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C
oronaviruses are positive-strand RNA viruses belong-
ing to the subfamily Orthocoronavirinae within the family 
Coronaviridae (International Committee on Taxonomy of 

Viruses) and are subdivided into four genera—Alphacoronavi-
rus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. 
Coronaviruses cause intestinal and respiratory infections in a variety 
of birds and mammals, including livestock and domestic animals.

Seven human coronaviruses (HCoVs) have been character-
ized, four of which cause mild respiratory infections (HCoV-229E, 
HCoV-NL63, HCoV-OC43 and HCoV-HKU1). The emergence 
of two highly pathogenic betacoronaviruses in 2002 (severe acute 
respiratory syndrome coronavirus (SARS-CoV)) and 2012 (Middle 
East respiratory syndrome coronavirus (MERS-CoV)) revealed that 
new pathogenic coronaviruses can emerge in the human popula-
tion by zoonotic transmission (reviewed in ref. 1). In late 2019, a 
pathogenic coronavirus SARS-CoV-2 was first detected in Wuhan, 
China, causing an outbreak of severe pneumonia. This human 
pathogen is thought to have originated in horseshoe bats and was 
probably transmitted to humans through an intermediate host that 
remains to be identified2. Owing to its high contagiousness and the 
occurrence of asymptomatic carriers, SARS-CoV-2 rapidly spread 
across the globe and continues to claim human lives and obstruct 
social and economic activity, while vaccination programs are ongo-
ing. The pandemic has prompted countless efforts to develop vac-
cines and antiviral therapies, but also many fundamental studies 
to better understand coronavirus biology. As cellular proviral host 
factors are potential antiviral drug targets, numerous studies have 
analysed host factor dependencies of coronaviruses, in particular 
SARS-CoV-2.

In this Review, we provide an overview of proviral host factors 
for SARS-CoV-2. After explaining the coronavirus life cycle, we 
discuss the cellular receptors and proteases that are required for 
SARS-CoV-2 entry. As only few of the identified proviral host fac-
tors have been assigned to specific post-entry stages of the life-cycle, 
these stages are not discussed separately. Instead, we summarize the 
wealth of information on proviral SARS-CoV-2 host factors that 
has been produced by genome-wide functional genetic screens and 
interactome analyses and discuss their roles in cellular processes. 

Finally, we highlight host factors that may serve as targets for antivi-
ral therapies against COVID-19.

The coronavirus life cycle
The SARS-CoV-2 virion is an enveloped and pleomorphic particle 
with a diameter of around 60–100 nm (ref. 3). The helical nucleo-
capsid contains the ~30 kb single-stranded RNA genome packaged 
by the nucleocapsid (N) protein4. It is surrounded by the viral enve-
lope, which contains the spike (S), membrane (M) and envelope (E) 
proteins. Coronavirus entry into cells is mediated by S, a homotri-
meric class-I fusion protein (reviewed in ref. 5). The dual role of S 
is to bind to cellular receptors on target cells and to fuse viral and 
cellular membranes, triggered by proteolytic cleavage of S by host 
proteases. Coronaviruses enter cells either through endocytic path-
ways or by directly fusing with the plasma membrane, depending 
on the availability of cellular proteases (reviewed in refs. 6,7) (Fig. 1). 
After fusion, the nucleocapsid is released into the cytoplasm, after 
which the genomic RNA uncoats by dissociation from N and is sub-
sequently translated.

Coronaviruses have capped and polyadenylated genomes that 
contain multiple open reading frames (ORFs), flanked by 5′ and 3′ 
untranslated regions. The SARS-CoV-2 genome contains at least 
11 ORFs8, encoding 16 non-structural proteins (nsp1–16), 4 struc-
tural proteins (S, E, M and N) and a set of putative accessory pro-
teins (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8 and ORF9b)9. 
Although coronavirus accessory proteins are non-essential for rep-
lication in vitro, these proteins are believed to be required for viru-
lence in vivo (reviewed in ref. 10). Viral gene expression starts with 
the translation of orf1a and orf1b directly from the positive-strand 
RNA genome pp1a is encoded by ORF1a, whereas pp1ab is formed 
by continuous translation of ORF1a and ORF1b through a pro-
grammed −1 ribosomal frameshift (regulated by host proteins such 
as SHFL), which determines the stoichiometry between pp1a and 
pp1ab. These polyproteins are processed by viral proteases that are 
located within nsp3 (PLpro) and nsp5 (Mpro or 3CLpro), yielding the 16 
replication proteins nsp1–16 (ref. 11). nsp1 shuts down host transla-
tion and promotes host mRNA degradation, whereas nsp2–16 estab-
lish the viral replication–transcription complex (RTC). nsp2–11 
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Fig. 1 | Key proviral host factors in the SARS-CoV-2 replication cycle. After SARS-CoV-2 particles attach to the target cell by interacting with receptor(s), 

cleavage of the S protein by cell-surface proteases (such as TMPRSS2) is thought to trigger fusion with the plasma membrane. Alternatively, SARS-CoV-2 

can enter cells through endocytosis, after which fusion is induced by low pH and S cleavage by endosomal/lysosomal proteases (cathepsins). The N 

protein dissociates from the viral positive-strand (+) RNA genome, which is directly translated to form polyproteins pp1a and pp1ab. These polyproteins 

are autocatalytically processed into the non-structural proteins nsp1–16, which establish RTCs and remodel cellular membranes to form replication 

organelles. These organelles are continuous with the ER and provide an optimal environment for viral RNA replication, which mainly occurs inside 

DMVs. Genome replication starts with the synthesis of a negative-strand (−) copy that functions as a template for the synthesis of new positive-strand 

RNA genomes, which may enter more rounds of translation or are incorporated into new virions. Discontinuous transcription of the positive-strand 

genomic RNA yields subgenomic negative-strand RNAs, which function as templates for the synthesis of subgenomic positive-strand RNAs that encode 

structural and accessory proteins. Nascent viral RNAs exit DMVs through a transmembrane pore to reach sites of translation or virion assembly. Genomic 

positive-strand RNA, encapsidated by N, as well as the structural proteins S, M and E, assemble at the ERGIC, at which new virions form by budding into 

the lumen. Finally, progeny virions are released from the host cells. The yellow boxes indicate the different steps of the viral life cycle. The genes that were 

both identified as proviral SARS-CoV-2 host factors in at least two independent studies (either through pooled functional genetic screening or through 

individual genetic validation) and individually validated in at least one study (Supplementary Table 1) are shown. Genes that were individually validated in 

multiple studies and in different cell lines are highlighted in green.
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modulate the intracellular environment to favour viral replication, 
whereas nsp12–16 contain the core enzymatic functions required 
for RNA synthesis, including the RNA-dependent RNA polymerase 
(RdRp; nsp12) (reviewed in ref. 12).

RNA replication starts with the synthesis of full-length 
negative-strand copies of the viral genome. These serve as tem-
plates for the production of new positive-strand genomes, which 
are translated to form more non-structural proteins or are pack-
aged into newly formed virions. Moreover, discontinuous transcrip-
tion of the genome generates a set of negative-strand subgenomic 
RNAs, which serve as templates for the synthesis of positive-strand 
subgenomic RNAs (reviewed in ref. 13). These are translated to 
form the structural proteins and accessory proteins. RNA replica-
tion occurs in replication organelles (formed by nsp3, nsp4 and 
nsp6), which provide an optimal environment for replication and 
are thought to shield viral RNA from detection by cytosolic innate 
immune sensors14. These organelles are endoplasmic reticulum 
(ER)-derived perinuclear interconnected membrane structures 
that contain double-membrane vesicles (DMVs), in which RNA 
synthesis occurs15. Nascent viral RNA molecules escape from these 
DMVs through a transmembrane pore16 to reach sites of transla-
tion or virion assembly, which occurs at the ER–Golgi intermediate 
compartment (ERGIC)17. Here, newly synthesized viral genomes—
coated with N protein—bud into the lumen of the ERGIC to form 
enveloped particles containing M, E and S proteins. Finally, prog-
eny virions are trafficked to the cell surface for release. Although 
this process is poorly understood, a recent study showed that the 
Betacoronavirus mouse hepatitis virus (MHV) hijacks the lyso-
somal pathway for non-lytic egress of new infectious virions18. Each 
step of the viral life cycle depends on the interplay between viral 
components and cellular host factors, which is discussed below for 
SARS-CoV-2.

SARS-CoV-2 receptors
ACE2. The coronavirus S protein consists of two subunits, S1 and S2. 
S1 mediates receptor binding, usually through a receptor-binding 
domain (RBD) within S1, whereas S2 guides membrane fusion. As 
angiotensin-converting enzyme 2 (ACE2) was previously shown 
to be a crucial receptor for SARS-CoV infection in vivo19, ACE2 
was rapidly identified as a receptor for SARS-CoV-2. Structural 
studies revealed that the peptidase domain of ACE2 binds to the 
SARS-CoV-2 S RBD20,21. ACE2 was confirmed to be a functional 
receptor by showing that overexpression of human ACE2 enabled 
SARS-CoV-2 infection of poorly susceptible cell lines22,23 and 
mice24, which are naturally non-susceptible. ACE2 depletion inhib-
ited SARS-CoV-2 infection of Vero E6 (ref. 25), Huh7.5 (refs. 26,27), 
Caco-2 (ref. 28) and Calu-3 (refs. 29,30) cells. By contrast, other stud-
ies reported that SARS-CoV-2 could infect ACE2-deficient cells31, 
although this may be due to mutations in S32. ACE2 exists in a 
membrane-bound form and a soluble form, released after cleavage 
by ADAM17. A recent study suggested that soluble ACE2 can also 
promote infection by forming a complex with SARS-CoV-2 S and 
vasopressin33.

Viral tropism is partly determined by the repertoire of recep-
tors that a virus can engage. SARS-CoV-2 enters the body primar-
ily through the respiratory tract34 and is most abundantly detected 
in the airways, but also resides in the kidneys, liver, heart, brain, 
blood and intestines35,36. ACE2 expression in specific airway cells is 
increased in patients with COVID-19 (ref. 37), most likely because 
ACE2 is an interferon-stimulated gene38. Although SARS-CoV-2 
RNA was predominantly detected in airway cell types that also 
express ACE2 (refs. 37,39), a strict correlation at the single-cell level 
between ACE2 expression and SARS-CoV-2 infection has not yet 
been demonstrated. As SARS-CoV-2 infects many organs, it is pos-
sible that other receptors contribute to viral dissemination in vivo. 
Recently identified SARS-CoV-2 candidate receptors that may 

cooperate with or act as an alternative to ACE2 are discussed below 
and summarized in Table 1.

Auxiliary SARS-CoV-2 receptors. Several SARS-CoV-2 recep-
tors most likely function as cofactors that enhance entry through 
other receptors. It was shown that heparan sulfate (HS) binds to 
SARS-CoV-2 S40–42 and that HS depletion decreases SARS-CoV-2 
infection in vitro42,43. Thus, analogous to other viruses, SARS-CoV-2 
may engage HS to facilitate initial cell attachment, increasing the 
likelihood of subsequent interactions with entry receptors44. As 
many viruses bind to HS as a consequence of adaptation to in vitro 
cultured cells, future studies should establish whether HS binding is 
a natural ability of SARS-CoV-2. Scavenger receptor class B mem-
ber 1 (SRB1) is a cell-surface receptor that is involved in the uptake 
of lipids, including high-density lipoprotein (HDL). SARS-CoV-2 
S1 binds to HDL, and the addition of HDL to cells enhances 
infection45. In the presence of HDL, overexpression of SCARB1 
(which encodes SRB1) stimulated infection, whereas knockdown 
of SCARB1 reduced SARS-CoV-2 infection, suggesting that SRB1 
mediates the cellular uptake of HDL-bound virus. A unique feature 
of SARS-CoV-2 that is absent in SARS-CoV is a polybasic motif 
(RRAR) at the S1/S2 boundary, which can be cleaved by furin46, 
resulting in a C-terminally exposed RRAR peptide. Two indepen-
dent studies showed that this peptide directly binds to neuropilin-1 
(NRP1) and that NRP1 promotes SARS-CoV-2 infection47,48  
(Table 1). Although SRB1 and NRP1 may be able to independently 
support infection, the fact that these receptors enhance SARS-CoV-2 
entry in the presence of ACE2 overexpression45,47,48 suggests that 
they serve as cofactors that potentiate infection through ACE2 or 
other receptors.

Alternatives to ACE2. Several candidate receptors were shown 
to enable SARS-CoV-2 infection in the absence of ACE2. The 
cell-surface proteins tyrosine-protein kinase receptor UFO (Axl)31, 
low-density lipoprotein receptor class A domain–containing pro-
tein 3 (LDLRAD3) and C-type lectin domain family 4 member G 
(CLEC4G)49 were all shown to bind to the N-terminal domain (NTD) 
of SARS-CoV-2 S. Moreover, their depletion in cell lines reduced 
SARS-CoV-2 infection and their overexpression in ACE2-knockout 
cells promoted infection, showing that these proteins are prob-
ably alternative receptors to ACE2. Basigin (also known as CD147/
EMMPRIN), a broadly expressed protein that binds to various 
ligands, was shown to bind to the S RBD50, although another study 
did not confirm this finding51. Notably, expression of human basi-
gin enabled SARS-CoV-2 infection in mice. As SARS-CoV-2 can-
not use mouse ACE2 (ref. 23), these findings implicate basigin as an 
ACE2-independent host factor.

Other receptors. Several other candidate receptors were shown 
to bind to SARS-CoV-2 S and to facilitate SARS-CoV-2 infec-
tion when overexpressed, including asialoglycoprotein receptor 1 
(ASGPR1), Kremen protein 1 (ref. 52) and transferrin receptor53. 
The innate immune receptors CD209 (also known as DC-SIGN) 
and C-type lectin domain family 4 member M (CLEC4M; also 
known as L-SIGN or CD209L) bind to numerous viruses, includ-
ing SARS-CoV and SARS-CoV-2 (refs. 54–57). These receptors 
have been suggested to enable virus transport between target cells 
(trans-infection)58. Whether depletion of the above receptors in cells 
affects SARS-CoV-2 infection remains to be shown. Finally, several 
other SARS-CoV-2 receptor candidates were suggested on the basis 
of their direct interaction with S (Table 1).

In conclusion, several SARS-CoV-2 candidate receptors have 
been identified in addition to ACE2, although it remains to be 
established whether these receptor interactions are biologically rel-
evant or have resulted from cell-culture-induced virus mutations. 
Future studies will need to evaluate whether their expression levels 
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in SARS-CoV-2 target cells is sufficient to be relevant for infection. 
At present, none of the SARS-CoV-2 receptors identified, includ-
ing ACE2, has been validated by genetic depletion in an animal 
model. Such studies will be required to establish the relevance of 
each receptor for SARS-CoV-2 in vivo.

Proteases required for SARS-CoV-2 entry
After receptor binding, the viral envelope fuses with the host cell 
membrane, a process guided by host protease–mediated cleavage of 
S. SARS-CoV-2 has remarkable flexibility in protease requirements, 
and the local protease availability and temperature59 influence the 
viral entry route and cell tropism (reviewed in refs. 6,7). Proteolytic 
activation of S occurs in two sequential steps.

The first cleavage (priming) occurs at the S1/S2 boundary for 
some, but not all, coronaviruses, typically during S biosynthesis at 
the trans-Golgi network of infected cells. After this cleavage, the 
two subunits remain bound together by non-covalent bonds and 
are incorporated together into assembled virions. Priming generally 
facilitates receptor binding and can expose hidden cleavage sites. 
The unique polybasic motif at the S1/S2 boundary in SARS-CoV-2 
S forms a minimal furin-like cleavage site60. Indeed, it was shown 
that SARS-CoV-2 particles harbour cleaved S protein and that furin 
inhibition substantially reduces the amount of cleavage46,60,61. Furin 
is a ubiquitously expressed endoprotease that is mainly localized in 
the trans-Golgi. Thus, the polybasic furin cleavage site is believed to 
be a gain-of-function that enables systemic spread of SARS-CoV-2. 

Table 1 | overview of SARS-CoV-2 candidate receptors

Name Physiological role Evidence for its role as a SARS-CoV-2 receptor Refs.

Preprint Peer-reviewed

ACE2 Blood pressure regulation Cryo-EM/crystal structures of ACE2 bound to the S RBD 20,21

Enhanced infection after ACE2 overexpression in cells 22,23

Enhanced infection after human ACE2 expression in mice 24,136

Partial inhibition of infection after ACE2 KO in cells 26

HS Signalling, cell adhesion Direct interaction between HS and S (EM, SPR, 
pull-down, glycan array, column chromatography)

40–42

Partial inhibition of infection after enzymatic HS removal 
or KO of HS synthesis enzymes in cells

42,43

NRP1 Cardiovascular and nervous system 
development

Direct binding of NRP1 to the RRAR peptide in S (co-IP) 47

Enhanced infection after NRP1 overexpression in cells 48

Partial inhibition of infection after NRP1 KO/KD or 
treatment with NRP1-specific antibody in cells

47,48

SRB1 Lipid uptake receptor Enhanced infection of cells after SCARB1 overexpression 
and reduced infection after SCARB1 KD in the presence 
of HDL.

45

Axl Growth factor signalling Direct interaction of Axl with the S NTD (pull-down, BLI)
Enhanced infection after AXL overexpression in ACE2-KO 
cells
Partial inhibition of infection after AXL KO in cells

31

Basigin Spermatogenesis, vision, immune 
responses

Direct binding of basigin to S RBD (SPR, ELISA, co-IP, 
EM)
Enhanced infection after human BSG expression in cells 
and mice
Partial inhibition after human BSG KD in cells

50

LDLRAD3, 
TMEM30A and 
CLEC4G

Unknown, flippase, glycan binding Direct interaction with the S NTD (Co-IP)
Enhanced infection after overexpression in cells
Partial inhibition of infection after KD in cells

49

CD209 and 
CLEC4M

Cell adhesion and pathogen 
recognition

Direct interaction with S (pull-down, dot blot, SPR, EM) 54,55 56,57

Enhanced infection after overexpression in cells 54

ASGPR1 and 
Kremen protein 1

Glycoprotein homeostasis/apoptosis Direct interaction with S (co-IP)
Enhanced infection after overexpression in cells

52

Transferrin 
receptor (TfR)

Iron transport Direct interaction of TfR with S and ACE2 (ELISA, SPR)
Enhanced infection after human TF expression in mice

53

HAVcr-1 (also 
known as KIM1 
and TIM1)

Immune system regulation Direct interaction between HAVcr-1 and S RBD (co-IP, 
FRET, MST)

137 138

Inhibition of virosome uptake by anti-HAVcr-1 antibodies 
or HAVCR1 KO

137

BiP (also known 
as GRP78)

Protein folding Direct interaction of GRP78 with S (co-IP)
Partial inhibition of infection by anti-GRP78 antibodies

139

Sialic acid Signalling/adhesion Direct interaction with S protein (BLI) 140

BiP, ER chaperone BiP; BLI, biolayer interferometry; co-IP, co-immunoprecipitation; ELISA, enzyme-linked immunosorbent assay; EM, electron microscopy; FRET, Förster resonance energy transfer; HAVcr-1, 

hepatitis A virus cellular receptor 1; KD, knockdown; KO, knockout; SPR, surface plasmon resonance.
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In support of this, loss of the furin cleavage site attenuates replica-
tion in respiratory cells and reduces pathogenesis in animal models, 
but does not completely abolish infection61–64. MERS-CoV S also 
harbours a multibasic site that can be primed by furin, in contrast 
to S in the more closely related SARS-CoV, which is not primed60.

The second cleavage (activation) occurs at the S2′ site imme-
diately downstream of the fusion peptide and is crucial for infec-
tion of all coronaviruses. It induces conformational changes that 
liberate the fusion peptide, which then penetrates the host cell 
membrane, leading directly to membrane fusion. SARS-CoV-2 S 
activation at S2′ can be accomplished by transmembrane protease 
serine 2 (TMPRSS2) on the plasma membrane, but also by endo-
somal cathepsin proteases, of which cathepsin L is probably the 
most important22,65. S1/S2 priming is a prerequisite for subsequent 
TMPRSS2-mediated activation at the S2′ site, but not for S2′ activa-
tion by cathepsin L in TMPRSS2-negative cells60,62,66. These observa-
tions are consistent with the concept of early and late entry routes 
for coronaviruses. For SARS-CoV-2, priming by furin and activa-
tion by TMPRSS2 enable the more efficient early route through 
fusion at the plasma membrane. The gain of an S1/S2 multibasic 
site may explain the expanded tropism of SARS-CoV-2 to epithe-
lial cells of the aerodigestive tract, which highly express TMPRSS2  
(refs. 67,68). In cells lacking TMPRSS2, S1/S2 priming is redundant 
and SARS-CoV-2 is endocytosed, with fusion occurring late in acid-
ified endo/lysosomal compartments after activation by cathepsins66.

Other proteases, such as PC1, trypsin-like proteases and cathep-
sins, can cleave peptides mimicking the multibasic S1/S2 site of 
SARS-CoV-2 in vitro69. Moreover, studies using pseudoviruses and 

selective protease inhibitors suggest that alternative proteases can 
cleave at S1/S2 in cells66. However, the biological relevance of alter-
native proteases in the pathogenesis of SARS-CoV-2 needs to be 
determined. Finally, plasmin, which is commonly elevated in people 
with hypertension or diabetes, may cleave at the multibasic site70. 
Similarly, S2′ cleavage can be accomplished by alternative trans-
membrane serine proteases, as was demonstrated for transmem-
brane protease serine 4 (TMPRSS4) in small intestinal enterocytes67.

Functional genetic screens for SARS-CoV-2 host factors
Several independent CRISPR-based functional genetic screens have 
been carried out (Box 1) to uncover SARS-CoV-2 proviral host fac-
tors. Most were performed on a genome-wide scale25,26,29,30,43,64,71,72, 
but some of the screens probed a subset of genes derived from 
interactome analyses27,73 (Fig. 2). All of the screens were based on 
cell survival, which has the limitation that genes that are essential 
for cell proliferation are unlikely to be detected. Moreover, such 
functional screens are biased towards genes that are required for 
early stages of the viral life cycle and fail to detect genes that are 
involved in virion assembly or release. Of the many experimental 
parameters that differed between screens (Supplementary Table 1), 
the choice of cell line seems to be crucial because gene overlap was 
mainly observed between screens carried out in the same cell type 
(Fig. 2). Although lung tissue is the primary site of SARS-CoV-2 
infection, multiple cell lines from different origins have been 
used to define host factor dependencies, mainly due to lack of a 
virus-induced cytopathic effect in lung-derived cell lines. Vero E6 
cells are non-human African green monkey kidney-derived cells 

Box 1 | CRiSPR-based functional genetic screens for proviral host factors

Large-scale loss-of-function genetic screens are a powerful tool in 
the study of proviral host factors, enabling comprehensive and sys-
tematic assessment of virus–host interactions (reviewed in ref. 157). 
Advantages of CRISPR-based screens are that these screens can be 
pooled and can be applied in any cell model, have high speci�city 
and are based on a complete block of gene function, in contrast 
to RNA interference screens. To mutagenize cells, a genome-wide 
CRISPR library, packaged into lentiviral vectors, is introduced 
into a large cell population at a low multiplicity of infection to 
prevent multiple gene perturbations per cell (a). A single-guide 
RNA (sgRNA) directs the endonuclease Cas9 to a speci�c gene, 
at which error-prone repair of Cas9-mediated double-stranded 
breaks generates loss-of-function mutations, resulting in a pool of 
di�erent knockout cells. A genetic screen for proviral host factors 
requires a permissive cell line that can be infected by the virus of 
interest. Phenotypic selection is usually based on the ability of a 
virus to induce cell death, enabling the rapid clearance of suscep-

tible cells and expansion of virus-resistant cells (b). Alternatively, 
a �uorescent reporter virus or antibody staining of viral proteins 
is used to separate infected from uninfected cells158. Genomic 
DNA is extracted from selected cells, as well as unselected control 
cells, followed by PCR ampli�cation and sequencing of sgRNAs 
(c). sgRNAs that are enriched in the virus-infected population as 
compared with the control population represent genes of which 
knock out prevents virus infection and are therefore proviral host 
factors. As cell survival mostly requires inactive virus replication, 
such screens generally detect genes that are involved in viral en-
try, translation or genome replication, but not the later stages of 
assembly and egress. CRISPR knockout screens cannot identify 
genes that are essential for cell proliferation, as their knockout de-
pletes cells from the population. A similar strategy can be used to 
uncover antiviral host factors (restriction factors) by performing 
CRISPR-based gain-of-function screens and selecting for genes 
that prevent virus infection a�er overexpression159.
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that are permissive to a wide range of viruses in vitro. Whereas the 
human hepatocellular carcinoma Huh7 or colorectal adenocarci-
noma Caco-2 cells are permissive to SARS-CoV-2 infection, the 
lung adenocarcinoma A549 cell line requires ectopic overexpres-
sion of the ACE2 receptor to support SARS-CoV-2 replication, 
while infection and cytopathic effect in the lung cell line Calu-3 is 
low. Here, we discuss genes that were consistently identified using 
functional genetic screens and were individually validated as pro-
viral SARS-CoV-2 host factors (Fig. 1 and Supplementary Table 2). 
Although the precise role in the SARS-CoV-2 life cycle remains 
unknown for many of these genes, some have known functions in 
the life cycle of other viruses (Table 2).

The only gene identified by screens in all five cell lines tested is 
ACE2 (Fig. 2). Of the other receptor candidates identified, trans-
membrane protein 30A (TMEM30A) was identified in one screen43, 
whereas the HS biosynthesis gene EXT1 was independently identi-
fied in three Huh7 screens26,43,72. Importantly, screens carried out in 
Huh7, A549 and Vero E6 cells identified CTSL (encoding cathepsin 
L), but not TMPRSS2, suggesting that viral entry occurred through 
the late endosomal route in these models. By contrast, screens in 
Calu-3 and Caco-2 cells29,30 identified TMPRSS2, but not CTSL, 

implying that these screens probably identified factors that are 
involved in the early entry route.

Vesicle trafficking. Besides receptors and proteases, members 
of different complexes involved in vesicle biology were identified 
as essential for SARS-CoV-2 infection, including Rab GTPases 
(RAB7A, RAB10 and RAB14). In particular, RAB7A was exten-
sively validated and found in multiple screens, as were compo-
nents of its dedicated Rab guanine nucleotide exchange factor, the 
Mon1–Ccz1 complex74 (CCZ1, CCZ1B and C18orf8). RAB7A and 
CCZ1B were also found to support HCoV-229E and HCoV-OC43 
infection26,27,72. Among other functions, Rab7 regulates endosomal 
maturation and interacts with the homotypic fusion and protein 
sorting (HOPS) complex, of which a subunit, the Vam6/Vps39-like 
protein (VPS39), was found to support SARS-CoV-2 infection. 
The HOPS complex mediates fusion of lysosomes with late endo-
somes or autophagosomes and, as shown for MHV75 and Ebola 
virus76 (Table 2), may cooperate with Rab7 to traffic incoming 
SARS-CoV-2 virions to lysosomal fusion sites. Rab7 was also found 
to promote cell-surface expression of ACE2 (ref. 71). Moreover, 
SARS-CoV-2 ORF3A binds to the HOPS subunit Vam6/Vps39-like 

Table 2 | Validated SARS-CoV-2 proviral host factors that serve as host factors for various viruses

gene Virus Family Function as proviral host factor Refs.

AP1B1, AP1G1 
(clathrin-associated adaptor 
protein complex 1)

HCV
HIV

Flaviviridae
Retroviridae

Virion release and cell-to-cell spread
Promotes virion release through an interaction between Gag and 
AP-1µ

141
142

RAB7A HIV Retroviridae Virion assembly and release 143

RAB14 HIV Retroviridae Env incorporation into assembling virions 144

VPS39 (HOPS complex) MHV
EBOV

Coronaviridae
Filoviridae

Transport of virus from early endosomes to lysosomes 75
76

ATP6AP1 IAV Orthomyxoviridae Endosomal acidification is required for fusion 80

VPS29, VPS35 (retromer 
complex)

HCV Flaviviridae Proposed to deliver cargoes to viral replication sites through 
retrograde transport

87

HPV Papillomaviridae Trafficking virus from early endosomes to the TGN 86

SNX27 HTLV Retroviridae Recycling the virus receptor GLUT1 to the plasma membrane 85

ACTR2 RSV Pneumoviridae Cell-to-cell spread through filopodia 145

SREBP pathway (SREBF2, 
SCAP, MBTPS2)

ANDV
MERS-CoV

Hantaviridae
Coronaviridae

Supports virus internalization into cells
Suggested to have a role in DMV formation

146
147

NPC1 EBOV Filoviridae Lysosomal entry receptor 76

NPC1, NPC2 CHIKV Togaviridae Required for endocytosis or fusion 148

SIGMAR1 HCV Flaviviridae Supports early RNA replication at the ER 149

TMEM41B ZIKV, YFV Flaviviridae Remodels host cell membranes that are required for the formation 
of viral replication complexes

91

PIK3C3 HBV Hepadnaviridae Supports DNA replication by inducing autophagy after HBx binding 150

CNOT4 IAV Orthomyxoviridae Required for NP ubiquitination 151

SIAH1 DENV2 Flaviviridae Prevents antiviral signalling by ubiquitinating MyD88 97

JMJD6 VSIV Rhabdoviridae Inhibits the antiviral type-I interferon response 98

EWSR1 HCV Flaviviridae Supports replication through binding to the CRE in the viral RNA 152

CSDE1 CV-B3 Picornaviridae Required for IRES-mediated translation 153

EMC1 SV40 Polyomaviridae Mediates ER-to-cytosol transport of virions during entry 154

TOR1AIP1 HSV-1
PrV

Herpesviridae
Herpesviridae

Interacts with torsin-1a, which supports nuclear egress of HSV-1 and 
PRV virions

155
156

Genes with known functions for other viruses that are displayed in Fig. 1 are shown. The selection of genes was determined on the basis of a literature search and includes only genes that were 

demonstrated (by genetic depletion) to be required for infection of other viruses, and for which the role in infection is at least partially known. ANDV, Andes orthohantavirus; AP-1µ, adaptor protein complex 

1, mu subunit; CHIKV, Chikungunya virus; CRE, cis-acting replication element; CV-B3, coxsackievirus B3; DENV2, dengue virus 2; EBOV, Ebola virus; HBV, hepatitis B virus; HCMV, human cytomegalovirus; 

HCV, hepatitis C virus; HIV, human immunodeficiency virus; HPV, human papillomavirus; HSV-1; herpes simplex virus; HTLV, human T-cell leukaemia–lymphoma virus; IAV, influenza A virus; IRES, internal 

ribosome entry site; NP, nucleoprotein; PrV, pseudorabies virus; RSV, respiratory syncytial virus; SREBP, sterol-regulatory-element-binding protein; SV40, Macaca mulatta polyomavirus 1; TGN, trans-Golgi 

network; VSV; vesicular stomatitis Indiana virus; YFV, Yellow fever virus; ZIKV, Zika virus.
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protein to block autophagosome–lysosome fusion, preventing lyso-
somal destruction of viral components in the later stages of its life 
cycle77. Genetic screens also identified the S1 (ATP6AP1) and A 
(ATP6V1A) subunits of the vacuolar-ATPase proton pump71, which 
were found to bind to SARS-CoV-2 nsp6 and M, respectively78. 
These factors are required for luminal acidification of vesicles 
and also facilitate influenza A virus entry79,80. TMEM106B, which 
encodes another endo-lysosomal protein, was shown in multiple 
studies to be required for SARS-CoV-2 but not HCoV-229E26,43,72. 
TMEM106B regulates lysosome function and interacts with the 
V-ATPase S1 subunit81. TMEM106B facilitates SARS-CoV-2 pseu-
dovirus entry43, further suggesting a role of the lysosomal compart-
ment in SARS-CoV-2 entry. Furthermore, TMEM106B expression 
is elevated in SARS-CoV-2-infected airway cells from patients with 
COVID-19 (ref. 43), but whether this is the cause or consequence of 
infection needs to be determined.

Many genes uncovered by genetic screens are involved in ret-
rograde transport82. These include members of the retromer 
and retriever complexes (VPS29, VPS35 and VPS35L), the 
retromer-associated protein sorting nexin-27 (SNX27) and compo-
nents of the COMMD–CCDC22–CCDC93 (CCC) complex (Fig. 1).  
These complexes facilitate cargo enrichment and budding from the 
endosomal membrane to generate recycling vesicles. This budding 
process is driven by branched actin polymerization initiated by the 
Arp2/3 and WASH complexes83, of which members were found 
in multiple SARS-CoV-2 screens64,71 (ACTR2, ACTR3, ARPC3, 
ARPC4 and WASHC4). Finally, multiple screens identified a mem-
ber of the exocyst complex26,72 (EXOC2), which interacts with the 
Arp2/3 complex84 and mediates tethering of recycling and secretory 
vesicles to the plasma membrane. As knockout of retrograde trans-
port genes inhibited SARS-CoV-2 pseudovirus entry and reduced 
cell-surface expression of ACE2 (ref. 64), SARS-CoV-2 may require 
this process for receptor recycling, as shown for human T-cell leu-
kaemia–lymphoma virus85. Alternatively, retrograde transport may 
facilitate virus trafficking to replication sites, as shown for human 
papillomavirus86, or may serve to deliver cargoes to replication sites, 
as suggested for hepatitis C virus87 (Table 2).

Notably, screens in Calu-3 cells did not identify any of the 
above-mentioned vesicle-trafficking genes, but revealed two sub-
units of clathrin-associated adaptor protein complex 1 (AP1B1 and 
AP1G1)29,30, which mediates transport between the trans-Golgi net-
work and endosomes (Fig. 1). These genes were shown to support 
SARS-CoV-2 entry without affecting ACE2 expression on the cell 
surface30 and may be required for the correct localization of other 
proviral factors that are involved in TMPRSS2-mediated entry.

PI3K signalling. Genetic screens also identified members of the 
phosphatidylinositol 3-kinase (PI3K) pathway (Fig. 1) as host fac-
tors for SARS-CoV-2, as well as for HCoV-229E and HCoV-OC43 
(refs. 26,43,64,71,72). These include PI3K type 3 (PIK3C3) and PI3K regu-
latory subunit 4 (PIK3R4), core subunits of a complex that produces 
phosphatidylinositol 3-phosphate (PI3P) and regulators of this 
complex (WDR81 and WDR91)64,71. Screens also uncovered protein 
VAC14 homologue (VAC14)26,72, which regulates the conversion 
of PI3P to phosphatidylinositol 3,5-bisphosphate. This signalling 
pathway is involved in a wide range of cellular functions, includ-
ing endosomal maturation, retrograde transport and autophagy ini-
tiation (reviewed in ref. 88). PI3K signalling may therefore facilitate 
SARS-CoV-2 infection by initiating the vesicle-trafficking processes 
discussed above, or by activating the autophagy machinery. Indeed, 
multiple studies showed that SARS-CoV-2 infection depends on 
transmembrane protein 41B (TMEM41B)26,43,89, which is involved 
in the early stages of autophagosome formation90. TMEM41B is 
also required for HCoV-229E, HCoV-OC43 and HCoV-NL63 
(refs. 26,43); SARS-CoV; and MERS-CoV89, and was recently shown 
to facilitate flavivirus replication complex formation91 (Table 2).  

As genes required for later stages of autophagosome formation were 
not identified, it is possible that SARS-CoV-2 specifically hijacks 
early components of the autophagy machinery, including PI3K sig-
nalling, to support its life cycle.

Lipid homeostasis. Several genes identified in genetic 
screens with SARS-CoV-2 control cholesterol synthesis26,72. 
Sterol-regulatory-element-binding protein 1 and 2 (SREBF1 and 
SREBF2) are transcription factors that upregulate enzymes required 
for fatty acid and cholesterol synthesis. Their activity is regulated 
by sterol-regulatory-element-binding protein cleavage-activating 
protein (SCAP) and endopeptidase S1P and S2P (MBPTS1 and 
MBPTS2)92, which were all identified in genetic screens. SREBF2 was 
also found to support the replication of HCoV-229E, HCoV-OC43 
and HCoV-NL63 (ref. 26). Moreover, SARS-CoV-2 was found to 
require the late endosomal and lysosomal proteins Niemann–Pick 
C1 and C2 (NPC1 and NPC2), which transport cholesterol from 
the lysosomal lumen into the lysosomal membrane93. Although 
these genes probably have indirect roles in infection, NPC1 can 
also directly function as a viral receptor, as shown for Ebola virus76 
(Table 2). Recently, 25-hydrocholesterol—which broadly inhib-
its the fusion of enveloped viruses by depleting cholesterol from 
the plasma membrane94—was shown to inhibit SARS-CoV-2 
S-mediated fusion, suggesting a role of cholesterol in viral entry. 
Genetic screens also identified two components (TMEM30A and 
ATP8B1) of a P4-ATPase flippase complex that transports amino-
phospholipids from the outer to the inner leaflet of various membra
nes29,30,43,64. Moreover, the lipid transport protein sigma non-opioid 
intracellular receptor 1 (SIGMAR1) was found to bind to nsp6 
in an interactomic screen78. As all steps of the viral life cycle are 
membrane-associated, cholesterol and other lipids could have vari-
ous roles in SARS-CoV-2 infection, including innate immune sys-
tem suppression, as shown for other viruses95.

Other proviral host factors. Other identified SARS-CoV-2 host 
factors are involved in transcriptional regulation, including tran-
scription factors, histone-modifying enzymes and members of the 
SWI/SNF complex25,26,64,71 (Fig. 1). Moreover, screens identified 
several components of E3 ubiquitin ligases25,71. These genes may 
indirectly affect virus replication by regulating expression levels of 
other proviral or antiviral factors. For example, EP300 and HMGB1 
enhance the expression of ACE2 on the cell surface25,30,96. E3 ubiq-
uitin–protein ligase SIAH1 (SIAH1) and JmjC-domain-containing 
protein 6 (JMJD6) were previously shown to support infection of 
dengue virus97 and vesicular stomatitis Indiana virus98, respectively, 
by promoting the degradation of antiviral proteins (Table 2).

Together, functional genetic screens uncovered numerous pro-
viral genes that are probably required for SARS-CoV-2 entry, 
translation or replication (Box 1). Notably, viruses used in two 
screens contained deletions near the polybasic cleavage site in S43,64, 
whereas the sequences of the passaged viruses used in screens in the 
other studies were not specified25,26,29,30,71,72. Such deletions prevent 
TMPRSS2-mediated S activation and force virus entry through the 
endocytic route64. Thus, future studies with wild-type SARS-CoV-2 
may be useful to extend the compendium of SARS-CoV-2 proviral 
host factors.

Viral RNA and protein interactomes
Interactome screens probe for cellular factors interacting with viral 
RNA and/or proteins and can therefore provide valuable insights 
into pathways that facilitate or inhibit the viral life cycle. These 
screens are complementary to functional genetic screens as they can 
also detect cell-essential factors. In brief, RNA interactome screens 
involve SARS-CoV-2 infection of cells, followed by RNA–protein 
cross-linking and identification of interacting proteins73,99–102. The 
SARS-CoV-2 RNA interactome was determined in multiple cell lines 
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(Fig. 2) using different cross-linking techniques: formaldehyde and 
ultraviolet light. Ultraviolet light at 254 nm (RNA antisense purifi-
cation coupled with mass spectrometry (RAP–MS))99,100 is a more 
specific RNA–protein cross-linker than formaldehyde (compre-
hensive identification of RNA-binding proteins (chIRP-MS))73,102, 
as it does not efficiently cross-link protein–protein interactions. 
An even more specific cross-linking technique (viral RNA inter-
actome capture (vRIC)-MS)101 applies 365 nm ultraviolet light after 
treatment with a transcription inhibitor and the photoactivatable 
nucleotide analogue 4-thiouridine to ensure exclusive cross-linking 
of 4-thiouridine-containing viral RNA. The SARS-CoV-2 protein 
interactome was mapped in HEK293T/17 and A549 cells using 
affinity-tag purification (affinity purification (AP)–MS)78,103–105 
or pull-down of tagged proteins using proximity biotinylation 
(BioID)106–108. In contrast to RNA interactomes, protein interac-
tomes were determined by expressing individual viral proteins in 
uninfected cells. This approach requires prudence during interpre-
tation, as well as validation, before making claims about virus–host 
interactions, as individually expressed viral proteins may localize 
differently and lack the context of true infection. Although these 
screens vary in the set of probed SARS-CoV-2 proteins, integrating 
the results of these studies generates a robust cellular interactome 
for 21 SARS-CoV-2 proteins (Fig. 2 and Supplementary Table 2).

Viral RNA interactome. When the viral RNA is released into the 
cytoplasm, it hijacks cellular RNA-binding proteins involved in all 
stages of the mRNA life cycle to achieve the arduous task of regu-
lating translation and replication in the hostile environment of 
the host cell. A total of 95 proteins, representing a broad range of 
RNA-related functionalities, were found to bind to SARS-CoV-2 
RNA in at least three different cell types, whereas 34 proteins were 
identified in all four cell types (Fig. 2). Flynn et al. reported a signifi-
cant bias towards antiviral factors in their viral RNA interactome73, 
which may explain the limited overlap between RNA interactomes 
and proviral factors identified in functional screens. Nevertheless, 
17 of these 95 frequently detected interactors were functionally vali-
dated as proviral host factors for SARS-CoV-2 (Fig. 2).

A strong interplay was detected between SARS-CoV-2 RNA 
and ribonucleoprotein granules such as paraspeckles, P-bodies 
and stress granules. Similarly, protein families such as cold-shock 
domain proteins, eukaryotic translation initiation factors (EIF3/4) 
and heterogeneous nuclear ribonucleoproteins showed extensive 
viral RNA interaction. Several heterogeneous nuclear ribonucleo-
proteins have known functions in the life cycle of coronaviruses and 
other positive-strand RNA viruses, facilitating RNA synthesis and 
translation109. This overlapping SARS-CoV-2 RNA interactome fur-
ther consisted of proteins that are involved in a plethora of cellular 
functions, such as transcriptional regulation, mRNA processing, 
stress response, fatty acid metabolism and the tRNA-splicing ligase 
complex101 (Fig. 2).

SARS-CoV-2 relies completely on the host translation machin-
ery to translate its capped and poly-adenylated genome. Thus, 
unsurprisingly, many RNA interactome studies contained factors 
that are involved in the recognition of the poly(A) tail (PABPC1, 
PABPC4 and PABPCN1) and components of eukaryotic initiation 
factors (eIF) responsible for cap binding (eIF4F subunits) or subse-
quent connection to the ribosome (eIF3), as well as some 40S ribo-
some subunits. Remarkably, eIF4E was not retrieved in any screen, 
suggesting that SARS-CoV-2 translation is eIF4E-independent, 
similar to other capped positive-strand RNA viruses such as Sindbis 
virus110. In this regard, the identification of La-related protein 1 
(LARP1) in the interactome of both SARS-CoV-2 RNA73,99,100 and 
the N protein78 is of special interest. LARP1 regulates the stability 
and translation of cellular mRNAs containing an oligopyrimidine 
(TOP) motif by binding to this motif and the adjacent cap, blocking 
the access of eIF4E. As LARP1 was validated as an antiviral factor 

binding to the 5′-leader of SARS-CoV-2, which contains a TOP-like 
motif, this may explain why eIF4E is absent from the viral RNA 
interactome.

Viral protein interactome. Of the cellular proteins found to 
interact with a specific SARS-CoV-2 protein (Fig. 2), a hand-
ful were identified in all of the screens conducted by at least five 
different research groups for a specific viral protein (G3BP1, 
G3BP2, TOMM70, RAE1, VPS39, MARK2 and MARK3). G3BP1, 
G3BP2, TOMM70 and RAE1 encode factors that are involved in 
host antiviral responses and are discussed in more detail in Box 2.  
The HOPS subunit Vam6/Vps39-like protein (VPS39) interacted 
consistently with ORF3a, as discussed above. ORF9b bound to 

Box 2 | Cellular antiviral factors that limit SARS-CoV-2 
infection

As obligate intracellular parasites, viruses need to evade the 
host’s antiviral responses to successfully establish infection. To 
trigger the innate immune response during infection, host cells 
rely on pattern recognition receptors (PRRs), such as Toll-like 
receptors and RIG-I-like receptors160, to recognize speci�c 
pathogen-associated molecular patterns (PAMPs). For RNA 
viruses, the main intracellular PAMP is double-stranded RNA 
formed during viral replication, which can be recognized by cy-
tosolic receptors, such as RIG-I, MDA-5 and PKR161. Although 
PKR activation mainly results in translational shut-o� and stress 
granule formation, RIG-I and MDA-5 PAMP–PRR complexes 
bind to the mitochondrial antiviral-signalling protein (MAVS) 
to activate the transcription factors NFκB and interferon regula-
tory factors (IRFs), inducing the expression of type-I interferons 
(IFNs) as well as a range of other cytokines162. A�er binding to 
their cognate receptors, IFNs trigger the expression of several 
hundred IFN-stimulated genes performing various molecular 
functions in an e�ort to control viral dissemination. Like all vi-
ruses, SARS-CoV-2 has evolved several mechanisms to evade 
this antiviral signalling cascade.

�e SARS-CoV-2 interactome captures this interplay 
between innate immune response and virus, encompassing both 
sides of the battle: the cellular e�ort to detect and eliminate the 
infection, as well as the molecular mechanisms evolved by the 
virus to escape and inhibit the immune response. As such, these 
interactomes exposed a strong interplay with stress granules 
(SGs), which have a pivotal role in establishing an antiviral state 
by limiting viral RNA translation and serving as an antiviral and 
apoptotic signalling hub. Viruses can inhibit their formation by 
sequestering or degrading stress granule components such as 
Ras GTPase-activating protein-binding protein (G3BP) 1 and 2 
(ref. 163), which were consistently detected in the SARS-CoV-2 
RNA and N protein interactome, suggesting that SARS-CoV-2 
also targets G3BP1 and G3BP2 to disrupt or deregulate SG 
formation164. Other SARS-CoV-2 proteins that have been 
shown to interfere with cellular antiviral responses are ORF9b 
and ORF6. ORF9b targets the mitochondrial import receptor 
subunit TOM70, which promotes MAVS activity by bridging 
MAVS to downstream proteins TBK1/IRF3 (ref. 165). TOM70 
was identi�ed in several ORF9b interactome screens, and this 
interaction was shown to suppress MAVS-mediated type-I IFN 
signalling166. Finally, further downstream in the IFN signalling 
cascade, ORF6 was shown to bind to the nuclear pore complex 
component Nup98–Rae1 to disrupt the nuclear import of 
transcription factors STAT1 and STAT2 (ref. 167), therefore 
impairing IFN-stimulated gene expression and further enabling 
SARS-CoV-2 infection.
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microtubule affinity regulating kinase (MARK) 2 and 3, of which 
the latter was shown to affect the monocyte count in the blood of 
patients with COVID-19 (ref. 111). Although MARK2 is upregu-
lated in SARS-CoV- and MERS-CoV-infected cells112, its kinase 
activity was found to be decreased in SARS-CoV-2-infected 
cells113. Interestingly, MARK2 is also hijacked by HIV-1 to facilitate 
microtubule-associated particle uncoating114.

Several other interesting proteins identified with a high fre-
quency are HERC1, CCDC22, ALG11 and ZDHHC5. Probable E3 
ubiquitin–protein ligase HERC1 (encoded by HERC1) was picked 
up as a nsp8 binder and is a guanine nucleotide exchange factor 
that activates Rab proteins, several of which were functionally vali-
dated as proviral host factors. ORF6 showed robust interaction with 
the proviral coiled-coil-domain-containing protein 22 (CCDC22), 
a component of the CCC complex and regulator of NF-κB sig-
nalling. For glycolipid alpha-1,2-mannosyltransferase (ALG11), 
a direct link with coronavirus infection was lacking until now. 
However, the high-confidence interaction of ALG11 with nsp4 is an 
interesting topic for further research, as ALG11 is an ER-localized 
N-glycosylation protein, and N-glycosylation of MHV nsp4 has 
been shown to affect DMV morphology and RNA replication115. 
The most frequent interaction partner for SARS-CoV-2 S was 
the plasma-membrane-localized palmitoyltransferase ZDHHC5. 
Coronaviruses rely on post-translational palmitoylation of S for 
efficient virion production and S-mediated membrane fusion116. 

ZDHHC5 drives S palmitoylation and the consequent infectivity of 
HCoV-229E, and may be of equal importance for the palmitoylation 
of SARS-CoV-2 S117.

Host factors as SARS-CoV-2 drug targets?
Agents that target proviral host factors may be attractive drug can-
didates because of a reduced chance of resistance development and 
the potential for broad action against viral variants. Several efforts 
to identify agents that inhibit SARS-CoV-2 by targeting a host pro-
tein have been undertaken28,118–122. Drug repurposing approaches 
that bypass costly and time-consuming drug discovery processes are 
of particular interest. Here, we summarize agents that are directed 
against rigorously validated host factors and that are currently in 
clinical trials for COVID-19 treatment, or that are approved drugs 
that are provisionally eligible for drug repurposing (Table 3).

SARS-CoV-2 receptors. Multiple strategies to hamper the interac-
tion between SARS-CoV-2 and ACE2 are being pursued (Table 3; 
reviewed in ref. 123). The use of excessive soluble ACE2 as a decoy 
to trap SARS-CoV-2 virus is under investigation. Other strategies 
aim to block the binding of the S RBD to ACE2 using pseudoli-
gands or blocking antibodies, or to interfere with ACE2 expres-
sion. As such, multiple clinical studies are evaluating the use of the 
anti-acne drug isotretinoin, which acts, at least partly, by down-
regulating ACE2 (ref. 122). Notably, ACE2 is a key enzyme of the 

Table 3 | Druggable SARS-CoV-2 host factors

Protein gene Therapeutic strategy Clinical stage 
CoViD-19

Angiotensin-converting enzyme 2 ACE2 Decoy receptor
Pseudoligands; antibodies: TD-139, ensovibep
Expression regulation: isotretinoin, RAAS inhibitors

I/II
II/III
III

Basigin BSG Antibody: meplazumab II/III

HS Lactoferrin II/III

Transmembrane protease serine 2 TMPRSS2 Inhibitors: camostat mesylate, nafamostat, 
bromhexin, α1-antitrypsin, aprotinin

III

Antiandrogens: bicalutamide, isotretinoin, 
enzulatamide

III

Cathepsin CTSL, CTSB, CTSD, 
CTSK

Inhibitors: teicoplanin, MDL 28170, ONO 5334, 
VBY-825

Preclinical

Plasmin PLG Inhibitor: tranexamic acid III

Furin FURIN shRNA: vigil Preclinical

Anoctamin-6/transmembrane protein 16F 
(TMEM16F)

ANO6 Inhibitor: niclosamide III

Elongation factor 1-alpha 1 EEF1A1 Inhibitor: plitidepsin III

V-type proton ATPase catalytic subunit A ATP6V1A Inhibitor: biphosphonates (etidronic acid, 
alendronic acid)

Preclinical

Dual-specificity 
tyrosine-phosphorylation-regulated kinase 
1A, phosphatidylinositol 4-kinase beta, activin 
receptor type-1B

DYRK1A, PI4KB, 
ACRV1B

Inhibitor: fostamatinib (not specific; 
anti-inflammatory)

III

Histone deacetylase 9 HDAC9 Inhibitors: romidepsin, belinostat, panobinostat, 
vorinostat

Preclinical

1-Phosphatidylinositol 3-phosphate 5-kinase PIKFYVE Inhibitor: apilimod II

Sigma non-opioid intracellular receptor 1 SIGMAR1 Inhibitor: fluvoxamine, naltrexone 
(anti-inflammatory)

III

Calcium-transporting ATPase type 2C member 1 ATP2C1 Inhibitor: sevoflurane, isoflurane (anti-inflammatory) III

Genetically validated SARS-CoV-2 host factors for which inhibitors are under clinical investigation for COVID-19 or approved/in advanced clinical stage for alternative indications and amenable for drug 

repurposing. For COVID-19 therapeutic strategies in which more than one agent is under investigation, the clinical stage of the most advanced agent is given. When the inhibitor is expected to merely 

have an anti-inflammatory effect rather than a direct antiviral effect, this is noted in the table. Inhibitors of which clinical investigations are halted were omitted. Sources: Clinicaltrials.gov (https://www.

clinicaltrials.gov/ct2/home) and DGiDb (https://www.dgidb.org/). shRNA, short hairpin RNA.
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renin–angiotensin–aldosterone system (RAAS), which regulates 
blood pressure. RAAS inhibitors (angiotensin converting enzyme 
inhibitors (ACEi) and angiotensin II receptor blockers (ARBs)) are 
commonly prescribed hypertension drugs. Although ACEi do not 
directly block ACE2, studies suggested that they increase ACE2 
expression and may therefore worsen COVID-19 severity124, rais-
ing concerns about the continuation of these drugs in patients with 
COVID-19 who are hypertensive. However, clinical investigations 
revealed no adverse effects125,126, probably because ACEi/ARBs also 
fulfil anti-inflammatory and anti-oxidative functions. Thus, inter-
national recommendations are now against the discontinuation of 
these drugs in patients with COVID-19.

Blocking the accessibility of alternative receptors basigin 
(CD147) and HS is also under clinical investigation for COVID-19 
treatment (Table 3).

Host proteases. TMPRSS2-mediated S activation at the plasma 
membrane is an attractive therapeutic intervention point. As 
TMPRSS2 is not a cell-essential gene, inhibition is expected to cause 
negligible side effects. The inhibitor camostat mesylate, which has 
been approved for non-COVID-19 indications in Japan, is being 
investigated in multiple ongoing clinical trials, as well as alternative 
approved serine protease inhibitors (namostat, aprotinin). The pro-
tein α1-antitrypsin (α1AT) is a highly abundant circulating serine 
protease inhibitor that is part of the human innate immune system 
and has been shown to inhibit TMPRSS2 and SARS-CoV-2 entry127. 
Clinical trials with α1AT purified from donor blood, available as 
a pharmaceutical product (prolastin), are underway. As TMPRSS2 
expression is androgen regulated128, several studies also investigated 
androgen-directed therapy (bicalutamide, enzulatamide, isotreti-
noin). Isotretinoin reduces dihydrotestosterone levels and, as such, 
downregulates TMPRSS2. As it also downregulates ACE2, isotreti-
noin may have a multifaceted impact on SARS-CoV-2 infectivity.

Inhibition of cathepsins, the main proteases required for 
pH-dependent endocytic entry, has also been examined as COVID-
19 therapy129. However, the anti-malaria drugs chloroquine and 
hydroxychloroquine, which inhibit endosomal acidification 
required for cathepsin activity, were found to be unsuccessful in 
the clinic, possibly due to the existence of multiple entry routes, 
despite having proven antiviral activity in cell culture130. Similarly, 
studies on chlorpromazine, an anti-psychotic drug that inhibits 
clathrin-dependent endocytosis, and tamoxifen, an anti-cancer 
drug that inhibits endosomal acidification, were planned but put 
on hold. The glycopeptide antibiotic teicoplanin, a cathepsin L 
inhibitor that has been shown to inhibit the entry of SARS-CoV, 
MERS-CoV and Ebola virus in cell culture131, was suggested as a 
complementary treatment option for COVID-19 (ref. 132) but is not 
currently under clinical investigation.

The inexpensive, commonly used drug tranexamic acid, which 
may inhibit SARS-CoV-2 S priming by suppressing plasmin acti-
vation, is the subject of a planned clinical trial. Similarly, vigil, a 
plasmid delivery vehicle that contains a furin-specific short hairpin 
RNA that is in advanced clinical testing for cancer treatment, has 
been proposed as a COVID-19 therapy133.

Other host factors. Only a few approved drugs against rigorously 
validated SARS-CoV-2 host factors involved in post-entry steps 
are currently available (Table 3). Histone deacetylase inhibitors are 
a relatively new class of anti-cancer agents that interfere with tran-
scriptional regulation. For example, panobinostat was shown to 
downregulate ACE2 in cell culture134. However, the use of histone 
deacetylase inhibitors against SARS-CoV-2 remains unproven. 
The phosphatidylinositol 3-phosphate 5-kinase (PIKFYVE) 
inhibitor apilimod was shown to reduce viral replication in pri-
mary cells and ex vivo lung cultures and is currently being trialled 
against COVID-19 (ref. 121). The same applies to niclosamide, an 

approved antiparasitic agent that targets TMEM16 proteins and 
inhibits S-mediated syncytium formation and viral replication120, 
and plitidepsin, an anti-cancer agent (targeting elongation factor 
1-alpha 1) with limited approval that shows in vitro and in vivo 
antiviral activity135.

outlook
The urgency imposed by the COVID-19 pandemic and the avail-
ability of functional genetic and interactomic technologies have led 
to the discovery of SARS-CoV-2 host factors at an unprecedented 
rate. Taken together, these studies have identified a large cadre of 
candidate receptors, genetic dependencies and cellular proteins that 
interact with SARS-CoV-2 RNA and proteins. Although the biolog-
ical roles of some factors have been extensively investigated, other 
proviral host factors that were identified in multiple studies have not 
been characterized. Future studies should further unravel the roles 
of these cross-validated factors in SARS-CoV-2 infection. Moreover, 
studies in animal models will be required to assess the relevance of 
identified host factors in vivo. As SARS-CoV-2 will probably not be 
the last zoonotic coronavirus to emerge, it will be crucial to explore 
which druggable proviral host factors are also required by other 
pathogenic coronaviruses, to develop broad-spectrum antivirals in 
preparation for possible future epidemics.
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