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Abstract: We present an in vivo confocal laser scanning microscopy based method for large 

3D reconstruction of the cornea on a cellular level with cropped volume sizes up to 266 x 286 

x 396 µm3. The microscope objective used is equipped with a piezo actuator for automated, 

fast and precise closed-loop focal plane control. Furthermore, we present a novel concave 

surface contact cap, which significantly reduces eye movements by up to 87%, hence 

increasing the overlapping image area of the whole stack. This increases the cuboid volume 

of the generated 3D reconstruction significantly. The possibility to generate oblique sections 

using isotropic volume stacks opens the window to slit lamp microscopy on a cellular level. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.4470) Ophthalmology; (170.3880) Medical and biological imaging; (170.1790) Confocal 

microscopy. 
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1. Introduction 

Presently, a well-established method for acquiring corneal images at cellular level is the 

combination of the Heidelberg Retina Tomograph (HRT) and the Rostock Cornea Module 

(RCM; both Heidelberg Engineering GmbH, Heidelberg, Germany), which is a confocal laser 

scanning microscope. Since its first presentation in 2002 [1], the HRT + RCM serves as a 

reliable instrument [2] and plays an important role in ex vivo and in vivo studies of human or 

animal corneas for a qualitative and quantitative analysis based on 2D imaging and/or 3D 

image reconstruction, e.g. the anatomical comparison of laboratory animal corneas [3], the 

assessment of stromal modifications of patients with progressive keratoconus after treatment 

by riboflavin-UVA-induced cross-linking of corneal collagen [4], quantitative full-thickness 

corneal 3D imaging [5], automated quantification of morphologic features of different 

epithelial cell layers [6], 2D reconstruction of the subbasal nerve plexus (SNP) from volume 
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scans in the presence of ridge-like tissue deformations [7] and large-scale image 

reconstruction of the SNP [8–13]. 

Besides confocal laser scanning microscopy based methods, the full-field optical 

coherence tomography (FF-OCT) [14] is a promising attempt to obtain en face corneal 

images. Recently, FF-OCT was demonstrated to offer in vivo human corneal images with 1.7 

µm lateral resolution and 1.26 mm x 1.26 mm field of view in a non-contact measurement 

[15]. Nevertheless, confocal laser scanning microscopy still offers higher lateral resolution 

and better image quality. 

Several corneal 3D reconstructions from confocal light and confocal laser scanning 

microscopy image stacks are published already. Image stacks through the entire cornea are 

presented in [16] and were acquired with a tandem scanning confocal light microscope and 

without image alignment, leading to lower image quality and lower resolution compared to 

confocal laser scanning based methods. In [7,17,18], volume imaging with a confocal laser 

scanning microscope (HRT + RCM) was described. The internal focus drive of the HRT was 

used, which allows the recording of corneal stacks with a maximum depth of only 60 µm. The 

full thickness corneal stacks presented in [5] were performed on a sedated rabbit to avoid eye 

movements. The RCM’s manual drive for focal plane control was replaced with a computer-

controlled motor drive. One of the biggest flaws of this method and the RCM in general is the 

axial movement of the contact cap (TomoCap) for focal plane control, which inevitably 

changes the contact pressure on the cornea. From our experience, two major issues arise 

therefrom. First, the movement of the TomoCap away from the cornea during through-

focusing can ultimately lead to a loss of contact. Second, when the TomoCap moves towards 

the cornea, the increasing applanation pressure on the cornea induces compression artifacts 

that manifest as ridge-like deformations in the SNP and the adjacent tissue [19–22]. These 

deformations are particularly detrimental for imaging thin layers such as the SNP, which 

cannot be kept in focus over the entire field of view once the deformation height exceeds the 

depth of field of the RCM. 

In this study, we demonstrate our in-house developed piezo-driven cornea module (RCM 

2.0), which is an improved version of the original RCM. (Please note: This RCM version is 

not commercially available and Heidelberg Engineering was not involved in its development. 

The authors do not hold any intellectual property on the device or design and are currently not 

planning to make it commercially available.) The integrated piezo actuator is used to move 

the objective lens for an axial focal plane shift of up to 500 µm without moving the 

TomoCap. This enables precise closed-loop focal plane control. We applied our new method 

to demonstrate in vivo through-focusing measurements and 3D reconstruction of a human 

cornea. 

Furthermore, we present a new TomoCap with a concave surface to reduce involuntary 

eye movements (so-called saccades). The functional principle is based on the fact that the 

eyeball’s center of rotation differs from the cornea’s center of curvature and on the usage of a 

viscous contact gel. Reduced lateral eye movements result in larger fields of view of the 

aligned image stack. The achieved improvements, arising from the new cap design, were 

assessed by analyzing comparative measurements using the standard planar and the new 

concave TomoCap design. Additionally, we compared three image registration methods 

(none, rigid, non-rigid) for the alignment of the image stacks. Orthogonal as well as oblique 

slices through a volume data set recorded with the concave TomoCap are presented to 

exemplify the capabilities of the modified RCM. 

2. Materials and methods 

2.1 Heidelberg Retina Tomograph and Rostock Cornea Module 2.0 

The HRT is a confocal laser scanning microscope primarily designed to acquire in vivo retinal 

images. It offers an image resolution of 384 pixels x 384 pixels with 8 bit grayscale. The 

RCM is a detachable extension for the HRT incorporating an immersion objective to shift the 
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To verify the different performance of the planar and the concave TomoCap, the error 

probability p for each parameter and subject was estimated using Welch’s t-test. We also 

investigate the capability of the concave TomoCap regarding MA for stacks with large nim. 

3. Results 

As mentioned in the method section, the magnification changes with objective lens position. 

Therefore, an object micrometer was imaged for various objective lens positions. The total 

field of view was ranging linearly from about 349 µm to 351 µm in the total closed-loop 

travel range of 500 µm. Hence this effect can usually be neglected. 

Using the standard TomoCap, involuntary eye movements can cause the cornea to move 

more than the width of the field of view within the exposure time of a single frame [10]. In 

this case consecutive images do not overlap and therefore cannot be aligned. In general, larger 

eye movements lead to smaller overlapping areas, thus impeding image alignment. 

Qualitative visual inspection of the image streams reveals a significant reduction of lateral 

eye movements in the data sets recorded with the concave TomoCap. To demonstrate this 

issue, we included six supplementary videos showing aligned (KIT-alignment) image stacks 

in posterior scan direction of the three subjects with both TomoCaps (Visualization 1, 

Visualization 2, Visualization 3, Visualization 4, Visualization 5 and Visualization 6). Table 1 

shows the determined parameters MSp and MSc including the standard error for the three 

subjects. The mean approximated overlapping area MAp and MAc are listed in Table 2 for nst = 

40 and the specified nim. Furthermore, Table 3 gives MAc for increasing nim. For comparison, 

the area of a single image is 0.1219 mm2. 

Table 1. Comparison between TomoCaps regarding lateral image-to-image shifts. 

Subject MSp / µm MSc / µm p 

1 18.8 ± 0.4 2.40 ± 0.14 < 0.0001 

2 6.74 ± 0.19 1.34 ± 0.09 < 0.0001 

3 15.0 ± 0.9 4.48 ± 0.14 < 0.0001 

Table 2. Comparison between TomoCaps regarding overlapping area for nst = 40. 

Subject MAp / mm² MAc / mm² p nim 

1 0.0487 ± 0.0004 0.10723 ± 0.00020 < 0.0001 32 

2 0.0700 ± 0.0007 0.11010 ± 0.00020 < 0.0001 45 

3 0.0583 ± 0.0007 0.10553 ± 0.00015 < 0.0001 21 

Table 3. Overlapping areas using the concave TomoCap with increasing stack sizes. 

Subject nst nim MAc / mm² 

1 40 51 0.10087 ± 0.00025 

 20 98 0.10723 ± 0.00020 

 10 175 0.0852 ± 0.0010 

 5 294 0.0731 ± 0.0010 

2 40 87 0.10569 ± 0.00024 

 20 158 0.0995 ± 0.0007 

 10 264 0.0943 ± 0.0014 

 5 409 0.073 ± 0.004 

3 40 71 0.09412 ± 0.00017 

 20 139 0.0965 ± 0.0004 

 10 248 0.0742 ± 0.0007 

 5 497 0.0558 ± 0.0014 
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alignment, analyzable volume reconstructions can be achieved using the concave TomoCap 

and the new RCM 2.0. Despite that, Fig. 5 and Fig. 7 prove that the best image quality is 

realized with the KIT-alignment, which is tailored to the HRT. 

Compared to the planar TomoCap, the image data acquired with the concave TomoCap 

have the same high image quality throughout all our measurements while simultaneously 

reducing eye movements significantly. Although expanded in vivo human corneal image 

stacks and arbitrary slices were presented before [16–18], the image quality of the slices is 

now increased by the interplay of the piezo drive, the concave TomoCap and the KIT-

algorithm. 

With the wide range of scanning parameters like velocity and travel distance as well as 

various scanning functions, the RCM 2.0 is suitable for numerous tasks. Furthermore, the 

maximum focus shift is increased to 500 µm and the position control is more precise while at 

the same time offering higher resolution and acceleration compared to the motorized RCM 

described in [5]. This enables a fast focal plane change with more than 800 µm/s while 

offering a position feedback with 12 nm accuracy. Additionally, the piezo system in 

combination with the fixed TomoCap provides new opportunities, for example a fast 

oscillating focal plane for large-scale image reconstruction of the SNP [29]. This is an elegant 

way to get rid of gaps and foreign tissue in large area imaging of the SNP [29,30], caused by 

unwanted axial shifts of this layer during examination. Without the fast oscillating focal plane 

shift, the focus has to be adjusted manually during image recording. 

Despite the advantages of the concave TomoCap presented in this work, the usage of this 

cap is only recommended for investigations where the eye is supposed to remain fixed. For 

other tasks, e.g. mapping structures by the use of guided eye movements [13], the planar 

TomoCap is still the best choice. It is also not recommended to investigate the limbal region 

with such a concave TomoCap. Another drawback of the new TomoCap is its size. Often a 

camera is used to observe the reflection of the laser spot on the cornea for prealignment 

before contacting the cornea. This is only possible for large distances between cornea and the 

concave TomoCap, because otherwise the line of sight is blocked. However, a part of the 

scanning laser light is visible on the iris. This light can be exploited for a rough alignment. A 

multimodal imaging method combining confocal laser scanning microscopy and optical 

coherence tomography can also help in the alignment process. Sometimes the size of the 

TomoCap increases the setup effort. While examining subjects with a drooping eyelid, care 

has to be taken, that the eyelid is not between cornea and TomoCap. 

Generally, the presented concave TomoCap and the RCM 2.0 enable fast and reliable 

recordings of expanded in vivo human corneal image stacks. Because of the reduced eye 

movements the cuboid volume of the 3D reconstruction is increased. Furthermore, whether a 

planar or concave TomoCap is used, the RCM 2.0 is preferable to the original RCM because 

of the computer controlled focus drive with a piezo actuator and the fixed TomoCap 

explained and demonstrated throughout this paper. The capability of the proposed method to 

create high-quality orthogonal or oblique slices through the corneal tissue presents the 

opportunity for in vivo slit lamp microscopy on a cellular level. 
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