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The mammalian cerebellum is located in the posterior cranial fossa and is critical

for motor coordination and non-motor functions including cognitive and emotional

processes. The anatomical structure of cerebellum is distinct with a three-layered cortex.

During development, neurogenesis and fate decisions of cerebellar primordium cells

are orchestrated through tightly controlled molecular events involving multiple genetic

pathways. In this review, we will highlight the anatomical structure of human and

mouse cerebellum, the cellular composition of developing cerebellum, and the underlying

gene expression programs involved in cell fate commitments in the cerebellum. A

critical evaluation of the cell death literature suggests that apoptosis occurs in ∼5%

of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely

play significant roles in cerebellar development, we provide a comprehensive discussion

of their role in cerebellar development and organization. We also address the possible

function of unfolded protein response in regulation of cerebellar neurogenesis. We

discuss recent advancements in understanding the epigenetic signature of cerebellar

compartments and possible connections between DNA methylation, microRNAs and

cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with

cerebellar dysfunction and their role in the aging cerebellum.
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INTRODUCTION

Microscopic anatomy of the cerebellum was described in detail at

the end of the 19th century by Ramon y Cajal and has attracted

the attention of many researchers over the last century, and

yet many questions remain unanswered. The role of cerebellum
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CZa, Anterior central zone; AZ, Anterior zone; ATG, Autophagy-related genes;

APOER2, Apolipoprotein E receptor 2; bHLH, Basic helix-loop-helix; BMP,

Bone morphogenetic protein; BDNF, Brain-derived neurotrophic factor; CZ,

Central zone; CMA, Chaperone-mediated autophagy; DCN, Deep cerebel-

lar nuclei; DON, Dorsal octavolateral nucleus; ER, Endoplasmic reticulum;

EGZ, External germinal zone; FGR, Fetal growth restriction; FXTAS, Fragile

X-associated tremor/ataxia syndrome; FMRP, Fragile X mental retardation

protein; fog, Forebrain overgrowth; GFAP, Glial fibrillary acidic protein;

ICR, Imprinting control region; Igf2, Insulin-like growth factor 2; Irxs, Iro-

quas; MECP2, Methyl CpG Binding 2 human gene; Mecp2 , Mouse gene;

MeCP2, protein; MET, Mesenchymal-Epithelial Transition; MON, Medial

octavolateral nucleus; miRNA, micro RNA; NGF, Nerve growth factor; NRG,

Neuregulin; NZ, Nodular zone; PTC, Patched; PACAP, Pituitary adenylate

cyclase-activating polypeptide; CZp, Posterior central zone; PZ, Posterior

zone; PCCA, Progressive cerebello-cortical atrophy; RL, Rhombic lip; RGZ,

Rostral germinal zone; SMO, Smoothened; TET, Ten-eleven translocation;

SHH, Sonic Hedgehog; SDF-1α, Stromal-cell-derived factor 1α; TUNEL,

terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling; TGF,

Transforming growth factor; VZ, Ventricular zone; VLDLR, Very low-density

lipoprotein receptor; Wls, Wntless; Zic, zinc finger of the cerebellum.

in motor coordination is well studied (Ito, 1984; Glickstein,

1993; Schmahmann, 1997; Glickstein et al., 2009). Increasing

evidence shows that the cerebellum also plays a significant role

in cognitive functions such as attention, language, emotional

behavior, sleep, and even non-somatic visceral responses (Leiner

et al., 1991; Wiser et al., 1998; Schmahmann and Caplan,

2006). This review will focus on development of the cere-

bellum and especially the factors that dictate the generation,

migration, and differentiation of neurons. A detailed review of

function, physiology, circuitry (White and Sillitoe, 2013a), and

neurochemistry (Kwong et al., 2000) is beyond the scope of

this paper.

The mammalian cerebellum is characterized by a midline

vermis flanked by hemispheres on each side. Folds and fissures

divide the cerebellum into lobes, lobules, and folia. Mammalian

and avian cerebellum is conventionally divided into 3 lobes that

are further subdivided into 10 lobules (I–X) (Larsell, 1970; Sotelo

and Wassef, 1991; Voogd and Glickstein, 1998; Glickstein et al.,

2009). The cerebellum contains relatively few cell types that are

aggregated in the cerebellar gray matter including the cerebellar

cortex and cerebellar nuclei. The cerebellar cortex is formed by

three layers, whose neuronal components include stellate and

basket cells in the molecular layer, Purkinje and candelabrum

cells in the Purkinje layer, and granule cells, Golgi cells, unipolar

brush cells, and Lugaro cells in the granular layer. Neurons of
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the cerebellar nuclei are located close to the roof of the fourth

ventricle deep within the cerebellar white matter. The cerebellar

nuclei along with some vestibular nuclei constitute the sole

output of the cerebellum (Ito, 1984; De Zeeuw and Berrebi, 1995;

Voogd et al., 1996).

Cerebellar neurons can be classified into inhibitory gamma-

butyric acid (GABAergic) and excitatory glutamatergic neurons

(Hoshino, 2006b; Carletti and Rossi, 2008). Purkinje cells, which

are GABAergic, are the principal neurons of the cerebellar cortex

with an elaborate dendritic arborization that extends into the

molecular layer. Purkinje cells, the sole output of cerebellar cortex,

project to the cerebellar nuclei neurons (Leto and Rossi, 2012;

Mordel et al., 2013; Steuber and Jaeger, 2013). Candelabrum cells

are also GABAergic; they are uniformly distributed throughout

the entire cerebellar cortex. The small somata are roughly pyri-

form and vertically located between the Purkinje cell somata

(Lainé and Axelrad, 1994; Ambrosi et al., 2007; Carletti and Rossi,

2008). Other cerebellar cortex GABAergic interneurons include

basket and stellate cells in the molecular layer, and Golgi and

Lugaro cells located in the granular layer (Leto et al., 2008; Leto

and Rossi, 2012; Castejón, 2013).

Glutamatergic neurons include the granule cells, unipolar

brush cells, and excitatory projection neurons (large neurons

in the cerebellar nuclei) (Lainé and Axelrad, 1994; Voogd and

Glickstein, 1998; Cotterill, 2001; Sillitoe and Joyner, 2007). The

cerebellar granule cells are the smallest and most abundant

neurons in the vertebrate brain, representing about 80% of all

neurons in the human brain (Azevedo et al., 2009). The small

cell bodies are packed into the granular layer with about 4–5

dendrites that receive cerebellar afferent input (Goldowitz et al.,

1997; Kalinichenko and Okhotin, 2005; Chédotal, 2010). Unipolar

brush cells are small glutamatergic neurons residing in the granu-

lar layer of the cerebellar cortex; they amplify signals from afferent

fibers (Kalinichenko and Okhotin, 2005; Mugnaini et al., 2011).

The cerebellar nuclei are comprised of four major subdi-

visions: (A) the medial (fastigial), which is subdivided further

into caudomedial, middle, and dorsolateral (rostrolateral) nuclei;

(B) anterior and posterior interposed nuclei; and (C) lateral

(dentate) nuclei (De Zeeuw and Berrebi, 1995; Manto et al., 2013).

The medial nuclei generally communicate with the vermis, the

interposed nuclei with the paravermis, and the lateral nuclei with

the hemispheres (Voogd and Glickstein, 1998). Cerebellar nuclei

are composed of several neuronal types: excitatory glutamatergic

neurons, which project to different parts of the brain, inhibitory

GABAergic neurons that terminate in the inferior olive (Ruigrok,

1997), and inhibitory GABAergic and glycinergic interneurons

(Uusisaari et al., 2007; Uusisaari and Knöpfel, 2012).

The cerebellum receives two major and one minor types of

afferent input. Mossy fibers constitute the majority of afferent

fibers in the adult cerebellum. Arising from multiple sources in

the central nervous system, they project to the Purkinje cells

through granule cells/parallel fibers (Valle et al., 2001; Voogd

et al., 2003; Voogd, 2011). Climbing fibers are exclusively derived

from the inferior olivary complex; they synapse on the dendrites

of Purkinje cells (Marani and Voogd, 1979; Campbell and

Armstrong, 1983). A third set of afferents called neuromodulatory

cerebellar afferents terminate in all three layers of the cerebellar

cortex (Jaarsma et al., 1997; Schweighofer et al., 2004; Manto

et al., 2013). All afferents to the cerebellum also send a direct

branch to the cerebellar nuclei; these nuclei neurons also receive

the Purkinje cell input that are essential in monitoring the whole

cerebellar output (Marzban et al., 2010; Hashimoto and Hibi,

2012).

The fundamental architecture of the cerebellum is organized

into four transverse zones based on gene expression and afferent

fiber termination; the anterior zone (AZ: corresponding approx-

imately to lobules I–V in mice), the central zone (CZ: lobules

VI–VII), which can be further subdivided into anterior (CZa)

and posterior (CZp) components (Marzban et al., 2008; Sawada

et al., 2008), the posterior zone (PZ: lobules VIII–IX), and the

nodular zone (NZ: lobules IX–X; Ji and Hawkes, 1994; Marzban

et al., 2003, 2004, 2012; Sugihara and Quy, 2007; Marzban and

Hawkes, 2011; Bailey et al., 2014). The boundaries of these zones

do not align absolutely with the lobe and lobule divisions, but

provide a more functionally relevant way of dividing the cere-

bellum (Marzban et al., 2011, 2014). The cerebellum contains

the most elaborately patterned circuit of all the central nervous

system structures, which may be essential for organizing the large

number of functional and topographic zonal circuits (Reeber

et al., 2013; White and Sillitoe, 2013b). Studies on gene expression

patterns in cerebellar nuclei neurons have also revealed molecular

heterogeneity that may mirror the molecular complexity of the

cerebellar cortex (Chung et al., 2009).

The principal cerebellar cytostructure is set during early devel-

opment and precedes the process of neurogenesis and axono-

genesis during which cerebellar circuits and functions are estab-

lished. Here, we will first describe cerebellar development in

humans, which begins during embryonic development and con-

tinues into early childhood. We will then review, lower mam-

malian cerebellar development, highlighting the molecular and

genetic aspects of the cerebellar primordium, germinal zones,

and neurogenesis that cannot be directly studied in humans.

Finally, we will discuss the latest advancements in the study of

genetic, epigenetic and molecular signaling pathways in cerebel-

lum development.

EMBRYONIC AND EARLY FETAL DEVELOPMENT OF THE

HUMAN CEREBELLUM

Detailed morphologic descriptions of human cerebellum

development in the embryonic period come mainly from the

work of Müller and O’Rahilly, although some information

had been published earlier. At Carnegie stage 13 (28 days

post fertilization) the cerebellar plate begins as a bulge on

the dorsal aspect of the rhombencephalon (alar plate of the

rhombomere 1), dorsolateral to the sulcus limitans on the floor

of the fourth ventricle (Müller and O’Rahilly, 1988a). At stage 14

(32 days) the cerebellar primordium expands rapidly with a thick

ventricular layer comprised of radially oriented cells, a less cellular

intermediate layer, and a marginal layer (Bogaert and Belpaire,

1977). At stage 15 (36 days) the two sides of the cerebellar

primordium are not yet in contact and are spanned by the thin

rhombencephalic roof plate (Müller and O’Rahilly, 1988b).

The rhombic lip, a dorsolateral proliferative area with mitotic

activity, is established at stage 16 (40 days) (Müller and O’Rahilly,
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1989). Neuron progenitors begin migrating from the ventricular

zone (VZ) at stages 18 and 19 (44–48 days) (Müller and O’Rahilly,

1990a). By stage 20 (52 days) cells that will form the dentate

nucleus migrate radially from the VZ and rostromedially from the

rhombic lip. At stage 20 the superior cerebellar peduncle appears.

At stage 21 the dorsal projection of the cerebellar plate thickens.

The cerebellar commissures (rudiments of the vermis) are first

apparent at stage 22. At stage 23 (approximately 57 days/8 weeks;

the end of the embryonic period) the external germinal zone

(EGZ; usually referred to as the external granular layer in human

literature) extends from the rhombic lip onto the dorsum of the

cerebellar bulge. The cerebellar plate arches over the brainstem in

a U-shape (Müller and O’Rahilly, 1990b).

Cho et al. studied a separate set of embryonic and fetal speci-

mens age at 6–16 weeks gestation (Cho et al., 2011). They reported

that the first identifiable cerebellar feature was a thickening on

the dorsolateral aspect of the alar plate facing the fourth ventricle

at 6 weeks. At the end of embryonic period and beginning of

fetal period, from 7–9 weeks, the rhombic lips and alar plates

expanded to form the anlages of the cerebellar hemispheres, which

began to approximate over the fourth ventricle. By 10 weeks the

cerebellar anlages were fused in midline. From 11 to 12 weeks

cerebellar posterolateral and primary fissures developed in the

vermis and the EGZ became distinct. At 15–16 weeks fissures

deepened, more so in the hemispheres, and the dentate nucleus

was apparent.

Rakic and Sidman characterized the layers of the cerebellum

from 7 to 40 weeks gestation and into adulthood (Rakic and

Sidman, 1970). Cell proliferation was restricted to the VZ up

to 10 weeks gestation at which time outward radial migration

created a 2-layer stage. The EGZ appeared as a distinct layer at

10–11 weeks (3-layer stage), and Purkinje cell plate established

by 13 weeks. At 20–21 weeks the hypocellular lamina dissecans

became evident deep to the marginal (future molecular) layer,

and the 5-layer appearance persisted to 32 weeks. The lamina

dissecans disappeared (4-layer stage) at 32 weeks and the EGZ

disappeared postnatally (3-layer stage). Similar histologic pro-

gression has been reported by others (Milosevic and Zecevic,

1998).

FETAL AND POSTNATAL DEVELOPMENT OF THE HUMAN

CEREBELLUM

During the fetal period, the infratentorial (cerebellum plus

brainstem) part of the brain is >5% of the total weight from 14

to 17 weeks, about 5% from 18 to 29 weeks, and exceeds 6.5%

by 40 weeks (Guihard-Costa and Larroche, 1990). Between birth

and 9 months the cerebellum increases from 5.7 to 10% of the

total brain weight. Thereafter the growth rate is the same as brain

growth overall and the proportionate weight is constant (Ellis,

1920).

Nowakowska-Kotas et al. studied the lobular morphology

of human cerebellum from gestational weeks 15 to 28

(Nowakowska-Kotas et al., 2014). During this interval the

flocculonodular lobe volume decreases proportionately from 9 to

6%, the anterior lobe increases from 11 to 22%, and the posterior

lobe occupies 80 to 72%. They found a 3.5-fold increase in the

exterior cerebellar surface. Taking into account the real surface

area along folia, this corresponds to a 30-fold increase in the total

surface area (Lemire, 1975).

The vermis begins to develop folia by 13–14 weeks and all of

the midline lobules can be identified by 15 weeks. Development

of the folia is completed approximately 2 months after term birth

(Loeser et al., 1972). From 17 to 29 weeks the relative sizes of the

lobules is maintained even as the secondary and tertiary braches

of the lobules develop (Kapur et al., 2009).

Developmental morphology of Purkinje neurons has been

studied in detail using Golgi impregnation and electron

microscopy beginning at 12 weeks gestation. Between 12 and

16 weeks they are small and several rows deep. Between

16–28 weeks they become organized into a single row, enlarge,

and develop increasing complex dendritic branches and synapses.

Synaptic complexity continues to increase into the first post-

natal year (Zecevic and Rakic, 1976). Purkinje neurons rapidly

expand in volume between birth and 2 years, and then again

around 7–9 years age when adult size is reached (Tsekhmistrenko,

1999). Neurons of the granular layer become progressively

more clustered, reaching a plateau at approximately 14–15 years

(Tsekhmistrenko, 2001). The prolonged development differs

considerably from non-primate species (Zecevic and Rakic,

1976).

Friede documented thickness of the layers of the cerebellum

from 24 weeks gestation to 13 months postnatal (Friede, 1973).

He reported that the EGZ is fairly stable until approximately

2 months postnatal after which it gradually disappears by 12

months. The molecular layer thickens rapidly between 38 weeks

gestation and 1 year postnatal. The Purkinje cell bodies become

obvious at about 28 weeks in the vermis and 32 weeks in the hemi-

spheres. Irregular clusters of immature appearing “matrix” cells

persist in the deep cerebellar white matter around the cerebellar

nuclei until ∼4 months, involuting along with the EGZ; the fate

of these cells is unclear.

Abrahám et al. studied brains from 24 weeks gestation to 11

months postnatal. They documented layer thickness and cell

proliferation (based on Ki67 immunoreactivity) in the EGZ,

molecular layer, and granular layer (Abrahám et al., 2001). More

than 50% of cells in the EGZ are Ki67 positive from 24 to 34 weeks

gestation. The width of the EGZ peaks at 34 weeks and diminishes

rapidly between 1 and 9 months postnatal with proliferation

negligible after 5–6 months. Width of the molecular layer

expanded through the full age range studied. The rate of granular

layer expansion is greatest in the vermis and hemispheres from

approximately 22 to 32 weeks gestation and is more gradual in

the flocculus (Gudovic et al., 1998). During the early fetal period

the EGZ is generally a fairly regular layer, but from 25 weeks

gestation onward in approximately half of autopsy specimens

the EGZ has a regular knobby appearance with clusters of EGZ

cells punctuated by penetrating blood vessels (Gelpi et al., 2013).

By the third trimester the outer layer of the EGZ (adjacent to

the pial surface) is densely packed and contains the proliferating

precursor cells. The inner layer of the EGZ is less densely packed

and is composed of postmitotic migrating neurons (Haldipur

et al., 2011). Gadson (Gadson and Emery, 1976) found that the

EGZ disappears between 12 and 18 postnatal months. The cell

density of the granular layer reaches adult levels by 2 years age.
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CELL DEATH IN THE DEVELOPING HUMAN CEREBELLUM

While studying cerebellar cell proliferation, Abrahám et al. also

documented dying cells (Abrahám et al., 2001). The percentage

of pyknotic nuclei, presumed to be dying cells, was approximately

0.5% in the EGZ from 24 to 34 weeks and between 0.06 and

0.3% to 9 months. In the granular layer there were fewer dying

cells, typically <0.1% at all ages studied. Nat et al. studied cell

death from 8 to 22 weeks gestation (Nat et al., 2001) using

terminal deoxynucleotidyl transferase-mediated dUTP nick

end labeling (TUNEL; see limitations of this method discussed

below). At 8 weeks the proportion of TUNEL positive cells in

the proliferative VZ was 34 ± 7% and in the postmitotic region

(i.e., the cerebellar plate) was 18 ± 8%. At 12 weeks, TUNEL

positive cells were 20 ± 8% in the VZ and 31 ± 5% in the EGZ.

At 15–22 weeks, the granular layer had 5 ± 2% and the Purkinje

cell layer 4 ± 1% TUNEL positive cells. At all ages, only about

5% of apoptotic cells were immunoreactive for the cell “suicide”

receptor Fas (APO-1/CD95).

Lavezzi et al. (2006) studied brains from 17 weeks gestation

to 12 months postnatal using proliferating cell nuclear antigen

(PCNA) immunostaining, which yields some information

about cell proliferation, and TUNEL. They reported their data

semiquantitatively. PCNA positive cells were present in all layers

of the cerebellum from 17 to 25 weeks gestation. Labeling

remained abundant (>30% of cells) in the EGZ and sparse in the

molecular and granular layers to 39 weeks gestation and ceased

to be detectable in any layer after 3 months postnatal. TUNEL

positive cells were restricted to the EGZ, first apparent sparsely

at 26 weeks gestation and abundantly from 4 to 12 months

postnatal, by which time the EGZ had disappeared. The authors

observed that TUNEL positive cells lacked the morphologic

features of dying cells and were negative for BCL2. Simonati and

coworkers used TUNEL in fetal brains 12–24 weeks gestation and

in three neonatal brains (Simonati et al., 1997, 1999). Scattered

TUNEL positive cells were present in the granular layer at all ages

but labeled nuclei were not observed in the EGZ, Purkinje cell

layer, or in the dentate nucleus. They concluded that mainly glial

cells undergo apoptosis in developing cerebellum.

Lossi and coworkers studied cell death in postnatal human

cerebellum from term birth to adulthood using TUNEL and T4

DNA ligase methods (Lossi et al., 1998). They used anti-Ki67

to label proliferating cells. From birth to 3 months >30% of

cells in the EGZ were Ki67 positive, after which proliferation

declined. TUNEL labeling was observed in the EGZ (4–8% of

cells), in the granular layer (<2% of cells), and in the white

matter (<3% of cells) from birth to 3 months and not there-

after. Seemingly apoptotic cells were often immunoreactive for

CPP32/ interleukin-1 beta-converting enzyme but negative for

Bcl-2. The authors remarked on the relatively low frequency of

cell death in human brains and discussed possible explanations

for interspecies differences (e.g., Wood et al., 1993; Krueger et al.,

1995). BCL-X, which is related to BCL-2, was reported to be

highly expressed in the human fetal cerebellum (Sohma et al.,

1996).

In summary, TUNEL labeling in the developing human

cerebellum has been documented, but the reported frequency

varies considerably. Limitations of the TUNEL method include

the lack of specificity for apoptosis and propensity for false

positive labeling (Chan et al., 2002; Loo, 2011). Fixative type

and delays influence TUNEL positivity (Tamura et al., 2000);

fixation can vary considerably in autopsy material. Unfortu-

nately there are no comprehensive studies of cell death devel-

oping human cerebellum using other methods. It is not clear

to what extent apoptosis and synapse elimination (Hashimoto

and Kano, 2013), which has not been studied in humans, are

related.

Despite fairly clear morphologic and histologic details about

fetal and postnatal cerebellum development in humans, the early

embryologic features and the molecular/genetic determinants are

not easily studied. Information about early cerebellar develop-

ment has been acquired from studies of lower animals that have

very primitive cerebellum-like structures and from experiments

in other mammals, especially rodents.

CEREBELLUM AND CEREBELLUM-LIKE STRUCTURES

The basic features of cerebellar architecture are present in prim-

itive species such as hagfish (myxinoids) and lampreys and are

called cerebellum-like (cerebelloid) structures (Larsell, 1967).

The cerebellum-like structures seem to have parallel fibers and

interneurons similar to the molecular layer. Classically, the main

component of cerebellum-like structures comprises the medial

octavolateral nucleus (MON) and dorsal octavolateral nucleus

(DON; Yopak and Montgomery, 2008; Kajiura et al., 2010; Yopak,

2012; Kaslin and Brand, 2013).

Cerebellum-like structures arise from the alar plate of the

neural tube (Gao et al., 1996). They are comprised of a layer of

principal cells, the exact nature of which is not clear. These cells

are probably analogous to the Purkinje cells (Devor, 2000) or

neurons of the cerebellar nuclei (Montgomery et al., 2012). It has

been shown that the MON receives direct afferent nerves from

the mechanosensory receptors of the lateral line system and the

DON receives afferents from the electrosensory receptors of the

ampullae of Lorenzini (Devor, 2000; Montgomery et al., 2012).

In addition to direct projections, the afferents to cerebellum-

like structures can be categorized into two major types: parallel

fibers and primary afferents. The cell bodies of parallel fibers

are called granule cells, which are driven by multiple sources

including the spinal cord, brain stem, and cerebrum (Devor,

2000). The primary afferent input in the case of cerebellar-

like structures may be analogous to climbing fibers from the

inferior olivary nucleus and originate from the octavolateral

end organs (Devor, 2000). However, it is also believed that the

cerebellar-like structures do not have climbing fiber projections

(Montgomery et al., 2012). The similarities and differences of

cerebellum and cerebellum-like structures have been reviewed

in detail elsewhere (Devor, 2000; Bell, 2002; Montgomery et al.,

2012).

Evolutionary appearance of the cerebellum occurred at the

juncture between early vertebrates and gnathostomes (jawed

vertebrates) (Striedter, 2005). The MON is evident in some

hagfish (myxinoids) (Larsell, 1967; Ronan and Northcutt, 1998;

Northcutt, 2002), whilst, the two octavolateralis nuclei; i.e., MON

and DON are found in lampreys, which lack a true cerebellum

(Larsell, 1967; Ronan and Northcutt, 1998; Weigle and Northcutt,
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1999; Northcutt, 2002). In addition to the MON and DON,

cartilaginous fishes have well defined cerebellum. It has been

suggested that the cerebellum arose through a change in the

genetic-developmental program, amounting to a duplication of

existing structure (e.g., the MON) (Montgomery et al., 2012).

Teleost fish lack distinct cerebellar nuclei while lampreys and

sharks have at least one cerebellar nucleus (Butler and Hodos,

2005; Kaslin and Brand, 2013). However, because the cere-

bellar function relies on the cerebellar nuclei neurons as the

sole output, it is a matter of debate whether structures lacking

cerebellar nuclei should be considered a cerebellum/cerebelloid

structure.

It has been suggested that the cerebellum can be considered

an example of “subsumption architecture”, in which the new

cytoarchitecture and circuits are while maintaining existing

fundamental components to improve functionality during

evolution (Montgomery et al., 2012; Butts et al., 2014).

CEREBELLAR DEVELOPMENT AND NEUROGENESIS

The mouse cerebellar primordium emerges at about embry-

onic day (E) 7–8 as a neuroepithelial swelling of the rostral

lip of the fourth ventricle, which is part of the alar plate of

the metencephalon (rhombomere-1/r1) (Goldowitz and Hamre,

1998; Wingate and Hatten, 1999; Wang and Zoghbi, 2001;

Lumsden, 2004; Wingate, 2005). The cerebellar primordium

develops from a region of neural tube characterized by expression

of Gbx2 and lacking expression of Otx2 and Hoxa2 (Butts et al.,

2014). Shortly after the cerebellar primordium is formed as a

separate simple plate in the dorsal r1, a 90◦ rotation changes

the direction of axes and causes midline fusion (Alvarez Otero

et al., 1993; Sgaier et al., 2005). Consequently, the rostral-medial

ends of the bilateral primordia form the vermis and the caudal-

lateral part becomes the hemisphere of the cerebellum (Louvi

et al., 2003). The narrow ring encircling the neural tube between

the mesencephalon and rhombencephalon, called the isthmus,

forms the anterior boundary of the cerebellar primordium.

The isthmus contains the “isthmic organizer”, which is impor-

tant in development and maintaining the mesencephalon (ros-

trally) and rhombencephalon (caudally; rhombomere 1) (Itasaki

and Nakamura, 1992; Martínez, 2001; Rhinn and Brand, 2001;

Wurst and Bally-Cuif, 2001; Partanen, 2007; Crespo-Enriquez

et al., 2012). The earliest molecular specification of the isthmic

organizer is the interaction between homeodomain transcrip-

tion factors OTX2 in the rostral epithelium and GBX2 in the

caudal domain (Wassarman et al., 1997; Shamim and Mason,

1998; Katahira et al., 2000; Martinez et al., 2013). Important

signaling molecules secreted by the isthmic organizer include

members of the fibroblast growth factor family such as FGF8

(Heikinheimo et al., 1994; Martinez et al., 2013). Fgf8 expression

is revealed by in situ hybridization at E8.5 in mice at the inter-

face of Otx2 and Gbx2 positive neuroepithelial cells (Martinez

et al., 2013). Similar to GBX2, which induces cerebellar pri-

mordium formation in r1 by inhibition of Otx2, FGF8 signal-

ing appears to act also by inhibiting Otx2 in the r1. It was

shown that FGF8 is required for development of the vermis;

reduction of FGF8 is associated with expansion of Otx2 expres-

sion in alar plate of r1 (Butts et al., 2014). Otx2 and Gbx2

expression are fundamental for positioning the isthmic orga-

nizer and for the establishment of molecular interactions of

FGF8, EN1, EN2, WNT1, PAX2, Iroquas (IRXS), Sonic Hedge-

hog (SHH), and transforming growth factor (TGF)-β family

member expression (Danielian and McMahon, 1996; Hidalgo-

Sánchez et al., 2005; Blaess et al., 2006; Vieira et al., 2010;

Martinez et al., 2013). Temporo-spatial patterns of such gene

expressions are necessary for the normal development of the

cerebellum particularly in the anterior region. For instance, En1

and En2 expression extends over the rostral cerebellar territory

from the mesencephalon at ∼E9 in mice. Some mouse strains

with En1 and En2 mutations (meander tail, leaner) have ante-

rior cerebellar anomalies (Ross et al., 1990; McMahon et al.,

1992). Depending on the developmental stage, the “isthmic

organizer” controls a variety of processes such as cell survival,

cell identity, neural precursor proliferation, neuronal differenti-

ation, and axon guidance (Millet et al., 1996; Martínez, 2001;

Martinez et al., 2013). The caudal boundary is defined by the

roof plate of the fourth ventricle (Lee et al., 2000; Millonig

et al., 2000; Chizhikov et al., 2006a), where Hox2 expression

is present in r1 but not r2 (Wurst and Bally-Cuif, 2001). The

roof plate is a source of bone morphogenetic protein (BMP)

family members that can induce expression of Math1, an impor-

tant factor in cerebellar primordium development (Alder et al.,

1999).

Early cerebellar primordium neuronal populations have been

mapped based on gene expression. Expression patterns of specific

transcription factors that define four distinct cellular domains

during early development (∼E10–E12) are summarized in Table 1

(Chizhikov et al., 2006a; Zordan et al., 2008).

GERMINAL ZONES OF THE DEVELOPING CEREBELLUM

The cerebellar primordium contains two germinal zones:

the neuroepithelium of the fourth ventricle wall (ventricu-

lar zone—VZ) and the rhombic lip (Englund et al., 2006;

Fink et al., 2006). For a long time, it was believed that all

cerebellar neurons originate from the VZ, except granule cells

that originate from RL (Altman and Bayer, 1985a,b,c; Wang

and Zoghbi, 2001). However, recently it has been suggested

that the rhombic lip also produces large projection cerebel-

lar nuclei neurons and unipolar brush cells (Ben-Arie et al.,

1997; Machold and Fishell, 2005). Secondary germinal zones

include the external germinal zone (EGZ), rostral germinal

zone (RGZ), and anterolateral border of the cerebellar plate

Table 1 | Neuronal populations within the cerebellar primordium.

Domain Genes Phenotypes Neurons

C1 Math1 Glutamatergic Large neurons of the cerebellar

Lmx1a nuclei, granule cells, unipolar

brush cell

C2 Lhx1/5 GABAergic Purkinje cells interneurons

Ptf1a

C3 Lmx1a Glutamatergic Large neurons of the cerebellar

Tbr1 nuclei

C4 Lhx1/5 ? ?
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(summarized in Figure 1). Transcription factor, protein, and

receptor expression during cerebellar development and ger-

minal zone specification has been reviewed recently (Garel

et al., 2011; Hoshino, 2012). Two bHLH transcription fac-

tors, PTF1a and MATH1 might be essential in defining and

specification of the VZ and the RL (Hevner et al., 2006; Hoshino,

2006a).

VENTRICULAR ZONE

All GABAergic cerebellar neurons are derived from the VZ of

the cerebellar plate (Zhang and Goldman, 1996; Maricich and

Herrup, 1999; Hoshino et al., 2005; Hibi and Shimizu, 2012).

Purkinje cells are derived around E10–E13 in mouse (Miale

and Sidman, 1961; Wang and Zoghbi, 2001; Hashimoto and

Mikoshiba, 2003), while interneurons (stellate/basket and Golgi

cells) are born postnatally (Miale and Sidman, 1961). Several

transcription factors are important to instruct VZ cells to differ-

entiate into GABAergic neurons (Hoshino et al., 2005; Hoshino,

2006a). Notch1 mRNA is expressed in the cerebellar primordium

as early as E9 and is restricted to neural progenitors in the

VZ (Machold and Fishell, 2005). NOTCH regulates expression

of a cascade of transcription factors belonging to the basic

helix-loop-helix (bHLH) family (Kalyani et al., 1997; Robey,

1997; Artavanis-Tsakonas et al., 1999). Within the VZ, Hes5

expression reflects NOTCH signaling activity in the cerebellar

progenitor pool, while expression of DELTA1 likely indicates a

FIGURE 1 | Germinal zones in the developing cerebellum. (A–C)

Schematic illustration of the spatiotemporal parameters at sagittal sections

of the early cerebellar development (embryonic (E) day 10–13 (E10–E13)

(A), E16–E17 (B), and postnatal (P) day 20 (P20) to adult (C).

Neuroepithelium of 4th ventricle (ventricular zone (VZ)) is sources of all

GABAergic neurons including Purkinje cells (green), Rhombic lip (RL) is

sources of glutamatergic neurons including cerebellar nuclei neurons (red)

and external germinal zone (orange; source of granule cells). (D–F)

Schematic illustrations of the spatiotemporal parameters in corticogensis in

which Purkinje cells cluster disperse in the monolayer and granular layer

form. A cartoon of cerebellar cortex at around P4 (D), at around P10 (E),

and in adult (F) is shown. Purkinje cells (green) express SHH that

increases proliferative activity of external germinal zone (EGZ) cells

(precursor of granule cells). Reelin express from precursor of granule cells

and causes dispersal of Purkinje cells cluster (D) to monolayer (E–F).

Granule cells differentiate and migrate cross Purkinje cells layer to final

destination i.e., granular layer and granule cells development is completed

by maturation in this layer. Abbreviations: Pcc: Purkinje cell clusters,

Purkinje cells precursor: pcp, mesencephalon: m, rhombic lip: RL, E:

embryonic day, EGZ: external germinal layer (zone), gc: granule cells, m:

mesencephalon, NTZ: nuclear transitory zone, A: Adult, pcl: Purkinje cell

layer, RL: rhombic lip, ml: molecular layer.
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subpopulation of neural precursors that are undergoing differ-

entiation (Machold and Fishell, 2005). In addition, the bHLH

transcription factor MASH1 appears to be expressed in pre-

cursors of GABAergic cerebellar neurons that arise from the

VZ (Ma et al., 1997; Lutolf et al., 2002; Hoshino et al.,

2005).

Recently, it was revealed that the VZ is characterized by

Ptf1a expression. The mouse mutant cerebelless, which lacks the

entire cerebellar cortex, has a mutation in the Ptf1a (Hoshino

et al., 2005; Hoshino, 2006a; Butts et al., 2014). Ptf1a encodes a

bHLH transcription factor, which was originally reported to be

important in differentiation of endodermal cells into a pancreatic

lineage. Ptf1a plays an essential role in generation of cerebellar

GABAergic neurons; lineage-tracing analyses revealed that neu-

roepithelial cells in the cerebellar VZ produce neurons even in

the absence of Ptf1a expression, although the subsequent neurons

cannot differentiate into GABAergic neurons (Krapp et al., 1998;

Kawauchi et al., 2005; Hoshino, 2006a; Millen et al., 2014). It

seems that Ptf1a functions independent of the NOTCH signaling

pathway (Beres et al., 2006).

RHOMBIC LIP; CAUDOMEDIAL GERMINAL ZONE

The rhombic lip is a highly proliferative region of the neural

fold located along the dorsal edge of the fourth ventricle in

early development. It is present in all vertebrates (Wingate, 2001;

Dun, 2012; Yeung et al., 2014). It can be subdivided into eight

units according to the rhombomeres 1–8 (r1–8; r1 considered

upper rhombi lip and r2–r8 considered lower rhombic lip), which

are transiently recognizable during early developmental stages of

the rhombencephalon (Altman and Bayer, 1997). Classically, the

upper rhombic lip was thought to generate only cerebellar granule

neurons (Altman and Bayer, 1997). Precursors are created from

E12.5 to E17 and they migrate to establish the EGZ (Wingate,

2001; Machold and Fishell, 2005), which in turn gives rise to

the granule cells during the first two postnatal weeks in mice

(Miale and Sidman, 1961; Wang and Zoghbi, 2001). Recent stud-

ies indicate that other glutamatergic neuronal populations arise

from RL (Machold and Fishell, 2005). These include projection

neurons of the cerebellar nuclei, which originate at around E9–

E12 (Miale and Sidman, 1961; Wang and Zoghbi, 2001; Fink

et al., 2006; Millen and Gleeson, 2008; Yeung et al., 2014), and

the unipolar brush cells, which are generated from E13.5 to the

early neonatal period in mice (Hevner, 2006) and E15.5 to the

neonatal period in rats (Mugnaini and Floris, 1994; Sekerková

et al., 2004).

Rhombic lip derived Math1 positive cells differentiate at the

interface of VZ and roof plate. This depends both on DELTA-

NOTCH signaling (from VZ) and direct contact with the Lmx1a-

and Gdf7-positive non-neural cells of the roof plate (Butts et al.,

2014). The Math1 gene, which encodes a bHLH transcription

factor, is expressed in glutamatergic cells of the rhombic lip as well

as in proliferating granule cell precursors in the EGZ. Targeted

disruption of this gene results in complete loss of the granule cell

lineage and disruption of rhombic lip-derived cerebellar nuclei

neurons (Wang and Zoghbi, 2001; Machold and Fishell, 2005;

Fink et al., 2006). Recently it was shown that Wntless (Wls) is

expressed in the interior face of the rhombic lip, complementary

to and independent of Math1, which is localized to the exterior

face of the rhombic lip (Yeung et al., 2014). Barhl1 is a mouse

homeobox gene that plays a role in cerebellum development.

It is activated by the transcription factor MATH1, possibly in

response to BMP. Expression of Barhl1 mRNA was studied in

human Carnegie stage 8, 12, 16, and 17 embryos (18 to 41 post-

ovulatory days) and fetuses at 17, 22, and 24 weeks of gestation.

Barhl1 was restricted to the central nervous system, with strong

expression in the rhombic lip at stage 17 and continued expres-

sion in the EGZ and granular layer to 24 weeks (Lopes et al.,

2006).

In glutamatergic neurons, Pax6 is downstream in the MATH1

pathway (Yeung et al., 2014), which includes sequential expression

of Tbr2, NeuroD, and Tbr1 (Stoykova and Gruss, 1994; Bulfone

et al., 1995, 1999; Engelkamp et al., 1999; Lee et al., 2000). MATH1

regulates Tbr1 expression (Wang et al., 2005) and is necessary

for Tbr2 and Pax6 expression in the cerebellum (Hevner et al.,

2006). Similarities between cerebrum and cerebellum suggest that

these transcription factors may play conserved roles in a general

program of glutamatergic neurogenesis. In the developing brain,

Neurogenin2, a bHLH transcription factor, regulates glutamater-

gic differentiation of early-born neurons and expression of Tbr1

and Tbr2 mRNA (Schuurmans et al., 2004; Guillemot et al., 2006).

EXTERNAL GERMINAL ZONE

The external germinal zone (EGZ) is a temporary population of

proliferating cerebellar cells located at the subpial surface of the

developing cerebellum. The vast majority of cells from the EGZ

produce granule cells during the postnatal period in rodents. In

rats, the EGZ volume peaks at 15 days postnatal and disappears

by 24 days (Heinsen, 1977). A subset of Golgi cells is also derived

from EGZ (Chung et al., 2011). In the presence of both BMPs

and Sonic hedgehog (SHH), a small proportion of the granule

cell precursors differentiate into astroglial cells (Okano-Uchida

et al., 2004). In rhesus monkeys, basket and stellate neurons

differentiate adjacent to the EGZ (Rakic, 1972). Furthermore,

the granule cell precursors in EGZ are attached to the basal

lamina of external limiting membrane subpialy. The contact to

the basal membrane apparently is an important factor of ampli-

fying precursors cell in EGZ and may act corresponding to the

cortical intermediate precursors in the subventricular (Butts et al.,

2014).

The EGZ can be divided into an outer layer (proliferating

zone) and an inner layer (post-mitotic granule cells). The post-

mitotic granule cells develop axons that extend among the parallel

fibers in the developing molecular layer while the somata migrate

inward to the granular layer. The molecular signals involved in

granule cell migration and differentiation have been reviewed

recently (Chédotal, 2010; Furuichi et al., 2011).

SHH-signaling is an important driver of granule cell

progenitor proliferation (Wechsler-Reya and Scott, 1999; Lewis

et al., 2004; Haldipur et al., 2012). SHH secreted into the cere-

brospinal fluid promotes precursor proliferation and regulates

rhombic lip development and cell fate decision. Later in devel-

opment, SHH acts on migrating cells in white matter (Butts

et al., 2014). Purkinje cells secrete SHH starting at ∼E18.5 in

the mouse cerebellum (Corrales et al., 2004). SHH mRNA is
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detected in Purkinje cells and EGZ beginning at approximately

17 weeks gestation in human cerebellum (Aguilar et al., 2012).

SHH immunoreactivity in Purkinje neurons is strong from 28

to 39 weeks and is absent by 4 months postnatal. Its receptors

patched (PTC) and smoothened (SMO) and their effector GLI-2

exhibit similar temporal patterns of immunoreactivity in the EGZ

(Corrales et al., 2004; Haldipur et al., 2011).

BMI1, which promotes cell proliferation, is expressed strongly

in the cells of the EGZ at ∼E16.5 during mouse cerebellar devel-

opment. BMI1 is expressed in parallel with N-MYC and cyclin D2

in the EGZ of human cerebellum from 17 weeks gestation to 2

months postnatal (Leung et al., 2004).

Pituitary adenylate cyclase-activating polypeptide (PACAP)

receptors appear to be important for cerebellar development in

rodents. Basille et al. (2006) showed that the mRNA for receptors

PAC1 and VPAC1 (but not VPAC2) and the PACAP binding

capacity are abundant from 16 to 24 weeks gestation in the

EGZ and granular layer. They disappear from EGZ after birth

during the period of regression but increase in the granular layer

continuing into adulthood. The data suggest that PAPAP might be

neurotrophic in the EGZ, but other functions are implied in the

mature granular layer.

Zic (zinc finger of the cerebellum) gene is expressed in the

dorsal cranial neural tube and somites of E9.5 mouse. Granule

cells and their precursors all express ZIC family members, even

in adult stages in cerebellum (Houtmeyers et al., 2013). ZIC was

detected by immunohistochemistry in the nuclei of EGZ and

granular layer cells in cerebella from human fetuses at 21 and

37 weeks gestation and in a subpopulation of granular layer cells

at 6 years postnatal (Yokota et al., 1996).

Granule cell precursor proliferation seems to be regulated

by non-autonomous WNT and bone morphogenetic protein

(BMP) pathway signals in the EGZ (Butts et al., 2014). It

is suggested that cerebellar granule neurons require appro-

priate levels of WNT signaling to balance their proliferation

and differentiation (Lorenz et al., 2011). Activation of the

WNT/β-catenin signaling pathway results in severely inhibited

proliferation and premature differentiation of cerebellar granule

neuron precursors independent of BMP signaling (Butts et al.,

2014). It seems WNT and BMP signaling pathways are antag-

onist to the SHH signaling pathway in the regulation of EGZ

proliferation.

The pia mater also plays a role in granule cell prolifera-

tion and probably in inward migration along Bergmann glia.

As granule cells mature, growing dendrites establish glomeruli

(synaptic complexes) within the granule cell layer. This exuberant

proliferative activity is accompanied by apoptosis, with dying cells

scattered throughout the developing cerebellar cortex (Silbereis

et al., 2010).

ROSTRAL GERMINAL ZONE

Using quail-chick chimeras, Hallonet et al. demonstrated that the

rostromedial end of the cerebellar primordium originates from

caudal alar plate of the mesencephalon (Hallonet and Alvarado-

Mallart, 1997). However, others reported that all cerebellar cells

are born from Otx2-negative tissue (Millet et al., 1996) and

thus the mesencephalic source remains a controversial issue. It

has been shown during early development that En1/En2, Wnt1,

Fgf8 and Acp2 are expressed in the caudal mesencephalon with

extension to the rostral rhombencephalon (Millen et al., 1995;

Hallonet and Alvarado-Mallart, 1997; Bailey et al., 2013). Point

mutation in lysosomal acid phosphatase 2 (Acp2) leads to severe

abnormalities in anterior cerebellum (Bailey et al., 2013, 2014).

It has been suggested that mes/rhombencephalon junction in

early development may be correspond to the location at lobule

VI–VIII in the adult cerebellum (Hallonet and Alvarado-Mallart,

1997). Corticogenesis of the CZ (i.e., lobule VI/VII) is relatively

delayed in mouse cerebellum (Marzban et al., 2008). In some

species it can be indicated by a cortical area in paramedian

sulcus of lobule VI–VII (e.g., bat (Kim et al., 2009); star-nosed

mole (Marzban et al., 2014). Rostral and caudal to lobules VI–

VII, the pattern of genes such as En1, En2, Wnt-7 and Gli are

differentially expressed (Hallonet and Alvarado-Mallart, 1997).

In adult cerebellum, the striped pattern of gene expression is

interrupted by the CZ (Marzban et al., 2003; Bailey et al., 2013).

Mutation in some genes such as meander Tail—(Ross et al.,

1990) and Nax mutant—(Bailey et al., 2014) causes defects in

the anterior cerebellum, while mutation of other genes (e.g.,

Lmx1a) are associated with defects in the posterior cerebellum

(Chizhikov et al., 2006b). In sum, current data indicate that the

RGZ plays an essential role in development of anterior cerebellum

and is governed by genes distinct from those in the caudomedial

germinal zone.

ANTEROLATERAL BORDER OF THE CEREBELLAR PLATE

The anterolateral border of the cerebellar primordium has no

role as germinal zone, but does serve as a migratory route for

precerebellar nuclei neurons from the rhombic lips. In addition,

it provides a pathway for afferent and efferent axons prior to

establishment of the cerebellar peduncles.

CELL MIGRATION DURING CEREBELLUM DEVELOPMENT

Migration of postmitotic neurons from their germinal location

is a fundamental cellular event essential for building the ner-

vous system (Wingate, 2001). In the developing cerebellum,

neurons are born in multiple germinal zones and migrate to

their destination using radial or tangential migratory pathways.

Bergmann glia are specialized radial glia in the cerebellum

(Yamada and Watanabe, 2002; Bellamy, 2006). They arise from

the VZ, sending apical processes to the subpial surface and

aligning their somata next to the Purkinje cell layer. Electron

microscopic studies show Bergmann fibers in the EGZ by E15

in mice and E17 in rat (Del Cerro and Swarz, 1976), and

by 9 weeks gestation in humans (Choi and Lapham, 1980).

Immunohistochemical staining for tenascin shows radial glial

fibers traversing the entire cerebellar primordium in E13 mice

(Yuasa, 1996). Glial fibrillary acidic protein (GFAP) is expressed

by human Bergmann glia as early as 12 weeks gestation (Bell

et al., 1989). Notch1, Notch2, and RBPj genes play crucial

roles in the development of Bergmann glia (Hiraoka et al.,

2013).

In mouse cerebellum, Purkinje cell and other inhibitory cor-

tical precursor cells exit the cell cycle in the VZ and migrate

outward along the radial-glial-fiber system to establish a plate of
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immature neuronal cells in the middle of the anlage after E13

(Hatten and Heintz, 1995). The Purkinje cell plate is initially

several cell layers thick and disperses into a monolayer after birth

in mouse (Komuro and Yacubova, 2003; Xu et al., 2013) and by

∼28 weeks gestation in human fetus (Zecevic and Rakic, 1976).

Cortical inhibitory interneurons arise from the VZ and migrate

outward to their final destinations in the molecular layer and the

granule cell layer.

Proliferating cells derived from rhombic lip migrate rostrally

to establish the EGZ. Continued proliferation of EGZ cells gener-

ates an extensive pool of precursors that spread subpially across

the dorsum of the cerebellar anlage. The unipolar brush cells

bypass subpial migratory pathway proximally and direct deep

to the core of developing cerebellum, while large projection

cerebellar nuclei neurons and granule cells migration continue

rostrally in subpial stream pathway toward the distal (rostral)

end of cerebellar primordium. In midway, the cerebellar nuclei

neurons precursors change direction to reach the nuclei transitory

zone (Figure 1).

Rhombic lip derivative precursors migrate tangentially inde-

pendent to the glial guidance in subpial stream pathway (Wingate,

2001). The migrating cells exhibit a characteristic unipolar mor-

phology where a single leading process appears to guide migra-

tion. Although molecular mechanism that induce granule cells

switch on to their mode of migration in tangential and radial

phases poorly understood, a number of candidate guidance

molecules are expressed at the rhombic lip and EGZ such as

ERBB4, UNC5H. Netrin has a general role in guiding migration

of rhombic lip derivatives cell and in the formation of the EGZ

(Wingate, 2001). Granule cell precursors express Unc5H recep-

tors under the strict control of PAX6. Disruption of UNC5H3

signaling results in a rostral cerebellum malformation in which

granule cells extend ectopically into the caudal mesencephalon.

The roof plate-derived chemorepellent (such as BMP) may be

involved in the migration probably by inducing Math1 expression

and directing the precursor processes away from the rhombic lip

(Wingate, 2001; Butts et al., 2014).

Before their inward migration, within the outer layer of EGZ,

granule cell precursors proliferate every 18–20 h and postmitotic

cells remain in place for 24–48 h. During this postmitotic period

the cells tangentially migrate to the inner layer of the EGZ and

begin to extend their horizontal processes. At the interface of the

EGZ and the molecular layer, the speed of migration is slowest

and is accompanied by extension of processes into the molecular

layer. In the molecular layer, the granule cells are elongated as they

migrate radially along Bergmann glial processes, traversing the

molecular layer in about 10–11 h to reach the Purkinje cell layer

(Komuro and Yacubova, 2003). Here the cells separate from the

Bergmann glial cells processes and their somata become spherical

(Xu et al., 2013). Lamellipodia and filopodia at the distal portion

of the leading process actively search for guidance cues. In the

granule layer, granule cells migrate radially towards the bottom

of the layer without any association with glial cells. Migration is

completed when the tip of a leading process approaches the white-

matter (Jiang et al., 2008).

Ca2+ signaling functions as a mediator for controlling gran-

ule cell migration (Komuro and Rakic, 1996); NMDA receptor

activity significantly increases the rate of granule cell move-

ment (Kumada et al., 2006). Molecules important for interac-

tion with Bergmann glial processes include astrotactin, tenascin,

fibronectin, neuregulin (NRG) and its receptor ERBB4, and the

small G-actin-binding protein profilin1 (Rust et al., 2012).

The transcription factor CUX1 is an essential regulator in

proliferating and migrating granule cells (Topka et al., 2014).

Brain-derived neurotrophic factor (BDNF) positively regulates

the proliferation, migration of granule cells. However, proBDNF

negatively regulates granule cell migration mediated by P75 neu-

rotropin receptor (Xu et al., 2011). In human fetal cerebellum,

the EGZ cells express the low affinity nerve growth factor (NGF)

receptor from 15 weeks gestation to 8 months postnatal and

Purkinje cells are immunoreactive from 15–40 weeks gestation

(Yachnis et al., 1993). The high affinity NGF receptors (TrkA,

TrkB, TrkC) are expressed by a few EGZ and granular layer

cells and by Purkinje neurons into adulthood (Quartu et al.,

2003a,b).

Other molecules reported to be involved in granule cells

migration include neurotrophin-3, stromal-cell-derived factor

1α (SDF-1α), ephrin-B2, tissue plasminogen activator, platelet-

activating factor, cyclin-dependent kinase 5, and 9-O-acetyl

GD3 (Kaslin and Brand, 2013; Butts et al., 2014). These

activate distinct signaling pathways such as Ca2+ signaling,

cyclic nucleotide signaling, and mitogen-activated protein kinase

(MAPK) signaling.

Finally, the extracellular glycoprotein, reelin, plays a critical

role in cerebellar corticogenesis (summarized in Figure 2). In

mice, reelin is expressed in the subpial stream of migrating

rhombic lip derived cerebellar nuclei neurons at ∼E13.5 and later

in EGZ cells. Reelin promotes Purkinje cells precursor migration

toward the pial surfaces (Miyata et al., 2010). Postnatally, reelin

signaling triggers the dispersal of the Purkinje cells into the adult

monolayer. Reelin binds with the Purkinje cell receptors very

low-density lipoprotein receptor (VLDLR) and apolipoprotein

E receptor 2 (APOER2). Reelin signaling is followed by phos-

phorylation of an intracellular cytosolic adaptor protein, DAB1

(Larouche et al., 2008; Miyata et al., 2010). However, Reln null

mice have a small subset of Purkinje cells in monolayer suggesting

that the reelin signaling pathway is not exclusively responsible for

Purkinje cell migration.

APOPTOSIS, AUTOPHAGY AND UNFOLDED PROTEIN

RESPONSE

APOPTOSIS AND CEREBELLUM DEVELOPMENT

Programmed cell death (apoptosis) is a vital process present

in different cell types, including neurons (summarized in

Figure 3). The function of apoptosis in the developing nervous

system seems to be the elimination of surplus neurons and

establishment of correct synaptic connections (Catsicas et al.,

1987; Oppenheim, 1991). Review articles make the extraordinary

claim that approximately half of many types of neurons are

eliminated (Johnson and Deckwerth, 1993; Raff et al., 1993).

However, the primary data for cell death during mammalian

cerebellar development have not been critically examined in

detail.
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FIGURE 2 | Development of cerebellum and corticogenesis. (A–B) Dorsal

and lateral aspect of the mouse embryo at embryonic day E10-E11, showing

outline of cerebellar primordium (indicated by arrows) and mesencephalon

(midbrain) (m). (C) Schematic illustration of the developing cerebellum at

about E11 indicates ventricular germinal zone (green) and genes are involved

in neurogenesis of GABAergic neurons such as Purkinje cells. Rhombic lip is

germinal zone that under control of genes such as Wls, Bmp, math1, pax6,

and Lmx1a generate almost all glutamatergic neurons in cerebellum.

Rhombic lip derived produce cerebellar nuclei neurons (red), and external

germinal zones precursors (orange). An arrow from mesencephalon (m)

indicates a germinal zone for group of cells derived from mesencephalon to

the cerebellar primordium. (D) A section of cerebellum at around P4 indicate

external germinal zone (EGZ) that after proliferation migrate through the

Purkinje cells to the granular layer that is location of granule cells.

Abbreviation; Iso: isthmic organizer, m: mesencephalon, EGZ: external

germinal zone, ML: molecular layer, PCL: Purkinje cell layer, GL: granular layer,

WM: white matter, 4thV: fourth ventricle, r: rostral, c: caudal, d: dorsal,

v: ventral.

The earliest descriptions of cell death in the developing cere-

bellum were based on morphologic features, typically nuclear

pyknosis and fragmentation. In normal rats aged 1, 6, 12, and

21 days the mitotic index in the EGZ decreased from 2.7%

to 0.7% and the pyknotic index ranged from 0.30 to 0.58%;

the estimated total cell degeneration was 2.6% (Lewis, 1975).

The ratio of dead cells to mitoses peaks at ∼1% on day 10

in rats (Deo et al., 1979).The volume of the granular layer

in rats peaks at ∼25 days in rats, around the same time the

EGZ disappears, and then diminishes by ∼20%, reaching adult

volume by ∼50 days (Heinsen, 1977). Heinsen reported rare

pyknotic cells but no phagocytosis and concluded that granular

layer reduction was “mainly due to a decrease in the diameter

of the granule cells and, to a lesser degree, perhaps to a distinct

cell loss of these interneurons” (Heinsen, 1978). The pyknotic

index in normal rat granular layer is <0.1% at 10, 14, and

21 days with dying cells most prevalent near the white matter

at 10 days and near the Purkinje layer at 21 days (Rabié et al.,

1977). Administration of 3H-thymidine to 9-day-old rats and

subsequent analysis of mitotic activity and morphologic features

of cell death led to the conclusion that the “decision to die”

was made during the S phase of cell cycle and that a dead cell

would be cleared in ∼10 h (Deo et al., 1979). Administration

of 14C-thymidine to 7, 12, and 16-day-old rats and subsequent

analysis of tagged DNA 6 h or 5–9 days after administration

showed no significant loss of DNA from the cerebellum at any

of the ages. The authors concluded, “cell death, if it occurs at all,

is probably less than 5% of total cells produced” (Griffin et al.,

1978).

Caddy and Biscoe performed detailed neuron counts in

mouse cerebellum and showed that the quantity of Purkinje cells

increased from postnatal day 4 to 17 after which there was “no

appreciable loss”. As was reported in rat, granule cells peaked

at 17 days and then declined by ∼20% by 26 days. Although

they observed no morphologic signs of degeneration the authors

did speculate on the role of programmed cell death (Caddy and

Biscoe, 1979). It must be noted, however, that their data are

based upon a single mouse at each time point (i.e., 6 total from

10 to 26 days) and therefore the result might not be reliable. In

mouse cerebellum from 0 to 8 postnatal days the proportion of

pyknotic (presumed dead or dying cells) was always <0.5%; most

were located in the deep EGZ adjacent the molecular layer and

it was estimated that they were eliminated in 4–7 h (Smeyne and

Goldowitz, 1989).
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FIGURE 3 | Schematic Representation of Apoptosis. In general

apoptosis divides into extrinsic and intrinsic pathway. Death receptors

(like FAS) are involved in extrinsic pathway, which later can activate

caspase-8. Caspase-8 activates caspase-3 in two separate ways (direct

activation or activation via caspase-9). Stress signals and DNA damage

triggers intrinsic apoptosis pathway via mitochondria. Intrinsic apoptosis

(mitochondrial apoptosis) is divided to caspase-dependent or

caspase-independent pathways.

More recently, “specific” markers of apoptotic cells have

typically been used to study cell death. Wood and cowork-

ers claimed that detection of T7 DNA polymerase was a valid

marker of apoptosis-associated DNA fragmentation. In mouse

cerebellum examined from postnatal day 5 to 30 they reported

labeling in “scattered” EGZ cells at day 5, dense labeling at

day 7, reduced labeling at day 9, and negligible labeling at day

21 (Wood et al., 1993). However, inspection of their images

shows considerable background making unambiguous identi-

fication difficult. Furthermore, the detection method has not

been used widely and therefore must be considered of limited

value.

Using the TUNEL method, many investigators have confirmed

the presence of dying cells in the immature mouse cerebellum, but

there is a wide range in the reported quantities and considerable

variability in the reporting methods. Earlier studies tended to

report relative values per unit area rather than as proportions of

total cells. In C57BL mice at 9 days only few cells (<10 per 2 mm

length of EGZ and <5 per 2 mm of granular layer) were TUNEL

labeled (Wullner et al., 1995). A more recent study reported

∼55000 TUNEL positive cells per mm3 of EGZ in 9 day mouse

cerebellum (Kubera et al., 2012). Where TUNEL positive cells

in the mouse cerebellum have been counted, the proportion

is typically low; e.g., <0.5% at 10 days in the EGZ (McNamee

et al., 2002). In 3-day-old mice, only rare Purkinje neurons

are immunoreactive for activated (cleaved) caspase 3 (and

presumably undergoing apoptosis); these tend to be surrounded

by microglia (Marín-Teva et al., 2004). Only rare cells in the

day 7 mouse EGZ are positive for activated caspase 3 (Cabrera

et al., 2014). In a clearly quantified study of activated caspase 3

immunoreactivity in mouse cerebellum from birth to 70 days,

Cheng et al. reported peak labeling of 5.9% in the EGZ at 8 days,

5.9% in the Purkinje layer at 3 days, and 2.4% in the granular

layer at 9 days (Cheng et al., 2011). In the granular layer of 7 days

mice, activated caspase 3 counts are approximately double the

TUNEL counts (Taranukhin et al., 2010). One group has reported

that cleaved caspase 3 might have non-apoptotic functions in

developing rat Bergmann glia; therefore without colocalization
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studies, reported values of caspase 3 might overestimate the

number of apoptotic cells (Oomman et al., 2005; Finckbone

et al., 2009). The same group reported that cleaved caspase 3

immunoreactivity in the EGZ of day 8–17 rat cerebellum has no

association with TUNEL (Oomman et al., 2004), however the

nearly ubiquitous labeling seems potentially artifactual despite

the authors’ extensive controls.

Tanaka and Marunouchi studied rat cerebellum from 3 to

15 postnatal days and observed the greatest number of TUNEL

positive EGZ cells at 9 days. Double label studies led them to

conclude that most dying cells were in the proliferative phase

rather than post mitotic (Tanaka and Marunouchi, 1998). In

3-day rat cerebellum, TUNEL positive cells were most abun-

dant in the granular layer (∼4 cells/mm2 tissue area) and

were much less frequent than mitotic cells that had incorpo-

rated bromodeoxyuridine (∼1200 cells/mm2 tissue area) (Vidovic

et al., 2008). Krueger et al. reported in rats that at day 7

almost half the cells in white matter are TUNEL positive

and most appear to be astrocytes. Despite their claim to do

a similar study on granule cells, those data do not appear

to have been published (Krueger et al., 1995). Quantitation

of TUNEL in rat cerebella showed <1% of cells at 14 and

21 days and no labeling at 28 days, although the authors did

not specify the anatomical localization of the positive cells

(Wang et al., 2012b). Another group reported ∼1% of granular

layer cells to be TUNEL positive in 16 day rats (Sinha et al.,

2009).

Lossi and coworkers (Lossi et al., 2002a,b; Lossi and Merighi,

2003) studied cell death in the rabbit cerebellum at day

5 postnatal, when EGZ proliferation is maximal, using a vari-

ety of markers. TUNEL labeling was not counted, but one

of their images (Figure 1E; Lossi et al., 2002b) shows an

estimated 5% cells positive, especially in the outer prolifera-

tive region of the EGZ. Apoptotic cells are less abundant in

the granular layer, peaking at day 10. Most cells appear to

die within 12–24 h after proliferation and are subsequently

engulfed by microglia. Cleaved caspase 3, 7, and 9 immunos-

taining is almost exclusively restricted to the granular layer

while the substrate of activated caspase 3, poly-ADP-ribose

polymerase-1 (PARP-1), is mainly identified in the EGZ (Lossi,

2004).

In summary, the data from human (considered in an ear-

lier section) and animals (especially rodents) indicate that cell

death occurs in the developing cerebellum to a limited extent,

particularly in the EGZ among recently postmitotic cells and

to a lesser extent in the granular layer. The reported extent to

which this occurs varies widely, but overall it seems reason-

able to estimate that a maximum 5% of granule cells and a

smaller proportion of Purkinje cells are lost, although it must

be noted that studies in the very early developmental stages

are lacking. Even the so-called “specific” methods of TUNEL

and activated caspase 3 detection have limitations and must be

interpreted cautiously. Nevertheless, the fact is that some of the

cells do die and therefore the molecular mechanisms are worth

considering.

Many in vitro models have been used. Cerebellar granule

cells undergo apoptosis when they are deprived of extracellular

potassium (D’Mello et al., 1993). Transforming growth factor

(TGF-β) β1, -β2, and -β3 accelerate apoptosis of these neu-

rons when maintained in low physiological potassium medium

as assessed the quantitative DNA fragmentation, viability, and

nuclear morphology (de Luca et al., 1996). A P53-independent

apoptotic pathway has been proposed for loss of cerebellar gran-

ule cells during development. Neuronal precursors still undergo

apoptosis in the cerebellum of transgenic mice that lack functional

p53 (Wood and Youle, 1995).

AUTOPHAGY AND CEREBELLUM DEVELOPMENT

Autophagy is a self-degradative lysosomal process used for

degrading and recycling various cellular constituents (summa-

rized in Figure 4; Klionsky, 2005; Massey et al., 2006; Yang

and Klionsky, 2010). During development cells undergo phases

of both quiescence and enhanced metabolism; therefore, they

require the ability to change their protein content to rapidly

adapt to adverse conditions. Autophagy could help renovate

cells or modify their morphology (Cecconi and Levine, 2008).

The complex ontogenesis and development of nervous system is

especially sensitive to dysregulation of autophagy. An example

is shown by the ULK1−/− (UNC-51-like kinase 1) mice phe-

notype. The deficiency in ULK1, an autophagic protein being

involved in autophagosome initiation, causes abnormal growth

cone and axon formation in the cerebellar granule neurons

(Tomoda et al., 1999). The regulation of autophagy by ULK1 in

the neurodevelopment remains to be understood (Di Bartolomeo

et al., 2010). Atg7 (autophagy related 7) deficiency in mice is

associated with severe neuronal loss from the cerebellar cortices

(Komatsu et al., 2006). Genetic ablation of Atg7 causes dystrophy

of Purkinje cell axon terminals in the deep cerebellar nuclei

(DCN). Selective ablation of Atg5 or Atg7 genes in neurons

leads to behavioral deficits associated with neuronal loss in the

cerebellar cortices (Komatsu et al., 2006, 2007a,b). Axon terminal

degeneration is observed when Atg7 is inactivated in the sub-

population of Purkinje cells (Komatsu et al., 2007b). Together

with the ULK1-inactivation phenotype, the axon terminals seem

to be very susceptible to autophagy impairment. The Apaf1 is

a gene involved in the formation of apoptosome. When it is

down regulated in vivo, cells of the cerebellar cortex undergo

the autophagy (Moreno et al., 2006). These experiments suggest

that autophagy is constitutively active and is a mandatory pro-

cess for the survival and development of cerebellar cells (Rami,

2009).

UNFOLDED PROTEIN RESPONSE (UPR) AND CEREBELLAR

DEVELOPMENT

The endoplasmic reticulum (ER) is responsible for the synthesis

and folding of proteins entering the secretary pathway (summa-

rized in Figure 5). Many post-translational modifications that

ensure protein function occur in this organelle (Denzel et al.,

2002; Luo et al., 2006). A variety of physiological perturba-

tions can interfere with processes of protein folding in the ER

lumen, leading to the unfolded or misfolded protein accumu-

lation, which is called “ER stress.” This stress triggers and acti-

vates an adaptive reaction, termed UPR, through which protein

folding capacity increases and unfolded protein load decreases
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FIGURE 4 | Schematic Representation of Autophagy Pathway. Autophagy

is recognized as a major tool to degrade damaged organelles and misfolded

proteins via lysosomal pathway. Autophagy is an active flux which includes

five different steps; introduction or initiation, phagosome nucleation,

phagosome expansion and completion, phagosome and lysosme fusion

(autophagolysosome formation), and finally degradation. It is a tightly

regulated mechanism and several ATG molecules are included in its

regulation.

(Ni and Lee, 2007). These pathways of protein quality control

are crucial for Purkinje cell survival (Zhao et al., 2005; Hara

et al., 2006; Lee et al., 2006), and are related to the Marinesco-

Sjögren Syndrome in humans (Anttonen et al., 2005; Senderek

et al., 2005). A few studies directly support the role of UPR

in the developing process of cerebellum. ORP150 is an ER

protein that is upregulated in Purkinje cells during cerebellar

development. Overexpression of ORP150 protein in Purkinje

cells reduces the vulnerability of these cells to hypoxic and

excitotoxic stress and increases their survival during cerebellar

development (Kitao et al., 2004). BAP (SIL1) gene is another

regulator of UPR, acting as a co-chaperone. Defects in BAP

may result in Purkinje cell degeneration and ataxia (Anttonen

et al., 2005; Senderek et al., 2005; Zhao et al., 2005, 2010). It is

noteworthy that the cerebellum is particularly sensitive to BAP

function loss and this could be explained by the observation

that in the unaffected cerebellar lobules other co-chaperones

can compensate for BAP function. Genetic manipulation of the

GRP78 chaperone indicates that it too is very important for

cerebellum development. Knock-in mice with a mutant secreted

form of GRP78 show disordered layer formation in the cere-

bral cortex and cerebellum (Impagnatiello et al., 1998). It can

be concluded that UPR potentially affects the development of

cerebellum; however, there is still much room for elucidation of

its role(s).

EPIGENETIC MECHANISMS AND CEREBELLAR GENE

EXPRESSION

EPIGENETIC MECHANISMS

Epigenetics refer to cellular mechanisms that control gene

expression without directly altering the underlying genomic

sequence (Liyanage et al., 2012). Epigenetic mechanisms include

DNA methylation, the activity of non-coding small RNA

molecules such as microRNAs (miRNAs) and long non-coding

RNAs, in addition to histone post-translational modifications

(Delcuve et al., 2009). Epigenetic mechanisms are continuous,

dynamic and in many occasions reversible processes that are

involved in development (Rastegar et al., 2004; Nolte et al.,

2006; Barber and Rastegar, 2010), regulation of developmentally

important genes (Lahuna et al., 2000; Rastegar et al., 2000a,b;

Barber et al., 2013), stem cell differentiation (Huang et al.,

2005; Kobrossy et al., 2006; Olynik and Rastegar, 2012), and

human diseases (Sandhu et al., 2012; Zachariah and Rastegar,

2012). Several neurological disorders are caused by mutations

in the genes encoding for epigenetic factors. Perhaps the most

studied neuronal disorder that is linked to epigenetic factors is

Rett Syndrome, a severe neurodevelopmental disorder caused

by MECP2 (Methyl CpG Binding Protein 2) gene mutations.

MECP2 gene encodes for a key epigenetic regulator in brain that

binds to methylated DNA (Meehan et al., 1992; Liyanage and

Rastegar, 2014) and its own expression is also controlled by DNA
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FIGURE 5 | Schematic Representation of Unfolded Protein

Response. Endoplasmic reticulum (ER) is involved in the

processing of proteins and is responsible for regulation of protein

folding. ER chaperones (PERK, IRE1, ATF6) are deactivated in

normal conditions while in stress conditions and increase of

misfolded proteins in ER, they will be activated (UPR) and

differently control protein biosynthesis, cell survival, protein

translation and cell cycle.

methylation (Liyanage et al., 2013; Olson et al., 2014). While

MeCP2 has a wide expression pattern, its highest expression is

detected in the brain and most MeCP2-associated diseases are

neurological disorders (Ezeonwuka and Rastegar, 2014). Other

examples include mutations in the ATRX gene, which encodes for

a chromatin-remodeling factor and these mutations are associated

with X-linked mental retardation syndromes (Gibbons and Higgs,

2000). Several studies have indicated that in such disorders, exoge-

nous expression of the causative gene product or its downstream

targets may lead to phenotypic rescue both in vitro and in vivo

(Giacometti et al., 2007; Rastegar et al., 2009; Cobb et al., 2010).

ROLE OF IMPRINTING IN CEREBELLAR DEVELOPMENT

Genomic imprinting is an epigenetically regulated cellular

mechanism by which expression of specific genes are regulated in

a parent-of-origin manner. Two such genes, H19 and insulin-like

growth factor 2 (Igf2), are imprinted in a reciprocal manner by

methylation of specific alleles within the Igf2/H19 imprinting

control region (ICR). The Igf2/H19 ICR contains four CTCF

binding sites, which are methylation sensitive and capable

of regulating the interaction between the promoter of Igf2

and enhancers located downstream of the H19 gene (Pidsley

et al., 2012b). In both humans and mouse, DNA methylation of

Igf2/H19 ICR correlates with the weight of the cerebellum (Pidsley

et al., 2012a,b). Moreover, in humans, alleles inherited maternally

are associated with an increase in the weight of the cerebellum as

compared to paternally inherited alleles (Pidsley et al., 2012a).

DNA METHYLATION AND CEREBELLUM

DNA methylation is an epigenetic modification that involves

a covalent addition of a methyl group to cytosine residues

(5 methylcytosine; 5mC), mostly in the context of CpG

dinucleotides (Liyanage et al., 2014). DNA methylation can

regulate gene expression directly, by inhibiting the binding of

specific transcription factors, or indirectly by the recruitment of

factors that bind to methylated DNA, such as MeCP2. Another

epigenetic modification that has recently attracted much attention

is DNA hydroxymethylation (5hmC) (Liyanage et al., 2014).

DNA methylation profiling across various brain regions have

indicated that cerebellar genes are hypomethylated in com-

parison to prefrontal, occipital, and temporal regions of the

cortex. Consequently, genes within the cerebellum show higher

expression levels as compared to the cerebral cortex (Xin et al.,

2010). Within the cerebellar granule cells, 5hmC levels have been

shown to increase between P7 to adult in mice. As compared to

the hippocampus, cerebellum also showed a significant increase

in 5hmC levels from 6 weeks to one year, suggesting brain

region specific age-related alterations in 5hmC levels (Szulwach

et al., 2011). In both mouse and human cerebellum, 5hmC-

enriched loci were mostly intragenic, with greater enrichment

being evident on exons than introns. Enrichment of 5hmC

levels were also observed in short interspersed class elements.

However, in contrast to mouse cerebellum, there was a lack of

significant enrichment on long terminal repeats (Szulwach et al.,

2011).
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Changes in cerebellar hydroxymethylation have been associ-

ated with specific disorders. One of the first neuronal disorders

to be associated with cerebellar hydroxymethylation was Rett

Syndrome, caused by mutations in the X-linked MECP2 (Amir

et al., 1999; Liyanage and Rastegar, 2014). Alternative splicing of

MEPC2/Mecp2 leads to the formation of two isoforms, MeCP2E1

and MeCP2E2 (Kriaucionis and Bird, 2004; Mnatzakanian et al.,

2004; Zachariah et al., 2012; Olson et al., 2014; Yasui et al.,

2014). Comparative studies on the expression of the two iso-

forms have revealed differential expression patterns in various

brain regions, with MeCP2E2 showing selective enrichment in

the cerebellum and olfactory bulb (Zachariah et al., 2012; Olson

et al., 2014). Szulwach et al. demonstrated that cerebellar 5hmC

levels exhibit negative correlation with Mecp2 dosage in mouse

models of Rett Syndrome and MECP2 duplication (Szulwach

et al., 2011).

Altered cerebellar 5hmC levels have been associated with frag-

ile X syndrome, a monogenic autism spectrum disorder. Fragile

X syndrome is caused by mutations leading to the expansion

of a CGG repeat within the 5′ untranslated region of fragile X

mental retardation gene 1 (FMR1) (Darnell and Klann, 2013).

The resulting expansion leads to DNA methylation-mediated

transcriptional silencing of Fragile X mental retardation protein

(FMRP). A comparison of 5hmC levels in FMRP targets within

cerebellum revealed an enrichment of 5hmC in FMRP targets.

FMRP targets also showed strong association with both stable

and dynamic hydroxymethylated DNA, suggesting a critical role

of 5hmC in FMRP function (Wang et al., 2012a).

Another disorder associated with the FMR1 gene is Fragile

X-associated tremor/ataxia syndrome (FXTAS), a neurodegener-

ative disorder associated with expansion of multiple CGG repeats

(premutations) located within the gene (Hagerman et al., 2001).

FXTAS leads to Bergmann gliosis, Purkinje cell death and cerebel-

lar degeneration (Greco et al., 2006). Yao et al. observed a global

reduction of 5hmC in the cerebellum of a mouse model of FXTAS.

Analysis of the alteration in 5hmC distribution within the same

mouse model revealed that the reduction of 5hmC was within

the gene body. However, increased 5hmC levels were observed

in several repetitive classes, including simple repeats, long termi-

nal repeats and short interspersed nuclear elements (Yao et al.,

2014). These studies indicate the significance of DNA methy-

lation, 5hmC levels, and epigenetic modifications for cerebellar

development and function that warrant further investigation for

the role of 5mC and 5hmC in other cerebellar disorders.

ROLE OF miRNAs IN CEREBELLAR DEVELOPMENT

miRNAs are small non-coding regulatory RNAs that are found

ubiquitously in animal cells. miRNAs are usually encoded in

the introns of coding regions or within intergenic regions. One

single miRNA may have numerous target genes, and therefore

can be very potent gene regulatory mechanisms. The functions

of miRNAs have been mostly correlated to the negative regulation

of gene expression (Carthew and Sontheimer, 2009; Eulalio et al.,

2012). miRNAs are known to regulate several transcription factors

that are critical for normal brain developmental and function

and altered expression of miRNAs have been linked to several

neuronal disorders (Follert et al., 2014; Sun and Shi, 2014).

Several groups have reported enrichment of specific miRNAs

within the cerebellum. For instance, Olsen et al. reported miR-

206 and miR-497 being expressed at significantly higher levels

in the adult cerebellum compared to other brain regions in rats.

The same group reported that miR-221 family members (miR-

221 and miR-222) are selectively reduced compared to other brain

regions such as amygdala and hippocampus (Olsen et al., 2009).

In mice, on the other hand, Bak et al. reported that miR-195,

miR-497, and miR-30b are enriched in the mouse cerebellum (Bak

et al., 2008) whereas Hohjoh and Fukushima reported cerebellar

enrichment of miR-16, -miR-34a, in addition to miR-195 (Hohjoh

and Fukushima, 2007).

The critical role of miRNAs in cerebellar development was

elegantly demonstrated by Schaefer et al., who reported that cell-

specific ablation of Dicer, an endonuclease necessary for miRNA

generation, results in cerebellar Purkinje cell death as well as

degeneration of the cerebellum (Schaefer et al., 2007). Pheno-

typically, ablation of Dicer specifically in Purkinje cells leads to

an ataxic gait, indicative of cerebellar dysfunction. In 2011, Tao

et al. demonstrated that deletion of Dicer in astroglia leads to

widespread granule cell apoptosis and degeneration of Purkinje

cell dendrites at a late postnatal stage (P55–P65) (Tao et al.,

2011). The same study reported that deletion of Dicer altered the

cerebellar astrocytic transcriptome at a pre-symptomatic stage,

causing selective downregulation of genes associated with mature

astrocyte functions, with the inverse effect on genes related to

immature/reactive astrocyte genes. Another group also reported

that deletion of Dicer1 disrupts the phenotype of Bergmann glia

within the cerebellum and decreases the expression of its markers

(Kuang et al., 2012). These studies suggest that optimal miRNA

generation by both astrocytes and neurons are necessary for

proper cerebellar function and development.

CEREBELLUM INVOLVEMENT IN AUTISM AND THE ASSOCIATED

EPIGENETIC CONTROL

Abnormalities in the cerebellum have been reported in more

than 95% of post mortem examinations of autistic individuals

(Delong, 2005). A reduction in the number of Purkinje neurons

is the most widely reported neuropathology, along with cerebellar

hypoplasia, (Courchesne et al., 1988; Courchesne, 1997; Palmen

et al., 2004; DiCicco-Bloom et al., 2006). Stereological analysis of

Purkinje cells in the cerebellum of 14 autistic individuals age 4 to

60 years showed a 25% reduction in number and a 24% reduction

in density compared to controls (Wegiel et al., 2014). In vivo

studies by MRI in autistic children have also shown a reduction

in the cerebellar vermal volume (Webb et al., 2009). Decreased

cerebellar volume has been reported in Asperger’s syndrome and

Rett syndrome, two disorders sharing many overlapping pheno-

types with classical autism (Oldfors et al., 1990; Murakami et al.,

1992; Hallahan et al., 2009).

At the molecular level, several genes with known roles in

cerebellar development are associated with autism. Examples of

such genes include engrailed 2 (EN2) and mesenchymal-epithelial

transition (MET) receptor tyrosine kinase (Fatemi et al., 2012;

Rogers et al., 2013). In animal models, altered expression of En2

and Met has been associated with reduction in the cerebellar

volume and cerebellar hypoplasia (Ieraci et al., 2002; Kuemerle
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Table 2 | Mutant and transgenic mice with cerebellar abnormalities and relevant human disease.

Mouse model/ Function Developmental Relevant References

gene defect human disease

Staggerer /RORα Retinoid-related

orphan receptor α

Small cerebellum, Purkinje and

granule cells

degeneration

NA Boukhtouche et al. (2006),

Gold et al. (2007), Sajan et al.

(2010)

Lurcher/Grid2 Delta 2 ionotropic

glutamate receptor

Degeneration of Purkinje,

granule cells

NA Zuo et al. (1997), Armstrong

et al. (2011)

Leaner/Cacna1a Voltage-dependent

calcium channels

Purkinje and granule cell death NA Herrup and Wilczynski (1982)

Weaver/Girk2 Potassium inwardly

rectifying channel

Purkinje and granule cell death NA Patil et al. (1995)

Reeler/Reln Main factor of

neuronal migration

Small cerebellum with no foliation

and ectopic clusters of Purkinje cells

Lissencephaly Miyata et al. (2010)

Scrambler/Dab1 Main regulator of reelin

signaling pathway

Small cerebellum with no foliation

and ectopic clusters of Purkinje cells

NA Goldowitz et al. (1997)

Dreher/Lmx1a LIM homeobox

transcription factor 1, alpha

Posterior cerebellar defect/ mainly

vermis hypoplasia

Dandy walker

syndrome (Possible)

Chizhikov et al. (2006b)

Nax/Acp2 Lysosomal acid

phosphatase 2

Neurocutaneous disorder/small

cerebellum, severe anterior

cerebellar disorder with an absent

or hypoplastic vermis

GLHS (Possible) Mannan et al. (2004), Bailey

et al. (2014)

Cerebelless/ptf1a Pancreas transcription factor

1, alpha

Lacks the cerebellar cortex Cerebellar agenesis Hoshino (2006a)

Cux1 Transcription factor Granule cell precursors

proliferation

Medulloblastoma Topka et al. (2014)

SEPSECS Selenoproteins;

selenium transferase

Uncoordinated movements, cere-

bellar hypoplasia,

Purkinje cell death and decreased

granule cell proliferation.

Progressive

cerebello-cortical

atrophy (PCCA)

Wirth et al. (2014)

CXCR4 C-X-C chemokine receptor

type 4

Purkinje cell dendritogenesis and

axonal projection

NA Huang et al. (2014)

CHD7 Chromodomain-helicase-

DNA-binding protein 7

Alteration of Otx2, Gbx2 and fgf8

and cerebellar vermis development

CHARGE syndrome Yu et al. (2013), Basson

(2014)

CACNA1A Voltage-gated calcium

channel subunit α1A

Ataxia and cerebellar atrophy in

transgenic mice

Spinocerebellar

ataxia type 6 (SCA6)

Du et al. (2013)

CARP VIII/ Carbonic anhydrase-related

protein VIII

Ataxia Mental retardation

and ataxia

Aspatwar et al. (2013)

CHMP1A Chromatin modifying

protein 1A

Pontocerebellar hypoplasia Pontocerebellar

hypoplasia

Mochida et al. (2012)

PDSS2 Decaprenyl-diphosphate

synthase subunit 2;

ubiquinone biosynthesis

Cerebellum hypoplasia by impairing

cell migration and eliciting ectopic

apoptosis

Ubiquinone

deficiency in humans

Lu et al. (2012)

Fgf17 Fibroblast growth factors Cerebellar vermis

abnormalities

Dandy-Walker malfor-

mation

Zanni et al. (2011)

ZIC1; ZIC4 Transcription factors; zinc

fingers in cerebellum

Cerebellar size and foliation Dandy-Walker malfor-

mation

Blank et al. (2011)

et al., 2007; Provenzano et al., 2014). EN2 expression is known

to be epigenetically regulated by multiple mechanisms including

DNA hydroxymethylation (James et al., 2014) and miRNAs

(Guibinga et al., 2012). A recent study on cerebellum samples

from autistic patients indicated that increased 5hmC levels on

EN2 promoter correlated with its increased expression. This study

also reported a global increase in 5mC and 5hmC levels in the

cerebellum of autistic patients (James et al., 2014). Furthermore

MeCP2, a well-characterized epigenetic regulator, controls the

allele-specific expression of MET (Plummer et al., 2013). These

studies highlight the complex mechanisms by which epigenetic

regulatory networks contribute to autistic phenotypes.

MOUSE MODELS OF CEREBELLUM MALDEVELOPMENT

Given the complexity of the human brain and the many genes

that function during neural development, it is not surpris-

ing that we currently have a limited understanding of the

mechanisms of brain diseases. Spontaneous mutations along

with engineered gene knockouts and transgenic mice provided

important models to study cerebellum. During the last several
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decades, mutant mice have significantly improved our knowl-

edge of cerebellar development, cytoarchitecture, function, and

disease. The selenoproteins are important in postmitotic neu-

rons of the developing cerebellum, and mutations in these genes

cause cerebellar hypoplasia as occurring in neurodevelopmental

syndrome called progressive cerebello-cortical atrophy (PCCA;

Wirth et al., 2014). SDF-1/CXCR4 signaling plays an impor-

tant role in neuronal cell migration and brain development.

Mutation in Cxcr4 gene causes neurodevelopmental disorder

of granule cells and Purkinje cells that leads to the motor

defects in null mice (Huang et al., 2014). Animal models for

autism spectrum disorder and schizophrenia that selectively tar-

get the cerebellum has been recently reviewed (Shevelkin et al.,

2014).

Mutant mice are useful models for rescue experiments that

might lead to significant future applications of gene therapy (Mar-

molino and Manto, 2010; Sajan et al., 2010). Spontaneous mutant

and recent transgenic mouse models whose main characteristics

are cerebellar defects are summarized in Table 2.

Medulloblastoma, a tumor typically involving the cerebellum,

is the most common high-grade brain tumor in childhood. Four

morphologic subtypes correspond to different genetic signatures.

A detailed review is beyond the scope of this manuscript, but

it is worthwhile mentioning the postulated cell populations of

origin for these tumors: Wnt subtype might arise from the lower

rhombic lip progenitors, SHH subtype from the precursor cells of

the EGZ, group 3 subtype from prominin1 expressing neural stem

cells or EGZ, and group 4 subtype from an unknown population

of stem or progenitor cells. Readers are referred to recent compre-

hensive reviews for more details (Manoranjan et al., 2013; Gajjar

and Robinson, 2014; Wang and Wechsler-Reya, 2014).

SUMMARY

Anatomically, the cerebellum development begins at around E8

to E9 and cerebellar germinal zones are established during E9

to E13–14 in mice and the late embryonic period in humans

The germinal zone can be categorized in four groups: internal

germinal zone (VZ), EGZ, caudomedial germinal zone (rhombic

lip) and RGZ (mesencephalon). VZ is the source of Purkinje cells

as well as all GABAergic interneurons in addition to a subset

of non-neuronal cells. The EGZ is the source of all granular

cells and some interneurons (such as Golgi) and non-neuronal

cells. Granular cell are generated in the postnatal period of both

humans and rodents. Many genes and signaling pathways are

involved in the development, cell fate commitment, and migra-

tion of these cells in the cerebellum. Cell death occurs among

a limited number of EGZ and granular cells. Recent studies

have shown a critical role for epigenetic factors in cerebellum

development. This includes DNA methylation and specific miR-

NAs in controlling various neural processes. The necessity of

miRNAs for the survival of cerebellar neurons underscores its

importance in cerebellar development. Furthermore, the vari-

ous forms of DNA methylation are being recognized for their

multifaceted role in regulating the precise expression levels of

transcription factors essential for normal cerebellar function.

The significance of these regulatory mechanisms has been fur-

ther elucidated by studies that have linked several neurological

disorders to alterations in epigenetic control of cerebellar gene

expression.
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