Z. reticularis Cells ACTH POC-derived 

peptide Other 

factors

Androstenedione 

DHEA DHEA-sulfate

The function of adrenal androgens is not well understood, except that 

they contribute to the maintenance of secondary sex characteristics, may 

also be involved in the regulation of bone mineral density, muscle mass 

and may beneficial actions against type 2 diabetes and obesity

Placenta Peptide growth 

Factors, cAMP

Progesterone 

Estrogens

Maintenance of pregnancy

Brain

Neurons, Glial cells 

Purkinje cells

Neurotransmitters 

Neuropeptides

Progesterone 

Estradiol, DHEA, 

ALLO, THDOC

Neurosteroids are implicated in various processes such as proliferation, 

differentiation, activity and survival of nerve cells and a variety of 

neuronal functions including control and behavior, neuroendocrine and 

metabolic processes.

ovarian theca cells predominantly synthesize androgens,

and ovarian luteal cells secrete progesterone (and its

metabolite 20α-hydroxyprogesterone), while testicular

Leydig cells are the site of testosterone production (Table

1) [1,7-9]. Progesterone is also synthesized by the corpus

luteum during the first 6-8 weeks of gestation, but during

pregnancy the main source of progesterone is the pla-

centa [10,11]. The brain also synthesizes steroids de novo

from cholesterol through mechanisms that are at least

partly independent of peripheral steroidogenic cells [[12-

14] and references there in]. Such de novo synthesized

brain steroids are commonly referred to as neurosteroids

[12-14].

Although adrenal, ovarian and testicular steroidogene-

sis is primarily under the control of tissue-specific tropic

hormones (discussed below); the availability of adequate

cholesterol substrate is also a critical requirement for the

optimal steroid hormone production. The steroidogenic

tissues and cells have the potential to obtain cholesterol

for steroid synthesis from at least four potential sources

(Fig. 2): a) cholesterol synthesized de novo from acetate;

b) cholesterol obtained from plasma low-density lipopro-

tein (LDL) and high-density lipoprotein (HDL); c) choles-

terol-derived from the hydrolysis of stored cholesterol

esters in the form of lipid droplets; and d) cholesterol

interiorized from the plasma membrane. Although all

three major steroidogenic organs (adrenal, testis and
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ovary) can synthesize cholesterol de novo under the

influence of the tropic hormone, the adrenal and ovary

preferentially utilize cholesterol supplied from plasma

LDL and HDL via the LDL-receptor mediated endocytic

pathway and SR-BI-mediated selective pathway, respec-

tively [9,15-20]. The use of LDL or HDL as the source of

cholesterol for steroidogenesis appears to be species

dependent; rodents preferentially utilize the SR-BI/selec-

tive pathway while humans, pigs and cattle primarily

employ the LDL/LDL-receptor endocytic pathway to

meet their cholesterol need for steroid synthesis. In con-

trast, testicular Leydig cells under normal physiological

conditions rely heavily on the use of endogenously syn-

thesized cholesterol for androgen (testosterone) biosyn-

thesis [9,20].

This review is focused on the role of cholesterol in the

regulation of steroidogenesis. We first present an over-

view of various enzymatic pathways involved in the con-

version of cholesterol to tissue-specific steroid hormones.

Next, we summarize our current understanding about

the molecules and processes that participate in the

uptake of plasma lipoprotein-derived cholesterol with

particular emphasis on the SR-BI/selective cholesterol

transport pathway, events connected with the intracellu-

lar processing and trafficking of cholesterol and key pro-

teins which facilitate the transport of cholesterol to and

within the mitochondria for steroid synthesis.

Biosynthesis of steroid hormones--an overview
The overall rate of steroidogenesis (i.e., steroid hormone

production) is controlled by tropic (peptide) hormones

[21-26]. The type of steroid hormone that can be synthe-

sized by a particular cell type is dictated by its comple-

ment of peptide hormone receptor, its response to

peptide hormone stimulation and its genetically

expressed complement of steroiodgenic enzymes (Fig. 1).

Thus, adrenocorticotropic hormone (ACTH) stimulates

cortisol/corticosterone in adrenocortical fasciculata-

reticularis cells, angiotensin II (AII) and potassium regu-

late aldosterone synthesis in adrenal glomerulosa cells,

Figure 1 Principal steps involved in the biosynthesis of various steroid hormones. Modified from Payne and Hales and website [1,305]
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follicle-stimulating hormone (FSH) controls the proges-

terone and estrogen synthesis in ovarian granulosa cells,

whereas luteinizing hormone (LH) regulates progester-

one synthesis in luteinized ovarian granulosa-luteal cells,

androgen production in ovarian theca-interstitial cells

and testosterone synthesis in testicular Leydig cells (Table

1) [27-38]. The adrenal gland is also responsible for the

synthesis of adrenal androgens [39,40]. Tropic hormones

(LH, FSH or ACTH) induce adrenocortical and gonadal

steroidogenesis by binding to their respective G protein-

coupled receptors, leading to activation of adenylate

cyclase, which generates cAMP and activates cAMP-

dependent protein kinase (PKA) [21-25]. Stimulation of

the cAMP-PKA signaling cascade exerts both acute and

chronic effects on the regulation of steroid hormone pro-

duction. The acute steroidogenic response, which occurs

on the order of minutes, is characterized by a rapid mobi-

lization of lipid droplet stored CEs and increased delivery

of cholesterol to the mitochondrial cytochrome P450

cholesterol side-chain cleavage (P450scc) enzyme

(encoded by CYP11A1) followed by rapid synthesis of

new steroids. More chronic, long-term regulation of ste-

roidogenesis also occurs at the level of the transcription

of the genes for the steroidogenic enzymes to enhance,

which results in the enhanced synthetic capacity of the

cell [41-45]. Note: angiotensin (AII) stimulation of aldos-

terone biosynthesis in adrenal glomerulosa cells is pri-

marily mediated by the protein kinase C signaling

cascade, whereas potassium stimulation of aldosterone

production also involves Ca2+-calmodulin-dependent

kinase [26].

Although the final steroid product differs for these sev-

eral cell types (described above), the first committed

reaction in the biosynthetic pathway is the same, i.e., the

conversion of cholesterol to pregnenolone by the cyto-

chrome P450 cholesterol side-chain cleavage (P450scc)

enzyme (CYP11A1). P450scc is an enzyme complex con-

sisting of a flavoprotein (NADH-adrenodoxin reductase),

a ferredox (adrenodoxin) and a cytochrome P450 local-

ized on an inner mitochondrial membrane [3,7]. P450scc

Figure 2 Potential sources of cholesterol for product formation (steroids, vitamin D and bile acids) and membrane biogenesis
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catalyzes three distinct reactions: 20α-hydroxylation, 22-

hydroxylation and scission of 20, 22 carbon-carbon bond,

thus converting cholesterol to pregnenolone [3,7]. This

initial step in steroid hormone (pregnenolone) synthesis

also represents a rate limiting step. The rate limiting

nature of this step does not result from a limitation of the

P450scc activity itself (conversion of cholesterol to preg-

nenolone) but from limitation of access of cholesterol to

the substrate site of P450scc, i.e., delivery of substrate

cholesterol from an outer to an inner mitochondrial

membrane where P450scc resides [46-50].

The pregnenolone produced in the rate-limiting step is

further exposed to endoplasmic reticulum and mitochon-

dria for further modifications [1,2,7,51]. It is first con-

verted to progesterone by the enzyme Δ5-3β

hydroxysteroid dehydrogenase isomerase (3βHSD),

which is also one of the main steroids produced by the

steroidogenic cells of the ovary. In zona fasciculata cells

of the adrenal cortex, progesterone is hydroxylated to

17α-hydroxyprogesterone by P450c17 (CYP17), which is

subsequently metabolized to 11-deoxycortisol (or deoxy-

corticosterone) by P450c21 (CYP21A2). The final step in

cortisol biosynthesis takes place in the mitochondria and

involves the conversion of 11-deoxcortisol (deoxycorti-

costerone) to cortisol or to corticosterone in rodents by

the enzyme P450c11 (CYP11B1). The next two steps in

aldosterone biosynthesis are catalyzed by aldosterone

synthase (CYP11B2), which converts 11-deoxycorticos-

terone to corticosterone and subsequently to aldosterone.

In testicular Leydig cells, pregnenolone is converted to

testosterone via two pathways known as the Δ4 and Δ5

pathways. The relative activities of the two pathways are

known to vary according to species [1]. The Δ4 involves

sequential conversion of pregnenolone to progesterone to

17α-hydroxyprogesterone to androstenedione to testos-

terone, while in the Δ5 pathway pregnenolone is con-

verted to 17α-hydroxypregnenolone to

dehydroepiandrosterone to testosterone through either

androstenediol or androstenedione. In the ovary, testos-

terone is further metabolized to estradiol, a reaction cata-

lyzed by aromatase (CYP19A1). In addition, estradiol can

also be formed through combined actions of aromatase

(CYP19A1) and 17-hydroxysteroid dehydrogenase

(17HSD1) (Fig. 1).

De novo cholesterol synthesis
Like many tissues, all steroid producing tissues and cells

are capable of synthesizing cholesterol de novo [9,15-

18,20]. Biosynthesis of 27-carbon skeleton of cholesterol

involves the conversion of acetate (acetyl CoA) through a

series of complex enzymatic steps requiring the partici-

pation of numerous enzymes [52]. Among the major

steps, mevalonate is formed by the condensation of 3

molecules of acetyl-CoA, a reaction catalyzed by the rate

limiting enzyme HMG-CoA-reductase, which is con-

verted to squalene, a 30-carbon linear structure followed

by cyclization to yield lanosterol and subsequently

removal of 3 carbons to produce cholesterol. The endo-

plasmic reticulum (ER)-associated integral membrane

protein complex, SCAP/SREBP, transcriptionally controls

the expression of the genes of many enzymes involved in

cholesterol biosynthesis including the rate-limiting

enzyme, HMG-CoA reductase [52,53]. In steroidogenic

cells, the de novo cholesterol biosynthesis is also under

the control of tropic hormone [15-18]. Indeed, adrenal,

ovarian and testicular Leydig cell cholesterol biosynthesis

as well as HMG-CoA reductase is rapidly stimulated

upon exposure to tropic hormone [15-18]. Newly synthe-

sized cholesterol primarily moves initially from the ER to

the plasma membrane (PM) [54-57]. This energy depen-

dent and predominantly nonvesicular trafficking process

appears to require the participation of cholesterol-rich,

sphingolipid-rich domains (i.e., lipid rafts/caveolae) and

proteins such as caveolin, heat shock proteins and possi-

bly other soluble sterol carrier candidate proteins such as

OSBP, ORPs, SCP2, START domain containing proteins

and phosphoinositides but not NCP1 [58-66]. After

endogenously synthesized cholesterol is transported to

the PM, its immediate fate is not well understood at pres-

ent. While newly synthesized cholesterol is preferentially

translocated to the PM, excess cellular cholesterol from

other cellular organelles including PM is transported

back to ER for esterification. The PM reverse cholesterol

transport to ER is suggested to involve at least two path-

ways: a) a vesicular route via an endosome and/or Golgi;

and b) a nonvesicular alternative route [55,66]. It should

also be mentioned that retrograde transport of cellular

cholesterol to ER and translocation of newly synthesized

ER cholesterol to PM follow different itineraries [55,66].

Cholesterol esterification is primarily catalyzed by ER-

localized ACAT1 and newly formed CEs are stored along

with triglycerides in the core of cytoplasmic lipid droplets

[66-68]. Little is known about the mechanisms that con-

trol the biogenesis of lipid droplets, but it is clear that

they are synthesized at and bud off from ER [69-71]. In

steroidogenic cells of adrenal, ovary and testis, both the

formation and depletion of lipid droplets is hormonally

regulated. As noted before, the lipid droplet-associated

cholesterol serves as a source of substrate for steroid hor-

mone synthesis in response to acute hormonal stimula-

tion [72-81].

Receptor-mediated uptake and internalization of 
plasma lipoprotein-derived cholesterol
(a) LDL(B/E)-receptor-mediated endocytic uptake of LDL-

cholesterol

Although cellular de novo cholesterol synthesis and cho-

lesteryl esters stored in lipid droplets can potentially sup-
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ply adequate amounts of cholesterol substrate to support

steroidogenesis, the overwhelming evidence now sug-

gests that the adrenal and ovary (and testicular Leydig

cells under certain conditions) preferentially utilize

plasma lipoprotein-derived cholesterol for steroid syn-

thesis [9,20]. One pathway by which steroid producing

cells acquire cholesterol is from plasma LDL, or other

apolipoprotein B- (apoB) or apoE-containing lipoproteins

via the LDL (B/E) receptor-mediated endocytic pathway

(Fig. 3) [19]. LDL or other relevant apoB/apoE lipopro-

teins bind to the LDL receptor initially localized at the

plasma membrane (PM), which subsequently translocate

to specialized regions of the plasma membrane, called the

coated pits. The coated pits, made of clathrin protein, and

some other accessory, invaginate, and pinch off from the

PM in the form of coated vesicles [19,66]. These coated

vesicles in the cell interior fuse with early endosomes,

shed off their clathrin coat, and fuse with each other to

form larger vesicles, called endosomes. At this stage, the

LDL-receptor complex rapidly dissociates as the endo-

somal pH falls, and the released, but fully intact LDL-

receptors are delivered to the endocytic recycling com-

partments (ERC) for their return itinerary to the PM [66].

The LDL cholesteryl esters (CEs) are hydrolyzed in a

unique acid lipase-enriched compartment of early endo-

somes, the released cholesterol accumulates in the late

endosomes/lysosomes, and subsequently through some

unknown mechanisms is transported to PM as a mem-

brane constituent, ER for esterification by the resident ER

enzyme acyl-coenzyme A:cholesterol acyltransferase I

(ACAT1) and storage in lipid droplets, or mitochondria

for the synthesis of steroid hormones [67-71,82-85].

A pair of proteins called Nieman-Pick type C1 and C2

(NPC1 and NPC2, respectively) appear to be important

in the movement of unesterified cholesterol out of the

late endosomes and lysomes [66,86-89]. NPC1 is a poly-

topic, sterol-sensing protein of 1,278 amino acids located

in the membranes of late endosomes and lysosomes that,

along with NPC2, a cholesterol binding soluble protein of

131 amino acids located within lysosomes, facilitates the

movement of cholesterol to various organelles by mecha-

nisms not yet understood [66,88,89]. NPC1 appears to be

important in trafficking LDL-cholesterol, particularly

under conditions in which the substrate for steroidogene-

sis is primarily supported by LDL-cholesterol, but does

not appear to be involved in other pathways for choles-

terol delivery for steroidogenesis [90,91]. Additional pro-

teins are also involved in this process such as MLN64

which facilitates the movement of lysosomal cholesterol

to mitochondria for steroidogenesis [92,93]. MLN64

(StarD3) is a polytopic protein that is also found localized

to late endosomes along with NPC1 and is a member of

the StAR-related lipid transfer (START) domain super-

family that possesses cholesterol binding and transport

activity [94]. However, targeted mutation of MLN64 in

mice caused only minor alterations in sterol metabolism

in vivo, but defects in cholesterol utilization for steroido-

genesis were still seen in vitro, consistent with the exis-

tence of multiple mechanisms for cholesterol delivery for

steroidogenesis. In addition, considerable evidence now

indicates that transport of late endosomal/lysosomal

LDL-cholesterol to other cellular destinations including

mitochondria may also involve an endosomal-specific

Rab 9 GTPase-dependent vesicular trafficking mecha-

nism [66,95-97].

(b) SR-BI-mediated 'selective' uptake of HDL-cholesterol

(i) Molecular characteristics and the functional expression of 

SR-BI

Whereas LDL-receptor-mediated uptake of cholesterol

allows for its efficient delivery, steroidogenic cells can

process exceptionally large quantities of lipoprotein-

derived cholesteryl esters through a specialized pathway

known as the "selective" cholesteryl ester uptake pathway

(Fig. 3) [98-100]. In fact, the "selective" cholesterol uptake

pathway is quantitatively the most important source for

cholesterol delivery for steroidogenesis in the tropic-hor-

mone stimulated rodent adrenal and ovary [9,20,99-102].

The term "selective" cholesterol uptake is used when cell

surface bound cholesterol-rich lipoproteins (HDL or

LDL, regardless of lipoprotein composition) release cho-

lesteryl esters without the parallel uptake and lysosomal

degradation of the lipoprotein particle itself [72,73,98-

100,103]. Tropic hormone (ACTH or LH)-stimulated

rodent adrenal and ovary (and under certain conditions

testicular Leydig cells) rely heavily on selective choles-

teryl ester uptake to fulfill their cholesterol needs for ste-

roid synthesis [9,20,72,73,99-102]. The pathway is also

functional in humans, in rodent liver and a variety of cul-

tured cells such as isolated primary hepatocytes and

hepatic cell lines, fibroblasts, adipocytes, and mac-

rophages, although it may be quantitatively less impor-

tant in humans [9,20].

Scavenger receptor class B, type I (SR-BI) is a physio-

logically relevant cell surface receptor responsible for

"selective" uptake of lipoprotein-derived cholesteryl

esters [104]. SR-BI is a member of the class B scavenger

receptor family that also includes CD36, LIMPII, and SR-

BII (an isoform of SR-BI with an alternate C-terminal

cytoplasmic tail) [9,20,105]. SR-BI, like the other family

members, contains two transmembrane domains, two

cytoplasmic domains (the amino- and carboxyl terminal

domains), as well as a large extracellular domain (ECD)

containing a cysteine-rich region and multiple sites for

N-linked glycosylation [9,20,105]. Cells, which have high

levels of SR-BI, efficiently utilize the selective pathway in

delivering cholesteryl esters for use in steroid hormones

or product synthesis [9,20]. In rodents, SR-BI is abun-
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dantly expressed in the liver, but also in steroidogenic

cells of the adrenal gland, ovary, and testis where SR-BI

levels are regulated by tropic hormones and influence the

selective uptake of HDL-CE, and ultimately, steroidogen-

esis in these organs [74,75,106-110].

It is also of interest that steroiodogenic tissues, which

express high levels of SR-BI in vivo, are endowed with an

intricate microvillar system for the trapping of lipopro-

teins [111,112]. This general region of steroidogenic cells

is referred to as the microvillar compartment, and the

specialized space created between adjacent microvilli are

called microvillar channels; these are specialized domains

that form by staking of microvilli or the juxtaposition of

microvilli with the plasma membrane. It is the microvillar

channels where the various lipoproteins are trapped prior

to the selective uptake of CEs into cells [111-113]. Elec-

tron microscopic immunocytochemical techniques

reveal heavy labeling for SR-BI specifically in these

regions (corresponding to such microvilli and microvillar

channels) and at present, there is no doubt that issues

with microvillar compartments expressing high levels of

SR-BI are also active in selective CE uptake [74,75,108-

110,114-117]. The formation of these specialized

microvillar channels appear to be dependent on the pres-

ence of SR-BI since these microvillar are quantitatively

reduced in adrenals from SR-BI null mice [118]. Con-

versely, overexpression of SR-BI promotes microvillar

channel formation in both steroidogenic and non-ste-

roidogenic cells in vitro [114,116,117]. Additionally, SR-

BI has been functionally associated with caveolae/lipid

rafts, although this has not always been the case [74,119-

124]. SR-BI does show specificity for apolipoproteins, but

interacts promiscuously with HDL, LDL, amino acid

modified LDL, phospholipids and a variety of other

Figure 3 Diagrammatic representation of the molecular and cellular events involved in the selective and endocytic uptake and intracellu-

lar processing of the lipoprotein-derived cholesteryl esters for steroid hormone biosynthesis by adrenal and gonadal tissues. ACATA1, acyl-

coenzyme A:cholesterol acyltransferase I; CEs, cholesteryl esters; CS, cytoskeleton; CYP11A1, cytochrome P450 side-chain cleavage enzyme (P450scc); 

FC, free cholesterol; NPC1, Nieman-Pick type C1; NPC2, Nieman-Pick type C2; SCP2, sterol carrier protein2; SREBP, sterol-regulatory element-binding 

proteins; SCAP, SREBP cleavage-activating protein. StAR, steroidogenic acute regulatory protein; TGs, triglycerides; TSPO, translocator protein. Modi-

fied from Chang et al, Rone et al, and Farese and Walther [68,288,306].
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ligands [9,20,105,125,126]. Hormone treatment or other

factors which increase the demand for cholesterol also

increase the expression of SR-BI and the influx of lipo-

protein cholesteryl esters [74,75,108-110,127]. Deletion

of the SR-BI gene in mice resulted in increased circulat-

ing levels of HDL-cholesterol, substantially reduced

stored tissue cholesterol [128,129], and inhibited the

selective uptake, storage, and utilization of cholesterol by

steroid-hormone producing cells.
(ii) SR-BI-mediated selective transport of lipoprotein-derived 

cholesteryl esters

The mechanism by which SR-BI mediates selective trans-

fer of CE from the cell surface to cell interior is not clearly

defined, but may require participation of accessory pro-

teins and lipids, alterations in physicochemical character-

istics of the plasma membrane and the physical forms of

SR-BI itself. The entire process of "selective" cholesterol

ester delivery and its subsequent utilization for steroid

synthesis can be broadly divided into three distinct steps,

each of which may involve multiple complex processes.

The first step in the selective CE uptake is the transfer of

lipoprotein-associated CE to the plasma membrane, the

second step entails the translocation of CE from the

plasma membrane to lipid droplets within the interior of

the cell; and the third step in the process is the movement

of cholesterol from intracellular lipid droplets to mito-

chondria for steroid hormone synthesis.

Events connected with the SR-BI-mediated transfer of

lipoprotein cholesteryl esters to the cell surface--The initial

step in the transfer of lipoprotein-cholesteryl esters to the

plasma membrane is the binding of cholesterol-rich lipo-

proteins to the cell surface/microvilli-associated SR-BI

followed by release of lipoprotein-cholesteryl esters to

the plasma membrane. While SR-BI-lipoprotein interac-

tion is important, it is not sufficient to promote selective

transfer of cholesteryl esters to the plasma membrane.

This assertion is based on several observations including

the fact that mutations of certain glycosylation sites do

not affect binding but inhibit selective cholesteryl ester

uptake [130]. It has been proposed that SR-BI forms a

hydrophobic "channel" through which the cholesteryl

esters in SR-BI-associated lipoprotein move down in a

concentration gradient manner, and thus, any changes in

the structure of the receptor might alter the "channel"

without impacting the binding of the lipoprotein [130].

Moreover, it has been suggested that the localization of

SR-BI within microvilli or the association of SR-BI with

caveolae contributes to the movement of cholesteryl

esters into these specialized regions of the plasma mem-

brane.Furthermore, these specialized microvilli/microvil-

lar channel regions and/or caveolae could increase

functional efficiency of the transfer process through

increased availability of donor particles [111-113]. Lim-

ited studies have also suggested the involvement of C-ter-

minal and extracellular domain (ECD) domains of SR-BI

in the selective cholesterol uptake process [131-134].

Finally, evidence is accumulating suggesting that acces-

sory proteins (see below) and lipids, in addition to SR-BI,

contribute to the selective uptake process [135-145].

SR-BI interacting accessory proteins--other significant

progress in the area of SR-BI structure and function is the

realization that accessory proteins may interact function-

ally with SR-BI and facilitate the dimerization process,

enhance selective HDL-CE uptake and promote cell sur-

face architectural changes. In recent years, one such pro-

tein, the PDZ domain containing protein called CLAMP,

has been identified with SR-BI mediated selective CE

uptake [127]. (The name PDZ is derived from the first

three proteins in which these domains were found: PSD-

95 Dlg, and ZO1; these domains range 70-90 amino acids

in length and recognize 3-5 residue motifs that occur at

the C-terminus of target proteins or structurally related

internal peptide motifs [146-152]). CLAMP was purified

from rat liver extracts by affinity chromatography using

the last 15 amino acids of the carboxyl terminus of SR-BI,

and co-expression of CLAMP, (which is identical to and

now referred to as PDZK1 or NHERF3 [127,141,153,154])

and SR-BI in CHO cells led to a two-fold increase in

selective CE uptake. More recently, Silver by using trans-

genic animals expressing SR-BI with a mutated PDZK1

interacting domain provided evidence that PDZK1 inter-

acting domain of SR-BI is essential for cell surface expres-

sion of hepatic SR-BI in vivo [136]. Also, an endogenous

regulator of PDZK1, termed small PDZK1-associated

protein (SAP, DD96/MAP17) has been characterized,

which when overexpressed in the liver causes increased

degradation of PDZK1, resulting in hepatic SR-BI defi-

ciency and markedly increased plasma HDL cholesterol

[137].

Krieger and colleagues further demonstrated that tar-

geted disruption of the PDZK1 gene induced hypercho-

lesterolemia, and resulted in substantial reduction of

hepatic and intestinal SR-BI, without affecting SR-BI or

cholesteryl ester stores in steroidogenic organs [138]. The

latter observations are in agreement with the results

showing that adrenal and gonads express very low levels

of PDZK1 as compared to the liver and strongly suggest

the possibility that different types of PDZ-domain con-

taining proteins impact SR-BI in a tissue-specific manner.

Interestingly, hepatic expression of SR-BII, a variant with

an alternate C-terminal domain, is not affected in PDZK1

knockout mice, suggesting that PDZK1 specifically regu-

lates SR-BI expression and function in the liver. Further

studies demonstrated that overexpressing full-length

PDZK1 in PDZK1 null mice restored normal hepatic SR-

BI protein levels [155]. Likewise, hepatic overexpression

of wild-type SR-BI restored near or greater than normal

levels of functional, cell surface SR-BI protein levels in the
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livers of SR-BI(-/-)/PDZK1(-/-) double knock-out mice

and such genetic manipulation restored normal lipopro-

tein metabolism in the absence of PDZK1 [156]. From

these studies, it is concluded that PDZK1 is important for

maintaining adequate steady state levels of SR-BI in the

liver but is not essential for cell surface expression or

function of hepatic SR-BI [155,156]. More recent studies

indicate that hormone (glucagon)-mediated phosphory-

lation of the C-terminal region of PDZK1 as well as the

presence of all four PDZ domains in PDZK1 is required

for normal abundance, localization and, therefore, func-

tion of hepatic SR-BI [157,158]. More recently, Komori et

al, using a transgenic mouse model coexpressing both

CLA-1 (human homolog of SR-BI), and human PDZK1

provided evidence that PDZK1 is also an important

enhancer of CLA-1 expression in the liver [159]. Besides

the liver, a role for PDZK1 is indicated in HDL/SR-BI sig-

naling in endothelium and in the maintenance of

endothelial monolayer integrity [142].

Given that PDZK1 is not expressed in steroid produc-

ing tissues, coupled with the demonstration that PDZK1

null mice show normal expression of SR-BI in the adrenal

gland and ovary, we considered the possibility that addi-

tional PDZ domains with specificity for other PDZ pro-

teins may be involved in the regulation of SR-BI function

in steroidogenic tissues. We searched for and identified

additional Class I, II and III PDZ interacting domains in

the C-terminal cytoplasmic tail of SR-BI (Table 2) using a

simple modular architecture research tool http://

SMART.embl-heidelberg.de. To a large extent these PDZ

domains are well conserved among various mammalian

species (i.e., mouse, rat, hamster, pig, bovine and human

SR-BI), and the Class II PDZ-domain (PDZK1 site)

described above is simply the final extreme end site on

the SR-BI, which is not well conserved. The function of

the other sites is as yet unknown, but it is of interest that

the C-terminal domain of SR-BII (the alternative spliced

form of SR-BI) lacks terminal PDZ domain and contains

entirely different sets of PDZ interacting domains while

another family member, CD36 contains no PDZ sites.

Interestingly both SR-BII and CD36 are less efficient in

mediating selective HDL-CE uptake as compared to SR-

BI [131,132]. We believe these SR-BI PDZ-domain bind-

ing motifs may, in fact, be important for steroidogenic tis-

sues--in that they permit binding to a variety of PDZ-

containing proteins [146-151]. Indeed, our preliminary

Protein Array analysis indicated significant interaction

between hCLA-1/SR-BI and PDZ-domain(s) of RGS12,

CLP36 (also called hCLIM1 or elfin), RIL, PSD-95, and

Mint-3-proteins [160-172]. Among these, RGS12 and

RIL, PSD-95 PDZ proteins are known to be highly

expressed in steroidogenic proteins [160,163,170]. In

addition, PDZ-RhoGEF, a novel guanine nucleotide

exchange factor (GEF) for Rho-like proteins, contains a

PDZ domain which shows high affinity for the actin

cytoskeleton, and is also highly expressed in various ste-

roidogenic tissues [173,174].

Additionally, using a transient overexpression strategy,

we directly examined the effect of a number of PDZ

domain containing proteins on SR-BI-mediated selective

Table 2: Potential Consensus PDZ Domain Binding 

Sequences in SR-BI, SR-BII and CD36

Mouse SR-BI: QLRSQEKCFLFWSGSKKGSQDKEA

IQAYSESLMSPAAKGTVLQEAKL

QLRSQEKCFLFWSGSKKGSQDKEA

IQAYSESLMSPAAKGTVLQEAKL

Rat SR-BI: QLRSQEKCFLFWSGSKKGSQDKEA

MQAYSWSLMSPAAKGTVLQEAKL

QLRSQEKCFLFWSGSKKGSQDKEA

MQAYSWSLMSPAAKGTVLQEAKL

Hamster SR-BI: QLRSQEKCFLFWSGSKKGSQDKEA

IQAYAESLMSPAAKGTVLQEAKL

QLRSQEKCFLFWSGSKKGSQDKEA

IQAYAESLMSPAAKGTVLQEAKL

Rabbit SR-BI: QVRSQEKCYLFWSGSKKGSKDKEA

IQAYSESLMTPDPKGTVLQEARL

QVRSQEKCYLFWSGSKKGSKDKEA

IQAYSESLMTPDPKGTVLQEARL

Pig SR-BI: QIRSQEKCYLFWSSSKKGSKDKEA

IQAYSESLMTPAPKGTVLQEARL

QIRSQEKCYLFWSSSKKGSKDKEA

IQAYSESLMTPAPKGTVLQEARL

Cow SR-BI: QIRSQEKCYLFWISFKKGSKDKEA

VQAYSEFLMTSPPKGTVLQEARL

QIRSQEKCYLFWISFKKGSKDKEA

VQAYSEFLMTSPPKGTVLQEARL

Human SR-BI: QIRSQEKCYLFWSSSKKGSKDKEA

IQAYSESLMTSAPKGSVLQEAKL

QIRSQEKCYLFWSSSKKGSKDKEAI-

QAYSESLMTSAPKGSVLQEAKL

Mouse SR-BII: QLRSQGPEDTISPPNLIAWSDQPP

SPYTPLLEDSLSGQPTSAMA

QLRSQGPEDTISPPNLIAWSDQPPS

PYTPLLEDSLSGQPTSAMA

Rat CD36: RSKNGK-None

PDZ Domain-Class I: S or T-X-I, V, L or M; PDZ Domain-Class II: ψ-

X-ψ; PDZ Domain-Class III: D or E -X-ψ. The C-terminal residue 

is referred to as Po residue; subsequent residues towards the N-

terminus are termed P-1, P-2, P-3 etc. X denotes any amino acid 

(no specificity defined at this position for this class). ψ denotes a 

hydrophobic amino acid usually V, I or L. The sequences of C-

terminal domain of SR-BI, SR-BII and CD36 are presented in 

duplicates to accomodate 3 letter overlapping combinations of 

putative PDZ binding sites. The putative PDZ domain binding 

sequences (three letters) are shown as bold letters.

http://SMART.embl-heidelberg.de
http://SMART.embl-heidelberg.de
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HDL-CE uptake in representative steroidogenic (MLTC,

mouse testicular Leydig cells) and hepatic (HepG2,

human hepatoma cells) cell lines. Co-transfection with

PDZ proteins, DLG3, DLG5, or PDLIM1 plus SR-BI sig-

nificantly increased selective HDL-CE uptake in both

HepG2 and MLTC cells as compared to cells transfected

with SR-BI alone. Moreover, several additional PDZ pro-

teins such as GOPC, HTRA2, INADAL, LIN7B, MAG12,

MAG13, MAST2 and PARD6B variably, but significantly

enhanced selective HDL-CE uptake. In contrast, expres-

sion of other PDZ domains containing proteins including

DVL1, DLV3, LIN7C, MPP2, DLG2, DLG3, or GRIP1

showed no demonstratable effect on SR-BI-mediated

selective HDL-CE uptake. These data led us to conclude

that steroidogenic cells, like hepatocytes, require the par-

ticipation of PDZ type proteins for the maximal func-

tional efficiency of SR-BI, but show a wide specificity

towards PDZ proteins. However, at present, a number of

important questions remain unanswered. For example, it

is unclear how these various proteins regulate SR-BI

function, whether they are expressed in steroidogenic

cells, and their expression, like SR-BI, is regulated by

tropic hormones and whether different PDZ proteins dif-

ferentially impact SR-BI function in different steroido-

genic cell types (i.e., adrenal, ovarian and testicular cells).

SR-BI-mediated alterations in the lipid composition of

plasma membranes--It has been suggested that SR-BI

may alter the composition of lipid domains of plasma

membranes which then leads to changes in free choles-

terol flux, changes in membrane cholesterol content,

changes in plasma membrane phosphatidylcholine sub-

species or in altered physical/chemical properties of the

membrane [143,144]. In another study, Chen et al.

reported that expression of SR-BI in RAW macrophages

markedly reduced ABCA1-mediated cholesterol efflux to

apolipoprotein A1 presumably by sequestering choles-

terol that is normally available to ABCA1 for efflux [145].

On the other hand, it is demonstrated that sphingomyelin

and ceramide in the lipoproteins and the cell membranes

regulate the SR-BI-mediated selective uptake of CE in SR-

BI transfected CHO cells, hepatocytes (HepG2) and adre-

nocortical cells (Y1BS1), possibly by interacting with the

sterol ring or with SR-BI itself [140]. Our recent studies

suggest that SR-BI may also be involved in the regulation

of cell surface expression of microvillar channel forma-

tion, a function that may increase the functional effi-

ciency of the selective CE uptake process through

increased trapping and binding of HDL at the cell surface

[114,116,117].

SR-BI dimerization--the physical form of SR-BI may

also play an important role in its ability to mediate selec-

tive CE transport. Indeed, it is becoming increasingly

clear that hormone-induced changes in tissues--which

alter the expression of SR-BI, alter selective CE uptake in

the same tissues, and correspondingly produce architec-

tural changes in the cell surface of affected cells--also

show changes in 'dimerization' of SR-BI in cell or tissue

samples (for simplicity, we use the term dimerization

here to include the multiple forms of the SR-BI protein;

i.e., dimers, and higher order oligomers). In one of the

earliest direct demonstrations of protein-protein interac-

tion involving SR-BI, our laboratory demonstrated (by

SDS PAGE-Western blotting) that SR-BI exists as

homodimers in 17α-ethinyl estradiol (17α-E2) primed

and microvilli-enriched rat adrenal plasma membrane

[109]. In subsequent studies, we were able to demonstrate

that SR-BI exists in dimeric and high order oligomeric

forms in all cells and tissue which are active in 'selective'

uptake of HDL-CEs (e.g., hormone activated steroido-

genic tissues such as mouse adrenal, testis, and ovary; ste-

roidogenic cells such as rat ovarian luteal cells, Y1-BS1

mouse adrenocortical cells, R2C rat Leydig cells, and

MLTC mouse Leydig cells; liver from SR-BI transgenic

mice; SR-BI overexpressing non-steroidogenic cells such

as HEK 293, Y1-BS1, CHO and COS cells; Sf9 insect cells

programmed to express rat SR-BI [114,116,117]. Early

functional evidence for SR-BI dimerization came from

the observation that in normal rat adrenal tissue, SR-BI

exists primarily in the monomeric form with some dimer

formation. ACTH stimulation increased the dimerization

of SR-BI in this tissue along with increased selective CE

uptake, and dexamethasone-induced loss of ACTH led

dramatically to the loss of SR-BI, SR-BI dimers and selec-

tive HDL-CE uptake [109,116]. These results are coupled

with striking architectural changes of the microvillar

compartment at the adrenocortical cell surface, and sug-

gest that SR-BI dimers may, in a very basic way, be associ-

ated with SR-BI sites of action and function.

Additional functional evidence came from our labora-

tory showing a strong correlation from the levels of SR-BI

dimers and increased selective HDL-CE uptake in cells

and tissues (Fig. 4), and from co-immunoprecipitation

studies of epitope-tagged SR-BIs (SR-BI-cMyc and SR-BI-

V5) used to demonstrate that SR-BI can exist as homodi-

mers [116]. The use of cross-linking agents further con-

firmed that SR-BI forms dimers in native steroidogenic

cell lines (endogenous), as well as in a heterologous insect

cell expression system [114]. Also, analysis of cellular

extracts from SR-BI transfected HEK-293 cells or ACTH-

treated Y1-BS1 cells by size-exclusion chromatography

and sucrose density centrifugation demonstrated that a

significant portion of SR-BI exists in dimeric and oligo-

meric forms. As an independent measure, we have uti-

lized immunoelectron microscopy which further

provides convincing evidence for the formation of SR-

BI:SR-BI homodimers. We showed that when double

tagged-SR-BI proteins (SR-BI-cMyc and SR-BI-V5) are

co-expressed in HEK-293 cells and the different proteins
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are subsequently immunostained and identified with two

differently stained gold particles, there is mixing and

clustering of gold particles suggesting 1) that the proteins

travel to the same cell location, and 2) that many of the

gold particles are in exceedingly close physical contact,

i.e., within the distance accepted for protein dimers by

fluorescent resonance energy transfer (FRET) technique

[116,117]. Similar results were obtained when Y1-BS1

mouse adrenocortical cells were transfected with V5 and/

or cMyc tagged-SR-BI proteins. Interestingly, SR-BI

transfected Y1-BS1 demonstrated major architectural

changes along with the formation of double membranes

in flower like arrangements. Gold-labeled secondary

antibodies against V5 or cMyc antibody localized SR-BI

to these sites, and revealed substantial dimer formation of

this protein--shown by close contact between gold parti-

cles [116,117].

From the above discussion it is apparent that while the

understanding of the functional significance of SR-BI

dimerization in steroidogenic tissues and cell lines which

utilize the selective pathway for cholesterol transport is

improving, the structural basis of the intramolecular

interactions involved in SR-BI dimerization and function

is not completely understood. In particular, the informa-

tion about the contribution of the extracellular domain

(ECD) of SR-BI either independently or in cooperation

with the C-terminal domain on SR-BI dimerization, SR-

BI-induced microvillar channel formation, and selective

HDL-CE uptake remains sketchy. In an effort to further

expand our understanding about the structure-function

relationships and dynamics of SR-BI activity, we recently

carried out studies aimed at determining the structural

and functional contributions of cysteine residues within

the SR-BI. We focused our efforts on cysteine residues

because: (a) cysteine residues are integral for inducing

and maintaining the three-dimensional confirmation in

proteins by forming critical inter- and intra-molecular

disulfide bond linkages; (b) sulfhydryl (SH) side chains of

cysteins are polar similar to that of the hydroxyl group

(OH) of serines and can participate in hydrogen bonding

interactions and facilitate protein-protein interactions;

(c) cysteine side-chains are preferred sites for various bio-

logical coupling and conjugation reactions such as palmi-

toylation, isoprenylation, disulfide cross-linking, and

thiol-disulfide exchange which are known to play critical

roles in intracellular protein trafficking, stability and/or

activity; and (d) the SR-BI contains several cysteine resi-

dues that are highly conserved across the species and

uniquely distributed within the different domains of the

SR-BI molecule and as such are highly likely to contribute

towards SR-BI structure and function [175-179].

We chose to study the rat SR-BI because it contains

more conserved cysteine sequences than SR-BI from any

other species. Its sequence contains a total of eight

cysteine (C) residues (C21, C251, C280, C321, C323,

C334, C384, and C470). With the exception of C21, the

remaining seven residues are highly conserved in other

species including the mouse, hamster, rabbit, pig, cow,

dog, tree shrew and human. Five residues (C280, C321,

C323, C334, and C384) are clustered in the C-terminal

half of the putative extracellular domain (ECD). The

remaining three cysteine residues are equally distributed

in the N-terminal transmembrane domain (C21), N-ter-

minal half of the ECD (C251), and the C-terminal domain

(C470). Given that the extracellular domain contains six

conserved cysteine residues, these could form up to three

disulfide bonds, which in turn could help to stabilize the

confirmation of SR-BI or participate in its dimerization.

We replaced these cysteine residues with serine (S) singly

or in pairs, expressed the mutated SR-BI constructs in

CHO or COS-7 cells and examined the impact of these

mutations on SR-BI expression and function. Overall,

these studies indicated that C280S, C321S, C323S and

C334S residues of the extracellular domain (ECD) are

necessary for preserving normal SR-B (HDL) binding

activity, selective CE uptake, and/or cell surface expres-

sion. Interestingly, mutation of any of these four cysteine

residues to serine resulted in a robust induction of SR-BI

dimer formation, but they are rendered non-functional

because these residues are most likely also essential for

the optimal HDL binding and hence, the selective CE

uptake.
(iii) Translocation of cholesteryl esters/cholesterol from cell 

surface (plasma membrane) to lipid droplets

Although selective uptake of cholesteryl esters for all

practical purposes is considered to be non-endocytic, at

least from the point of view of uptake of the intact lipo-

protein particle, there are controversies regarding

cholestryl ester movement to lipid droplets. However,

there are some suggestions that HDL-cholesteryl esters

are delivered to the cell interior by the retero-endocyto-

sis, where the receptor-bound HDL particle analogous to

the transferrin receptor system is internalized, traverses

an intracellular pathway during which cholesteryl esters

are transferred to the cell interior and the HDL particle is

recycled back to the plasma membrane where the lipid

depleted HDL is now released [180-185]. This possibility

appears to be weak given the overwhelming morphologi-

cal evidence both at the light- and electron microscopic

evidence showing that in vivo and in vitro HDL-choles-

teryl ester delivery to adrenal and ovarian luteal tissues

and cultured cells, respectively, does not involve internal-

ization of the intact HDL particle itself,

[73,90,100,101,103,186,187]. It is possible that a small

amount of HDL internalization in cultured cells reported

by some investigators was in fact due to non-specific
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endocytosis of the HDL particle; indeed, there is consid-

erable in vitro evidence that cultured cells can internalize

a variety of receptor ligands in a non-specific manner

[188-191]. It has also been suggested that HDL- choles-

teryl esters are delivered to intracellular membranes via

the formation of complexes with caveolin, annexin and

cyclophilins [192]. In this regard, it is noteworthy that

caveolin is a component of several intracellular vesicle

populations, caveolin-1 is required for lipid droplets for-

Figure 4 Correlation between the cellular levels of SR-BI dimers and the functional efficiency of selective HDL-CE uptake. Appropriate West-

ern blots from various cell types were scanned for SR-BI monomers and dimers and dimer/monomer ratios were plotted against the respective selec-

tive HDL-CE uptake data. The results show that dimer/monomer ratios determined for individual cell types correlate significantly with their respective 

SR-BI-mediated selective HDL-CE uptake.
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mation, and all forms of caveolins (i.e. caveolin-1, -2 and -

3) can associate with lipid droplets [193-197].

Lipid droplets are associated with proteins involved in

vesicle-vesicle targeting and the fusion process in the

cells including N-ethylmaleimide (NEM)-sensitive factor

(NSF), soluble NSF attachment protein (alpha-SNAP),

and the SNAP receptors (SNAREs), synaptosomal-associ-

ated protein of 23 kDa (SNAP23), syntaxin-5 and vesicle-

associated membrane protein 4 (VAMP4), a chaperone

protein that participates in [198]. In this context our own

studies have shown that treatment of steroidogenic cells

with NEM, an inhibitor of NSF, results in a total block of

HDL-derived selective cholesteryl ester uptake [72,73].

Thus, intracellular transport of cholesteryl esters to lipid

droplets might involve active participation of carrier-

and/or vesicle-mediated cholesterol transport processes.

On the other hand, ~75% of SR-BI delivered HDL-choles-

teryl esters were reported to be hydrolyzed by non-lyso-

somal neutral cholesteryl ester hydrolases (nCEHs)

suggesting that freshly delivered cholesteryl esters could

also be transported in the form of free cholesterol to vari-

ous cellular destinations [199]. Existing literature also

supports this possibility given that fatty acid composition

of cholesteryl esters in the rodent adrenal and ovary is

significantly different from that of plasma or HDL, i.e.,

this could only occur if internalized plasma lipoprotein-

derived cholesterol esters were at first hydrolyzed and

then ensuing free cholesterol re-esterified with fatty acids

to a defined fatty acid composition that is unique and

specific for each of the steroidogenic tissues [200-203]. A

combination of vesicular and non-vesicular transport

processes most likely facilitates the transport of the newly

released free cholesterol to the ER for its esterification

and subsequent storage in lipid droplets [55,57,66,204].

Depending on cellular needs, free cholesterol could also

be redirected to the plasma membrane or mitochondria

(for steroid synthesis), again possibly via vesicular and/or

non-vesicular transport pathways [55,57,66,204].

Intracellular cholesterol processing and its transport to 

mitochondria for the initiation of steroid synthesis

Steroid producing cells through the use of multiple cho-

lesterol supply sources discussed above maintain ade-

quate cholesterol reserves primarily in the form of lipid

droplets that enable them to quickly respond to tropic

hormone stimulation with the rapid mobilization of cel-

lular cholesterol reserves and ensuing transport to mito-

chondria for steroidogenesis. In adrenal and ovarian cells,

cellular stores of cholesterol esters are constantly replen-

ished by the delivery of plasma cholesterol through endo-

cytic or selective pathway (depending on species and

lipoprotein type), whereas this chore in Leydig cells,

under normal physiological conditions, is mainly

achieved through increased de novo cholesterol synthesis.

During acute hormonal stimulation, these endogenously

stored cholesterol esters are rapidly mobilized (hydro-

lyzed) and released free-cholesterol is efficiently trans-

ported to and within the mitochondria for its conversion

to pregnenolone, the precursor of all steroid hormones.

This entire process involving the intracellular cholesterol

mobilization, processing and transport to the appropriate

site within the mitochondria for side-chain cleavage and

pregnenolone production can be broadly divided into two

separate, but equally important segments: a) mobilization

of cholesterol from intracellular stores, particularly from

lipid droplets; b) transport of mobilized cholesterol to the

outer mitochondrial membrane; and c), transfer of this

cholesterol from the outer to the inner mitochondrial

membrane. In the following sections, we will discuss

characteristics of these three segments of intracellular

cholesterol transport and also summarize current under-

standing about the functional roles of key proteins and

factors involved in the mobilization of cellular cholesteryl

esters, intracellular transport of newly released choles-

terol to the outer mitochondrial membrane and its subse-

quent translocation to the inner mitochondrial

membrane for the initiation of steroidogenesis.

(a) Mobilization of cellular cholesterol reserves in response 

to acute hormonal stimulation

It is well known that adrenal, ovarian and testicular Ley-

dig cells' cholesteryl esters are rapidly depleted following

tropic hormone (ACTH, LH/hCG) treatment supporting

the notion that mobilization of lipid droplets (LD) stored

cholesteryl esters provides cholesterol for acute hor-

monal stimulation of steroid synthesis [205-207]. This

mobilization of substrate cholesterol occurs through

tropic hormone-mediated increased formation of second

messenger, cAMP followed by activation of PKA, and

PKA-mediated phosphorylation (activation) of neutral

cholesteryl ester hydrolase (nCEH), resulting in rapid

hydrolysis of cholesteryl esters [21-24,24,78-80,205-210].

We reported that hormone-sensitive lipase (HSL) is

responsible for the vast majority, if not all, of nCEH activ-

ity in the adrenal [208]. This was based on the observa-

tion that inactivation of HSL resulted in the loss of >98%

of nCEH [208]. Moreover, we reported that adrenocorti-

cal cells isolated from HSL null mice show almost com-

plete inhibition of ACTH stimulated and HDL-supported

corticosterone secretion (>99%) as compared to cells iso-

lated from control mice, further demonstrating the

importance of HSL in adrenal steroidogenesis; HSL null

mice also show an increased lipid accumulation in the

adrenals and a blunted corticosterone secretion in vivo

[209,210]. Current evidence also suggests that HSL is

likely to function as a cholesteryl ester hydrolase in the
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ovary [211-213]. There is also a testis-specific isoform of

HSL with a molecular mass of 120 kDa [80-82]. This iso-

form differs from a more common isoform of HSL, which

is expressed in adipose tissue and adrenal, ovary and

other tissues/cells, by containing some additional 300

amino acids [213-215]. This 120 kDa isoform is predomi-

nantly expressed in germ cells of the testis and its expres-

sion is hormonally regulated [216]. However, the identity

and expression of HSL in testosterone producing testicu-

lar Leydig cells has yet to be established.

(b) Transport of mobilized cholesterol to the outer 

mitochondrial membrane

The newly released cholesterol is transported to the outer

mitochondrial membrane (OMM) for the production of

steroid hormones. Because cholesterol is a hydrophobic

molecule and diffuses poorly in an aqueous environment,

it can traverse from the cytoplasmic locations to the

OMM by several potential mechanisms [54-57,66]. Cho-

lesterol can be transported via the vesicular transport

mechanism, i.e., it can be incorporated into the vesicular

structures involved in cellular trafficking (e.g., transport

vesicles, endosomes, and secondary lysosomes) which

then fuse either directly or indirectly (through other

intermediary membranes) fuses with mitochondria and

deliver their cargo to the OMM. However, this pathway

appears to play a minor role [55,84]. Cholesterol may also

be delivered to OMM via protein-protein interactions

between the lipid droplets and mitochondria. As early as

in 1975, electron microscopic observations provided evi-

dence suggesting that lipid droplets become juxtaposed

during stimulation by tropic hormone [217]. In the last

few years, additional evidence has emerged showing

potential interactions between lipid droplets and cellular

organelles including mitochondria in several cell systems

[69,218-220]. More recently, Boström et al reported the

presence of some constituent proteins of the SNARE

complexes on the lipid droplets [198]. (SNARE complexes

facilitate fusion between transport vesicles and target

membranes during protein trafficking) [221-223]. These

proteins include, NSF, α-SNAP, and SNAREs, SNAP23,

syntaxin-5, and VAMP4. The authors of this report also

provide evidence that VAMP4, syntaxin5 and SNAP23

are required for lipid droplet fusion [198]. More recently,

another report provided direct evidence showing that the

SNAP23 protein promotes interaction between lipid

droplets and mitochondria [224]. Other reports suggest

that steroidogenic cells express high-levels of some mem-

bers of SNARE proteins such as Syntaxin-17 SNAP23,

and SNAP25, and that expression of the neuronal type of

SNAP25 is hormonally regulated in ovarian granulosa

cells [225-229]. These various observations strongly sug-

gest that SNARE proteins may mediate the transport of

cholesterol substrate from lipid droplets to steroidogenic

mitochondria, most likely by promoting the functional

interaction between lipid droplets and mitochondria.

A second potential mechanism by which mobilized

cholesterol from lipid droplets may be delivered to the

mitochondrial for steroid synthesis is through a non-

vesicular transport process involving high-affinity choles-

terol binding proteins [55,57,66,84,230]. Earlier studies

indicated that sterol carrier protein2 (SCP2), a nonspecific

lipid transfer protein, mediates cholesterol transport to

steroidogenic mitochondria and also stimulates steroid

hormone biosynthesis [230-232]. Contrary to these find-

ings, more recent metabolic and genetic evidence sug-

gests that SCP2 mainly functions as a carrier for fatty acyl

CoAs, facilitates branched-chain fatty acid oxidation and

regulates the distribution of key lipid signaling molecules

(e.g., FA, fatty acyl CoAs, LPA, PI and sphingolipids)

between lipid rafts/caveolae and intracellular sites, while

it appears to play a minor role in cellular cholesterol traf-

ficking primarily because of its very low affinity for cho-

lesterol [233,234]. More recently, Breslow's laboratory has

identified a subfamily of lipid binding proteins referred to

as StarD4, StarD5 and StarD6 (StarD4 subfamily)

[235,236], which are structurally related to steroidogenic

acute regulatory protein (StarD1/StAR), a prototype of

the steroidogenic acute regulatory-related lipid transfer

(START) domain containing a superfamily of proteins

[84,235-238]. StarD4 and StarD5 are widely expressed in

steroid producing cells, while StarD6 expression appears

to be mostly restricted to the testicular germ cells

[239,240]. In contrast to StarD1 and StarD3/MLN64,

StarD4, StarD5 and StarD6 lack any signal peptides, and

thus, they are not targeted to any specific cellular organ-

elles. Therefore, they are considered to be a cytosolic pro-

tein like StarD2/PCTP [238,239]. Interestingly, StarD6

despite lacking any N-terminal target sequences that

should direct this protein to mitochondria is reported to

have physicochemical properties and biological activity

(stimulation of steroidogenesis) similar to that of StarD1/

StAR, while StarD4 and StarD5 exhibit low levels of

StarD1/StAR-like activity [240]. Both StarD4 and StarD5,

however, bind free cholesterol with high-affinity and

specificity, facilitate cholesterol transport through an

aqueous environment and have been shown to play

important roles in the maintenance of cellular cholesterol

homeostasis [241,242]. The ability and specificity of

StarD4 and StarD5 to bind cholesterol, coupled with their

high levels of expression in steroidogenic tissues, raises

the strong possibility that StarD4 and StarD5 facilitate

cholesterol transport to the outer mitochondrial mem-

brane. However, confirmation of this possibility must

await the relevant experimental evidence.

Extensive but mostly circumstantial evidence suggests

that cellular architecture and cytoskeletal elements, in

particular, vimentin-intermediate filaments (IF, Type III)
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may also be involved in facilitating cholesterol transport

to mitochondria [8,243,244]. Vimentin-intermediate fila-

ment constitutes part of the network of the cytoskeleton

[245]. It is expressed in many cell types including adrenal,

ovarian and testicular Leydig cells [245-250]. Several dif-

ferent reports of proteomic analyses of lipid droplets iso-

lated from cells have consistently identified vimentin as a

lipid droplet associated protein [251-253]. Vimentin has

been shown to interact with several different proteins,

including some motor-like propertiesand sterol binding

properties [254-256]. Using a proteomics approach,

vimentin was identified as an interacting partner of ago-

nist stimulated β3-adrenergic receptors and this interac-

tion was shown to be important for activation of ERK and

stimulation of lipolysis, providing the additional involve-

ment of vimentin in lipid droplet metabolism [257]. The

overexpression of ORP4, which interacts with vimentin

and causes its aggregation, results in a defect in choles-

terol esterification [254]. Likewise, adrenal cells lacking

vimentin display a defect in the re-esterification of LDL

cholesterol without any alterations in LDL-receptor-

mediated endocytosis [258]. Hall and colleagues reported

a close association of both functional mitochondria and

cholesterol-enriched lipid droplets with the intermediate

filaments in Y1 adrenal tumor cells, and testicular Leydig

cells and suggested the possibility that such binding may

facilitate the transport of cholesterol to mitochondria for

steroid synthesis [248-250]. Furthermore, binding of lipid

droplets and mitochondria to vimentin-intermediate fila-

ments may also provide an ideal platform for docking of

lipid droplets to the mitochondria and secondarily

increased cholesterol transport to mitochondria. Besides

morphological evidence, a number of biochemical studies

employing pharmacological inhibitors raised the possibil-

ity that cytoskeletal elements including vimentin may

contribute to the cholesterol transport to mitochondria

and the regulation of steroidogenesis although conflicting

results have been generated [243]. Also, it is important to

realize that agents which were previously used in many of

these studies to disrupt microfilaments, e.g., nocadazole,

cytochalasin, and cyclohexamide, affect tubulin and

actin, but have no effects on vimentin [259]. Obviously,

more experimental work is needed to clearly define the

role of cytoskeletal elements/structures including vimen-

tin intermediate filaments in cholesterol transport to

mitochondria and regulation of steroidogenesis.

(c) Translocation of cholesterol from the outer 

mitochondrial membrane to the inner mitochondrial 

P450scc site

The second critical step in steroid hormone biosynthesis

is delivery of the cholesterol substrate to the inner mito-

chondrial membrane (IMM) sites, where cholesterol side-

chain cleavage P450scc is located, and the enzyme that

catalyzes the conversion of cholesterol to pregnenolone

takes place [3-6,8]. This step is rate-limiting because the

hydrophobic cholesterol cannot freely diffuse through the

aqueous intermembrane space of the mitochondria to

support acute steroid synthesis and requires the partici-

pation of a de novo synthesized labile protein [8,47-

50,260-264]. This putative labile protein evaded detection

for almost twenty years until 1983 when Orme-Johnson's

laboratory first demonstrated that acute ACTH stimula-

tion of adrenocortical cell steroidogenesis was accompa-

nied by a rapid induction of 37 kDa phosphoprotein

[265]. Subsequent studies from her laboratory provided

further characterization of this phosphoprotein in the

adrenal and also demonstrated its presence and hor-

monal induction in corpus luteum and testicular Leydig

cells [266-272]. Stocco and colleagues confirmed these

observations in MA-10 Leydig tumor cells, and subse-

quently cloned this protein and named it steroidogenic

acute regulatory protein (StAR) [273,274]. StAR has been

cloned from many species and is highly conserved across

the species [275]. StAR protein possesses all of the neces-

sary characteristics of the acute regulator of steroid syn-

thesis in steroidogenic cells i.e., its synthesis is specifically

induced in steroidogenic cells of the adrenal and gonads

in response to tropic hormone, is highly labile, and is sen-

sitive to the protein synthesis inhibitor, cycloheximide

[8,23,84,264-273].

The role of StAR protein in the regulation of acute hor-

monal steroidogenesis was supported by three lines of

evidence. First, transfection of a model testicular Leydig

cell line (MA-10 cells) with a StAR plasmid stimulated

steroid production to the same extent as that seen with a

maximum stimulating dose of cAMP analog [274]. Sec-

ond, co-transfection of StAR plus a fusion protein com-

plex of P450scc plasmids in a heterologous cell system

produced several-fold more pregnenolone (steroid) as

compared to cells transfected with P450scc fusion com-

plex alone [276,277]. Third, the most compelling evi-

dence for a role of StAR in steroiodogenesis was provided

by demonstrating that mutations in the StAR gene cause

a fatal condition in newborns, the congenital lipoid adre-

nal hyperplasia (lipoid CAH), characterized by severe

impairment of steroiodogenesis, hypertrophied adrenals

containing high levels of cholesterol esters and free cho-

lesterol and increased amounts of neutral lipids in the

testicular Leydig cells [276,278]. Depletion of the murine

StAR gene by homologous recombination yielded an

identical phenotype of impaired steroidogenesis and lipid

accumulation in the adrenal and gonads [279,280].

In accordance with its role in the acute regulation of

steroidogenesis, StAR is expressed mainly in the adrenal

cortex, steroid producing cells of the ovary and testicular

Leydig cells [277,281]. Significant expression of StAR is

also reported in the rodent brain cell type that parallels
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the expression of P450scc and other steroidogenic

enzymes, but its potential role in neurosteroidogenesis is

not yet established [84]. In contrast, StAR expression is

not detected in another major steroidogenic tissue, the

placenta, which secretes progesterone constitutively

[277,281]. StAR is synthesized as a short-lived cytoplas-

mic 37-kDa protein with a mitochondrial targeting pep-

tide that is cleaved upon mitochondrial import to yield

the long-lived intramitochondrial 30-kDa form

[84,269,273]. StAR functions as a sterol transfer protein,

binds cholesterol, mediates the acute steroidogenic

response by moving cholesterol OMM to IMM, acts on

the OMM, and requires structural change previously

described as a pH-dependent molten globule [282-287].

StAR is also a prototype of a family of proteins that con-

tain StAR-related lipid transfer (START) domains (StarD

proteins), of which StarD3/MLN64, StarD4, 5 and 6

exhibit steroidogenic potential [235,236,238,240,282-

287].

Given that StAR (StarD1) acts on the outer membrane

in mediating the transfer of cholesterol from the OMM to

the IMM, and raises the possibility that it may be a com-

ponent of a multi-protein complex [84,284-289]. Several

lines of evidence indicate that peripheral-type benzodiaz-

epine receptor (PBR) is also involved in mitochondrial

import of cholesterol substrate [290,291]. PBR, which is

now referred to as translocator protein (18 kDa, TSPO) is

a high-affinity drug- and cholesterol-binding mitochon-

drial protein, with a cytoplasmic domain containing a

cholesterol recognition amino acid consensus (CRAC)

domain [292]. TSPO is expressed ubiquitously in the

OMM, but is more abundant in the adrenal gland and ste-

roidogenic cells of gonads [288,289,291-296]. TSPO

ligands stimulate steroid synthesis and promote translo-

cation of cholesterol from OMM to the IMM in testicular

Leydig cells, ovarian granulosa cells, and adrenocortical

cells [290,291,293-298]. Mutagenesis of the CRAC

domain interferes with cholesterol binding and transfer

of cholesterol to IMM [299,300]. Targeted deletion of the

TSPO gene in a Leydig cell line (TSPO-deficient R2C

cells) blocked cholesterol transport into the mitochon-

dria and dramatically reduced steroid production,

whereas reintroduction of TSPO in the deficient cell line

restored the steroidogenic capacity [301]. TSPO is a com-

ponent of a 140-200 kDa multi-protein complex consist-

ing of 18-kDa TSPO itself (and its polymorphic form), the

34-kDa voltage-dependent anion channel (VDAC), the

30-kDa adenine nucleotide translocator (ANC), a 10-kDa

protein (pk 10), TSPO-associated protein-1 (PRAX-1),

and the TSPO and protein kinase A (PKA) regulatory

subunit RIα-associated protein (PAP7) [288].

Increasing evidence now suggests that TSPO and StAR

interact functionally in mediating the transfer of choles-

terol from the outer mitochondrial membrane to the

inner mitochondrial membrane. For example, FRET mea-

surements indicated that StAR and TSPO come within

the 100 A° of each other consistent with the possibility

that StAR and TSPO may interact with each other [302].

However, using a complementary bioluminescence reso-

nance energy transfer, the same laboratory was unable to

provide evidence for protein-protein interaction between

TSPO and StAR [303]. Hauet et al provided evidence that

isolated mitochondria from Tom20/StAR overexpressing

MA-10 Leydig cells produced steroids at a maximal level,

but these cells lose their steroidogenic capacity if exposed

to TSPO-antisense oligonucleotide [304]. Interestingly,

re-introduction of recombinant TSPO into the mito-

chondrial environment in vitro restored the steroidogen-

esis [304]. The current thinking is that functional

cooperation between proteins such as the cAMP-depen-

dent protein kinase regulatory subunitα (PKA-RIα) and

the PKA-RIα- and TSPO-associated acyl-coenzyme a

binding domain containing 3 (ACBD3) proteins, PAP7,

cholesterol is transferred to and docked at the OMM

[288]. The TSPO-dependent import of StAR into mito-

chondria, StAR interaction with VDAC1, and phosphate

carrier protein (PCP) on the OMM, and the association

of TSPO with the outer/inner mitochondrial membrane

contact sites, drives the intramitochondrial cholesterol

transfer and subsequent steroid formation [288].

Conclusions
Steroid producing cells have a dual requirement for cho-

lesterol: they need cholesterol for membrane biogenesis

and cell signaling as well as starting material for the mito-

chondrial synthesis of pregnenolone, the precursor ste-

roid required for the formation of glucocorticoids,

mineralocorticoids, and sex-steroids. For steroid hor-

mone production to proceed normally, adequate choles-

terol must be available and supplied to the mitochondria.

Under most physiological conditions, the supply of cho-

lesterol is not rate-limiting, because there are multiple

pathways that can fulfill the cholesterol needs of the cell.

Although cellular de novo cholesterol synthesis and cho-

lesteryl esters stored in lipid droplets can potentially sup-

ply adequate amounts of cholesterol substrate to support

steroidogenesis, adrenal and ovary (and testicular Leydig

cells under certain conditions), they however, preferen-

tially utilize plasma lipoprotein-derived cholesterol for

steroid synthesis. All steroidogenic cells irrespective of

species have the capability to acquire cholesterol from

plasma LDL, or other apolipoprotein B- (apoB) or apoE-

containing lipoproteins via the well-characterized LDL

(B/E) receptor-mediated endocytic pathway. Its func-

tional efficiency, however, is dictated by the physiological

status of the steroidogenic cell, the species and the type

and composition of circulating lipoproteins. Steroido-

genic cells can also process exceptionally large quantities
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of lipoprotein-derived cholesteryl esters through the

"selective" cholesteryl ester uptake pathway. Indeed, the

"selective" cholesterol uptake pathway is quantitatively

the most important source for cholesterol delivery for

steroidogenesis in the tropic-hormone stimulated rodent

adrenal and ovary. The "selective" cholesterol uptake

pathway involves internalization of cholesteryl esters

from cell surface bound cholesterol-rich lipoproteins

(HDL or LDL, regardless of lipoprotein composition)

without the parallel uptake and lysosomal degradation of

the lipoprotein particle itself. Hormone regulatable scav-

enger receptor class B, type I (SR-BI) is a physiologically

relevant cell surface receptor responsible for "selective"

uptake of lipoprotein-derived cholesteryl esters. The

mechanisms by which plasma-lipoprotein cholesterol is

delivered to steroidogenic cells via the SR-BI mediated

"selective" uptake pathway has been extensively studied,

but remains incompletely understood. Based on the cur-

rent evidence, it appears that selective transfer of choles-

terol esters to plasma membrane and their subsequent

delivery to the cell interior by SR-BI requires the partici-

pation of accessory proteins, alterations in physicochemi-

cal characteristics of the plasma membrane (e.g.,

microvillar channel formation, caveolae/membrane lipid

raft, lipid domain) and the specific physical form of SR-BI

itself (dimerization, oligomerization).

The second step in cholesterol utilization for steroid

hormone synthesis is intracellular cholesterol mobiliza-

tion and processing and transport to the appropriate site

within the mitochondria for side-chain cleavage and

pregnenolone production. This process can be broadly

divided into three separate, but equally important seg-

ments: a) tropic hormone-induced mobilization of cho-

lesterol from intracellular stores, particularly from lipid

droplets, transport of newly released free cholesterol to

the outer mitochondrial membrane; and b) transfer of

this cholesterol from the outer to the inner mitochondrial

membrane for steroid (pregnenolone) production. Tropic

hormone-mediated increased formation of the second

messenger, cAMP, stimulates cAMP-PKA resulting in

activation of cholesteryl ester hydrolase, and rapid hydro-

lysis of cholesteryl esters. The newly released cholesterol

is transported to the outer mitochondrial membrane,

although the actual underlying mechanism is not defined.

Based on the currently available information, it appears

that transport of hydrophobic cholesterol from the aque-

ous environment to OMM is primarily facilitated by the

non-vesicular cholesterol transport mechanism involving

StarD proteins such as the StarD4 and StarD5 family,

which avidly bind cholesterol. In addition, cytoskeletal

components/structures, particularly vimentin intermedi-

ate filaments, and direct interaction of lipid droplets to

cellular organelles (e.g., mitochondria) and other cytoso-

lic factors, steroidogenesis activator polypeptide (SAP)

and changes in cellular architecture could also contribute

to cholesterol transport to OMM.

The next step in cholesterol transport to mitochondria

is the transfer from the outer to the inner mitochondrial

membrane; this is considered as a rate-limiting step in

hormone-induced steroid formation. Two proteins,

translocator protein (18 kDa, TSPO) and steroidogenic

acute regulatory (StAR) protein, which presumably work

in concert, mediate this transfer. TSPO, previously

known as the peripheral-type benzodiazepine receptor, is

a high-affinity drug- and cholesterol-binding mitochon-

drial protein. StAR is a hormone-induced mitochondria-

targeted protein that has been shown to initiate choles-

terol transfer into mitochondria. The current thinking is

that functional cooperation between TSPO and proteins

such as the cAMP-dependent protein kinase regulatory

subunitα (PKA-RIα) and the PKA-RIα- and TSPO-asso-

ciated acyl-coenzyme A binding domain containing 3

(ACBD3) protein, PAP7, cholesterol is transferred to and

docked at the OMM. The TSPO-dependent import of

StAR into mitochondria, StAR interaction with VDAC1,

and phosphate carrier protein (PCP) on the OMM, and

the association of TSPO with the outer/inner mitochon-

drial membrane contact sites, drives the intramitochon-

drial cholesterol transfer and subsequent steroid

formation.
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