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Cellular internalization of alpha-
synuclein aggregates by cell 
surface heparan sulfate depends on 
aggregate conformation and cell 
type
Elisabet Ihse1,2, Hodaka Yamakado1, Xander M. van Wijk2,3, Roger Lawrence2, Jeffrey D. Esko2 

& Eliezer Masliah1

Amyloid aggregates found in the brain of patients with neurodegenerative diseases, including 
Alzheimer’s and Parkinson’s disease, are thought to spread to increasingly larger areas of the brain 
through a prion-like seeding mechanism. Not much is known about which cell surface receptors may be 
involved in the cell-to-cell transfer, but proteoglycans are of interest due to their well-known propensity 
to interact with amyloid aggregates. In this study, we investigated the involvement of plasma 
membrane-bound heparan and chondroitin sulfate proteoglycans in cellular uptake of aggregates 
consisting of α-synuclein, a protein forming amyloid aggregates in Parkinson’s disease. We show, 
using a pH-sensitive probe, that internalization of α-synuclein amyloid fibrils in neuroblastoma cells is 
dependent on heparan sulfate, whereas internalization of smaller non-amyloid oligomers is not. We also 
show that α-synuclein fibril uptake in an oligodendrocyte-like cell line is equally dependent on heparan 
sulfate, while astrocyte- and microglia-like cell lines have other means to internalize the fibrils. In 
addition, we analyzed the interaction between the α-synuclein amyloid fibrils and heparan sulfate and 
show that overall sulfation of the heparan sulfate chains is more important than sulfation at particular 
sites along the chains.

Protein aggregation is a hallmark of many neurodegenerative diseases, including Alzheimer’s disease and 
Parkinson’s disease1. A large body of evidence demonstrates that protein aggregation is not an epiphenomenon, 
but rather drives disease development2. �e speci�c proteins that aggregate and form deposits vary between 
different neurodegenerative diseases, but the aggregates often share a similar beta-sheet rich fold, forming 
long unbranched structures called amyloid �brils3, 4. A well-known propensity of amyloid �brils is to act as 
auto-catalysts, triggering further incorporation of monomeric protein into the �brils, a process known as “seed-
ing”5, 6. Evidence also indicates that spreading of protein aggregation to increasingly larger areas of the brain and 
the ensuing pathological changes are caused by a seeding mechanism7–15.

In Parkinson’s disease (PD) and dementia with Lewy Bodies (DLB), the hallmark deposits (Lewy bod-
ies and Lewy neurites) are predominantly found inside neurons. �e �bril forming protein in these deposits 
is α-synuclein, a 14 kDa presynaptic protein2. Alpha-synuclein aggregates are also seen in oligodendrocytes 
in multiple system atrophy (MSA)16. Lewy bodies have been found in gra�ed neurons in Parkinson’s disease 
patients treated with embryonic cell transplants7. In addition, animal studies have shown that brain inocula-
tion with α-synuclein aggregates, or over-expression of α-synuclein in restricted brain areas, lead to propaga-
tion of α-synuclein aggregation to anatomically interconnected areas of the brain9, 10, 14, 15, 17. Cell culture studies 
have shown that cells internalize α-synuclein aggregates, and that once inside, the aggregates can trigger further 
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aggregation of intracellular α-synuclein8, 9, 11. However, the molecular actors and pathways involved in both secre-
tion and internalization remain obscure.

Proteoglycans are glycoproteins that contain one or more sulfated glycosaminoglycan (GAG) chains18. Cell 
surface proteoglycans are found on virtually all animal cells. �ey bind a number of protein ligands, and are indis-
pensable during embryonic development and organ physiology18, 19. GAGs, in particular heparan sulfate, interact 
with amyloid proteins20–30. �e interaction likely occurs by way of negatively charged groups in the GAG chains 
with positively charged amino acids in the amyloid protein19, 31. Heparan sulfate has been found in all extracellular 
amyloid deposits investigated, regardless of the nature of the amyloid protein20, 21. In addition, heparan sulfate 
induces �bril formation of many amyloidosis-related proteins in vitro22–26, and also has a stabilizing e�ect on the 
formed aggregates32. More recently, cell surface heparan sulfate proteoglycans have been described to facilitate 
cellular internalization of amyloid proteins, which has attracted attention due to the emerging interest in disease 
propagation through cell-to-cell transfer of amyloid aggregates27–30.

Here, we examined the involvement of GAGs in cellular internalization of α-synuclein aggregates. We show 
that in neuronal cells, internalization of α-synuclein in the form of amyloid �brils depends on heparan sulfate, 
whereas α-synuclein in the form of soluble non-amyloid oligomers does not. We show that uptake of α-synuclein 
amyloid �brils in oligodendrocytic cells also depends on heparan sulfate, while it is less important for astrocytic 
and microglial uptake. Lastly, we investigated how the extent and pattern of heparan sulfate sulfation a�ects cel-
lular uptake of α-synuclein �brils.

Results
Formation and characterization of two different α-synuclein aggregate species. To examine if 
the particular conformation of α-synuclein aggregates would a�ect uptake into cells by way of heparan sulfate 
proteoglycans, we generated two α-synuclein aggregate species - soluble non-amyloid oligomers and �brils with 
a typical amyloid fold. Monomeric recombinant human α-synuclein was used to produce the aggregates and 
the conformation was veri�ed by �io�avin T �uorescence, western blot and electron microscopy (Fig. 1). �e 
amyloid �brils were sonicated before they were added to the cell culture. Sonication breaks the �brils into shorter 
structures and separates the �brils from each other, thereby ensuring that the preparation does not contain large 
networks of �brils whose size exceed what the cells are able to internalize. In addition, sonicated α-synuclein 
�brils have been shown to be able to act as seeds for further α-synuclein aggregation11, 14, 17, 33, 34. Such species may 
therefore be of particular interest when studying cellular internalization of protein aggregates.

Figure 1. Characterization of α-synuclein aggregates. (A) Amyloid �bril formation was followed by a 
�io�avin T �uorescence assay. Fibril formation was stopped a�er 10 days, when the �io�avin T �uorescence 
had reached its plateau. (B) �e oligomeric preparation showed no increase in �io�avin T �uorescence. (C) 
Western blot analysis of α-synuclein preparations using an anti-synuclein antibody (FL-140, Santa Cruz). 
M = Monomers, SF = Sonicated �brils, F = Fibrils, without sonication, O = Oligomers. (D,E) Electron 
microscopy on the �bril preparation showed typical amyloid �brils (D) that broke into shorter �brils a�er 
sonication (E).
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Binding of α-synuclein fibrils, but not soluble non-amyloid oligomers, depends on heparan sul-
fate in neuroblastoma cells. To examine the binding and uptake of the di�erent α-synuclein preparations, 
�brils and oligomers were added to rat neuroblastoma B103 cells. A�er four hours, the cells were solubilized and 
centrifuged, and α-synuclein in the pellet and supernatant fractions was measured by sandwich ELISA. High 
binding/uptake was seen for the �brillar preparation. As expected, most of the α-synuclein in this preparation 
was recovered in the pellet, although some was found in the supernatant, possibly due to smaller aggregate species 
generated by sonication of the �brils (Fig. 2A). In comparison, very little soluble non-amyloid oligomers were 
bound or taken up. �ese oligomeric species were only present in the supernatant, while no α-synuclein could 
be detected in the pellet (Fig. 2A). Addition of heparin (a highly sulfated variant of heparan sulfate) almost elim-
inated all cellular binding/internalization of α-synuclein amyloid �brils, by competing with cell surface heparan 
sulfate. �e same treatment had little e�ect on the soluble non-amyloid oligomers (Fig. 2B). Pre-treating the cells 
with a mixture of the heparan sulfate degrading enzymes heparin lyases I, II and III also decreased the binding/
uptake of �brillar α-synuclein to a great extent, but had very little e�ect on oligomers (Fig. 2C).

�ese results suggested that the association of α-synuclein �brils to B103 cells depend on cell surface hep-
aran sulfate. Interestingly, the heparan sulfate involvement was limited to aggregates with an amyloid �brillar 
structure, while the soluble non-amyloid oligomers did not seem to depend on the presence of these cell surface 
molecules.

Alpha-synuclein amyloid fibrils colocalize with heparan sulfate in neuroblastoma cells. Based 
on these �ndings, we predicted that α-synuclein amyloid �brils should colocalize with heparan sulfate on the cell 
surface or within the endosomal/lysosomal pathway. B103 cells treated with AlexaFluor594 labeled α-synuclein 
�brils and stained with a monoclonal antibody speci�c for heparan sulfate (10E4) demonstrated colocalization 
in numerous puncta a�er 4 hours (Fig. 3, upper panels). A�er 24 hours, the aggregates coalesced and increased 
in size (Fig. 3, lower panels).

Cellular internalization of α-synuclein amyloid fibrils depends on heparan sulfate in neuroblas-
toma cells. �e ELISA assay described above does not discriminate between α-synuclein bound to proteogly-
cans on the cell surface and material that has been internalized. To reduce the possibility of including cell-surface 
bound α-synuclein in the measurements, cells were treated with trypsin before harvesting. However, such treat-
ment does not guarantee elimination of cell-surface bound amyloid �brils, as these aggregates are known to 
be resistant to protease cleavage35, 36. To better assess cellular uptake, α-synuclein �brils were labeled with the 
pH-sensitive dye pHrodo, which will only �uoresce with a strong signal at the acidic pH encountered in the 
endosomal-lysosomal pathway. B103 cells took up pHrodo-tagged α-synuclein in a time dependent way, saturat-
ing by 20 hours (Fig. 4A). �e addition of heparin to the cell media decreased the uptake of pHrodo-α-synuclein 
�brils in a dose-response manner with an IC50 of ~10 ng/ml (Fig. 4B). In contrast, inclusion of chondroitin sul-
fate had little e�ect at this concentration and had an approximate IC50 of ~10 µg/ml (Fig. 4B). Pre-treating cells 
with a mixture of heparin lyases I, II and III produced similar results as addition of heparin (Fig. 4C), whereas 
pre-treatment with chondroitinase ABC did not a�ect the uptake of α-synuclein amyloid �brils (Fig. 4C). �ese 
observations demonstrate that cell surface heparan sulfate proteoglycans play a dominant role in uptake of 
α-synuclein �brils.

Figure 2. Cellular binding/uptake of α-synuclein amyloid �brils, but not soluble non-amyloid oligomers, 
depends on heparan sulfate in B103 cells. B103 neuroblastoma cells were harvested 4 hr a�er addition of 
α-synuclein to the cell media, and cell lysates were centrifuged and separated into pellet and supernatant 
fractions. Each fraction was analyzed for α-synuclein content by a sandwich ELISA. �e vast majority of �brillar 
α-synuclein was, as expected, found in the cell lysate pellet while the non-amyloid oligomeric α-synuclein was 
only found in the cell lysate supernatant. (A) Cell binding/uptake of α-synuclein amyloid �brils and soluble 
non-amyloid oligomers. (B) Binding/uptake of α-synuclein of cells treated with heparin (20 µg/ml) prior to 
addition of α-synuclein. (C) Binding/uptake of α-synuclein of cells pre-treated with heparin lyases (mixture of 
I, II and III, 5 mU/ml) prior to addition of α-synuclein. ND = not detected. Statistical signi�cance was analyzed 
by one-way ANOVA with Sidak’s multiple comparisons test.
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Cellular internalization of α-synuclein amyloid fibrils by heparan sulfate in glial cells. To exam-
ine the dependence of α-synuclein uptake on heparan sulfate in other cell types found in the brain, we investi-
gated several glial cell lines; the human oligodendrocytic cell line MO3.13, the astrocytic-like rat glioma C6 cell 
line and the murine microglial cell line BV-2. All three cell lines internalized pHrodo-tagged α-synuclein �brils, 
but the degree of dependence on heparan sulfate di�ered, based on sensitivity of uptake to heparin lyase treat-
ment (Fig. 5, dark grey bars). Uptake in MO3.13 cells was dramatically reduced by removal of heparan sulfate 
(Fig. 5A), similar to what was seen for the neuroblastoma B103 cells. In contrast, reduction in �bril uptake was 
less drastic in C6 cells (Fig. 5B), and uptake by BV-2 cells was only marginally a�ected (Fig. 5C). �is suggests that 
the latter two cell types use other, heparan sulfate-independent, mechanisms to internalize the amyloid �brils. 
Uptake was not a�ected by removal of chondroitin/dermatan sulfate via chondroitinase ABC treatment in any of 
the cell lines (Fig. 5, light gray bars).

Characterization of heparan sulfate sulfation patterns important for cellular uptake of 
α-synuclein fibrils. �e binding of protein ligands to heparan sulfate generally depends on electrostatic 
interactions between the negatively charged sulfate groups in the heparan sulfate chains with positively charged 
amino acids in the combining site in the heparan sulfate-binding protein19, 31. In some cases, binding depends 
on the overall degree of sulfation, including length of and distance between sulfate-rich domains. In other 
cases, binding depends on speci�c arrangements of sulfated disaccharide units (N-sulfated, 6-O-sulfated, and 
3-O-sulfated glucosamine residues and 2-O-sulfated uronic acids). �e characteristics of heparan sulfate required 
for its interaction with α-synuclein �brils have not been determined.

To investigate the speci�city of the interaction, we took advantage of available mutant Chinese hamster ovary 
(CHO) cell lines altered in GAG biosynthesis. Wild-type CHO cells internalized pHrodo-α-synuclein amyloid 
�brils readily (Fig. 6A), and treatment with heparin lyases and chondroitinase ABC showed that uptake depended 
strongly on heparan sulfate (Fig. 6B). Analysis of CHO pgsA-745, which lacks xylosyltransferase activity and 
therefore fails to make both heparan sulfate and chondroitin/dermatan sulfate, did not internalize α-synuclein 
�brils (Fig. 6B). Transfection of pgsA-745 cells with XylT1 restored uptake, which remained sensitive to heparin 
lyase digestion. Additionally, CRISPR/Cas9 was used to create two additional mutants defective in XylT2, the 
endogenous xylosyltransferase in CHO cells. �ese cells showed a similar reduction in uptake of α-synuclein 
�brils compared to clonal wildtype lines (Fig. 6C). pgsD-677 cells showed greatly reduced uptake of α-synuclein 
�brils. �is mutant does not make heparan sulfate due to a de�ciency in Ext1, a subunit of the copolymerase 
complex, but makes more chondroitin/dermatan sulfate proteoglycans (Fig. 6D)37. �us, these mutants con�rm 
the dependence of uptake of α-synuclein �brils on heparan sulfate.

The CHO pgsE-606 line is deficient in glucosamine N-sulfation, which also lowers the overall degree 
of O-sulfation in heparan sulfate due to coupling of downstream O-sulfation reactions to N-sulfation of glu-
cosamine units. Uptake of α-synuclein �brils in pgsE-606 cells was reduced to similar levels as in pgsD-677 
cells. In contrast, inactivation of 2-O-sulfation of uronic acids in pgsF-17 cells had only a small e�ect on uptake 
(Fig. 6D). Interestingly, this line produces heparan sulfate with elevated levels of N-sulfation and 6-O-sulfation, 
yielding chains with comparable overall charge to heparan sulfate made in wildtype cells. �us, binding and 
uptake appears to be sensitive to overall charge of the chain, but independent of 2-O-sulfation per se. Introduction 

Figure 3. Colocalization of α-synuclein amyloid �brils and heparan sulfate in B103 cells. Alpha-synuclein 
�brils were labeled with AlexaFluor594 and added to the cell media. Cells were �xed at various time-points a�er 
α-synuclein addition, and therea�er stained with the anti-heparan sulfate antibody 10E4 and visualized with 
confocal microscopy.
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of 3-O-sulfate groups into heparan sulfate by transduction of wildtype CHO cells with four di�erent isoforms of 
HS3ST enzymes also had little e�ect on α-synuclein �bril uptake (Fig. 6E).

Discussion
It is becoming clear that the relationship between GAGs and amyloid-forming proteins is very intricate and 
complex. Interactions between these two classes of molecules have been described to have consequences for mul-
tiple processes involved in amyloid-related pathology38. �is diverse role of GAGs in protein aggregate diseases 
makes it an attractive target for therapy. However, both detrimental and bene�cial e�ects by GAGs on the disease 
development have been reported22, 25, 39–43. Although heparan sulfate mimetics have shown promising results as 
therapeutics in animal models44–46, clinical trials have been less successful. �us, it is of importance to understand 
the molecular determinants that underlie GAG-amyloid interactions.

In this report, we have shown that neuronal binding and uptake of α-synuclein amyloid �brils depends on 
cell surface heparan sulfate, presumably by binding to plasma membrane proteoglycans bearing heparan sulfate 
chains. Heparan sulfate proteoglycans also seem to facilitate neuronal internalization of other amyloid form-
ing proteins, for example Aβ and tau (in Alzheimer’s disease) and prion protein (in prion diseases, for example 
Creutzfeldt-Jacob disease)27–29. In a recent study, a role for heparan sulfate in uptake of α-synuclein �brils in 
neural precursor cells has also been suggested30. �e general participation of heparan sulfate in several protein 

Figure 4. Internalization of α-synuclein amyloid �brils in B103 cells depends on heparan sulfate. Alpha-
synuclein �brils labeled with pHrodo were added to B103 cells and internalization was measured by �ow 
cytometry. (A) Time course of internalization of pHrodo-α-synuclein �brils in B103 cells. (B,C) Cellular 
internalization of pHrodo-α-synuclein �brils was determined a�er 8 hr of incubation (B) Dose-response curves 
when heparin or chondroitin sulfate was added to the cell media before addition of pHrodo-α-synuclein �brils. 
(C) Dose-response curves when heparin lyases or chondroitinase ABC were added to the cell media before 
addition of pHrodo-α-synuclein �brils.

Figure 5. �e involvement of heparan sulfate in internalization of α-synuclein �brils in di�erent types of glial 
cell lines. �e cell lines were treated with a mix of heparin lyases I, II and III or chondroitinase ABC (5 mU/
ml) before pHrodo-α-synuclein �brils were added to the cell media. Internalization was measured by �ow 
cytometry a�er incubation with pHrodo-α-synuclein �brils for 8 hr. (A) Internalization of pHrodo-α-synuclein 
�brils in the oligodendrocytic human MO3.13 cell line. (B) Internalization of pHrodo-α-synuclein �brils in the 
astrocyte-like rat glioma C6 cell line. (C) Internalization of pHrodo-α-synuclein �brils in the mouse microglial 
BV2 cell line. Statistical signi�cance was analyzed by Student’s t-test.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS | 7: 9008  | DOI:10.1038/s41598-017-08720-5

aggregation diseases re�ects the propensity of various amyloid proteins to interact with polyanionic compounds, 
and the well-known capacity of cell-surface heparan sulfate proteoglycans to act as endocytic receptors47, 48.

In order to determine if the aggregate conformation, especially the amyloid fold, was of importance in binding 
and uptake, we studied two di�erent aggregate conformations of α-synuclein - �io�avin T-negative soluble oli-
gomers and insoluble �brillar aggregates with typical amyloid properties. In neuroblastoma cells, amyloid �brils 
were taken up much more readily than the non-amyloid oligomers, indicating that the cells have a speci�c mech-
anism to interact with amyloid �brils. Fibril formation might expose positively charged domains that can interact 
with heparan sulfate or create enhanced valency. Today, much focus is being put on oligomeric species, as they 
are believed to be more toxic than the �brils41. However, it is possible that propagation and toxicity are caused by 
di�erent conformational species, as has been proposed for prion disease49. Sonicated amyloid �brils have repeat-
edly been shown to be able to seed aggregation of α-synuclein in cell culture as well as animal models11, 14, 17, 33, 34,  
and may therefore be responsible for propagation of pathology. Our �ndings suggest that such species would 
transfer between neuronal cells more e�ectively than smaller oligomers, as they seem to internalize more readily, 
although other oligomeric conformations than those used in this study need to be investigated as well. It should 
be noted that the relative a�nity for �brils compared to oligomers of the ELISA used in this study, has not been 
assessed. �e signal acquired from �brillar α-synuclein may therefore not be proportional to the signal acquired 
from oligomeric α-synuclein.

�e oligomeric species of α-synuclein used in our study did not bind to cells through heparan sulfate. �is 
�nding is in contrast with Aβ, where amyloid �brils, smaller oligomers, and even monomers have been reported 
to be dependent on heparan sulfate for internalization28, 29. Future studies should aim at determining if this di�er-
ence is speci�c for the oligomeric preparation used in the present study, or if there are variations between di�erent 
amyloid-associated proteins.

Discriminating between material that has been internalized and material that is only bound to the cell sur-
face can be problematic, and in some previous studies on cellular uptake of protein aggregates this has been 

Figure 6. Internalization of α-synuclein �brils by CHO cells de�cient in di�erent enzymes involved in GAG 
synthesis. pHrodo-α-synuclein �brils were added to the cell media and their cellular internalization was analyzed 
with �ow cytometry. Each cell line was treated with a mix of heparin lyases I, II and III or chondroitinase ABC 
(5 mU/ml) as a means to check the accuracy of the results obtained from the di�erent lines. (A) Time course of 
pHrodo-α-synuclein �brils internalization in CHO K1 (wt) cells. (B–E) Internalization of pHrodo-α-synuclein 
�brils a�er incubation for 8 hr in CHO cells with di�erent mutations. (B) Internalization of pHrodo-α-synuclein 
�brils in CHO cells de�cient in all GAGs (pgsA-745 strain), caused by insu�cient xylosyltransferase activity, 
and in CHO pgsA-745 cells stably transfected with xylosyltransferase 1 (pgsA-745-XT1). (C) Internalization of 
pHrodo-α-synuclein �brils in two di�erent clones (clone 23 and 93) selected from CHO K1 cells, in comparison 
to the same clones where XylT2 has been knocked out. (D) Internalization of pHrodo-α-synuclein �brils in CHO 
cells de�cient in enzymes involved in heparan sulfate synthesis. �e pgsD-677 strain lacks HS, due to de�ciency in 
Ext1, which is required for polymerization of the heparan sulfate chain. pgsE-606 cells are de�cient in N-sulfation 
of heparan sulfate chains and also show a lower general degree of heparan sulfate sulfation. pgsF-17 cells are 
de�cient in 2-O-sulfation of heparan sulfate chains, but show relatively unchanged overall sulfation of heparan 
sulfate. (E) Internalization of pHrodo-α-synuclein �brils in CHO K1 cells stably transduced with HS3ST1-4.
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overlooked. Methods such as western blot on cell lysates or �uorophore-labeling of the aggregates with subsequent 
microscopy analyses have been employed, which each poses di�culties in determining what is truly internalized 
as opposed to attached to the outside of the cell. �is prompted us to develop an assay to assess internalization 
using pHrodo-labeled α-synuclein. Consistent with previous �ndings suggesting that α-synuclein is shuttled 
through the endo-lysosomal pathway a�er internalization50, a time-dependent increase in the pH-induced �uo-
rescence of pHrodo-tagged α-synuclein was observed. Uptake was sensitive to heparin lyases and heparin, but it 
is possible that the extent of internalization is underestimated with this method, due to turnover, entry by some 
other mechanism or if aggregates escape the endo-lysosomal pathway before su�cient acidi�cation of the lumen 
occurs. However, comparable results were obtained by ELISA, which measures all α-synuclein regardless of its 
location within the cell or on the cell surface.

Although most reports on GAGs in amyloid deposits focus on heparan sulfate, chondroitin sulfate has also 
been described to be present in Lewy bodies as well as the Alzheimer’s disease related amyloid deposits of Aβ 
and tau51, 52. �e �ndings reported here shows that heparan sulfate is the main GAG involved in cellular uptake 
of α-synuclein amyloid �brils. Removal of chondroitin/dermatan sulfate had a mild e�ect on uptake in CHO 
cells, but no e�ect in the neuroblastoma or glial cell lines investigated in this study. Further studies of chondroitin 
sulfate are warranted, as di�erent isomers of chondroitin sulfate occur in the brain, including species containing 
disulfated disaccharides53.

Studies have shown that α-synuclein aggregates can activate astrocytes and microglia, and that this appears 
to be dependent on aggregate internalization54, 55. Our study suggests that HS-dependent uptake of α-synuclein 
�brils is used by non-immune brain cells like neurons and oligodendrocytes, while this pathway may be of less 
importance for astrocytes and microglial cells. Additional studies of primary cells and other cell lines are needed 
to con�rm these di�erences. If correct, then therapeutic inhibition of heparan sulfate-dependent internalization 
would mostly a�ect transfer of amyloid aggregates between neurons (in Parkinson’s disease and Dementia with 
Lewy Bodies)) and oligodendrocytes (in Multiple Systemic Atrophy), while clearance of aggregates by microglial 
would largely be una�ected. As heparin is known to facilitate �brillization of α-synuclein25 and other amyloido-
genic proteins22–24, 26, it can be speculated that internalizing �brils through cell surface HS, may pose a risk for 
continued aggregation in the recipient cell. In light of this, it can also be speculated that neuronal subtypes that 
express high levels of HS, or highly sulfated variants of HS, may be particularly a�ected in Lewy body disorders, 
due to both a high level of uptake and an increased risk for continued intracellular aggregation.

As heparan sulfate proteoglycans are ubiquitous and have a plethora of functions, a non-speci�c downreg-
ulation of these molecules to hinder cell-to-cell transfer of aggregates would likely be problematic. �erefore, 
the particular elements required for the interaction between heparan sulfate and the amyloid �brils need to be 
elucidated. We used CHO mutants that are de�cient in di�erent aspects of heparan sulfate synthesis to study the 
interaction. �e results suggest that the general degree of sulfation is important for the uptake, rather than a spe-
ci�c disaccharide sequence with certain modi�cations at particular locations.

In conclusion, we have shown that α-synuclein aggregates with an amyloid �brillar fold seem to be highly 
dependent on cell surface heparan sulfate for internalization into non-immune cells of the brain, while additional 
mechanisms for internalization seem to be employed by astrocytes and microglia. We have also shown that a 
typical amyloid �bril structure seems to be important for the interaction between cell surface heparan sulfate and 
α-synuclein aggregates. �ese results warrant further studies to examine the involvement of heparan sulfate in 
disease propagation in Lewy body diseases in vivo.

Materials and Methods
Aggregation and labeling of α-synuclein. Human recombinant α-synuclein (rPeptide, Bogart, GA, 
USA) was used to produce non-amyloid oligomers and amyloid �brils. To prepare the oligomers, α-synuclein 
was dissolved in 7.5 mM Tris, 100 mM NaCl, pH 7.4 at a concentration of 70 µM (~1 mg/ml) and incubated with-
out agitation at 37 °C for 16 hr followed by 6 hr at 56 °C. To prepare �brils, α-synuclein was dissolved in PBS to a 
concentration of 140 µM (~2 mg/ml), and incubated at 37 °C with rotary agitation (400 rpm). �e formation of 
amyloid �brils was monitored by the amyloid binding compound �io�avin T 56. Samples were taken from the 
α-synuclein solution at di�erent time points and diluted to 4.5 µM, �io�avin T was added to a concentration 
of 20 µM and the resulting �uorescence was measured at excitation max of 430 nm and emission max at 485 nm 
using a microplate reader (Spectramax M3, Molecular Devices, Sunnyvale, CA, USA). A plateau in the �io�avin 
T curve was reached a�er 10 days and the �brillization reaction was then stopped. �e �bril solution was centri-
fuged at 20,000 × g for 30 min to separate the insoluble �brils from smaller soluble aggregates and/or any residual 
monomers. �e pellet was re-dissolved in PBS to a concentration of 70 µM. �e amount of α-synuclein in the pel-
let was estimated by subtracting the concentration of protein in the supernatant from the concentration of protein 
in the solution before �bril formation was started. Concentrations were determined by measuring absorbance at 
280 nm using NanoDrop. �e re-dissolved pellet was then either sonicated or labeled with �uorescent tags.

Labeling of α-synuclein with pHrodo or AlexaFluor594 was performed with microscale labeling kits accord-
ing to the manufacturer’s instructions (�ermo Fisher Scienti�c, Waltham, MA, USA). Purifying the �brils from 
unreacted dye was achieved by centrifuging the α-synuclein/dye solution at 20,000 × g for 30 min, reconstitution 
in PBS, followed by 3 more cycles of centrifugation and reconstitution in PBS. �e �brils, labeled or unlabeled, 
were sonicated before adding to cells, using a probe sonicator (550 Sonic Dismembrator, Fisher Scienti�c) at 
power 2.5 for 20 × 5 sec.

Electron microscopy. Samples were adhered to 100 mesh Formvar and carbon coated grids for 10 min at 
room temperature. Grids were washed 3 × 1 min with deionized water, stained with 2% uranyl acetate (Ladd 
Research Industries, Williston VT) in water for 1 minute, dried and viewed using a Tecnai G2 Spirit BioTWIN 
transmission electron microscope equipped with an Eagle 4k digital camera (FEI, Hilsboro, OR, USA).
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Gel electrophoresis and western blotting. Samples were diluted in NuPAGE lithium dodecyl sulfate 
(LDS) sample bu�er and NuPAGE sample reducing agent (containing dithiothreitol (DTT)) (�ermo Fisher 
Scienti�c) according to the manufacturer’s instructions and heated at 95 °C for 10 min. Samples were separated 
on a 4–12% Bis-Tris gel (�ermo Fisher Scienti�c) using a 2-(N-morpholino) ethane-sulfonic acid (MES) sodium 
dodecyl sulfate (SDS) running bu�er with NuPAGE antioxidant reagent (containing N,N-dimethylformamide 
and sodium bisulfate) (�ermo Fisher Scienti�c) added to the cathode solution. Samples were transferred to a 
PVDF membrane (EMD Millipore, Billerica, MA, USA) followed by blocking of the membrane in bovine serum 
albumin and incubation with an anti-synuclein antibody FL-140 (Santa Cruz Biotechnology, Dallas, TX, USA), 
and therea�er incubation with an anti-rabbit antibody (donkey-anti-rabbit IRDye680LT, Li-Cor, Lincoln, NE, 
USA) and analyzed with the Odyssey CLX system (Li-Cor).

Cell culture and treatment. Cells were cultured at 37 °C and 5% CO2. Rat neuroblastoma B103 cells, 
human hybrid oligodendrocytic MO3.13 cells and murine microglial BV-2 cells were grown in DMEM medium 
(Gibco, �ermo Fischer Scienti�c), whereas Chinese Hamster Ovarian (CHO) cells and astrocytic-like rat glioma 
C6 cells were grown in F12 medium (Gibco, �ermo Fischer Scienti�c). Each medium was supplemented with 
10% FBS (Gemini Bio, West Sacramento, CA, USA), 100 U/mL of penicillin and 100 µg/mL of streptomycin sul-
fate (Gibco, �ermo Fisher Scienti�c). All experiments shorter than 24 h were carried out in medium without FBS 
or antibiotics, whereas the concentration of FBS was reduced to 5% for longer experiments.

�e production and characterization of CHO mutant pgsA-745 was described in ref. 57, pgsD-677 in ref. 37, 
pgsE-606 in ref. 58 and pgsF-17 in ref. 59. pgsA-745 cells transfected with xylosyltransferase 1 (pgsA-745-XT1) 
were described in ref. 60. New CHO cells bearing defects in xylosyltransferase 2 were created using CRISPR/Cas9 
as described in ref. 61. CHO cells stably transduced with HS3ST1-4 were created as described in ref. 62.

Alpha-synuclein was added to the culture medium at a concentration corresponding to 0.5 µM for monomeric 
α-synuclein. GAGs (heparin or chondroitin sulfate) were added to the cell media 5 min prior to the addition of 
α-synuclein, while GAG degrading enzymes (heparin lyases or chondroitinase ABC) were added 30 min prior to 
the addition of α-synuclein and re-added a�er 3 hr. Heparin (Scienti�c Protein Laboratories (SPL), Waunakee, 
WI, USA), chondroitin sulfate (shark cartilage chondroitin sulfate sodium salt, Sigma-Aldrich, Saint Louis, MO, 
USA) and chondroitinase ABC (AMSBIO, Cambridge, MA, USA) was obtained commercially, while recombinant 
heparin lyases were produced in E. coli.

Alpha-synuclein sandwich ELISA. Cells were treated with α-synuclein for 4 hr and harvested with 
trypsin (0.25%), centrifuged and solubilized in PBS containing 1% Triton-X100 and a protease inhibitor cocktail 
(Complete, EDTA-free, Roche, Indianapolis, IN, USA). A�er centrifugation at 20,000 × g for 30 min, the result-
ing supernatant and pellet were separated and the pellet re-dissolved in PBS containing 1% Triton-X100 and 1% 
SDS using a probe sonicator (550 Sonic Dismembrator, Fisher Scienti�c) at power 2.5 for 15 seconds followed by 
heating at 75 °C for 10 min. �e samples were then analyzed for α-synuclein levels using a sandwich ELISA with 
minor changes from the procedure described in ref. 63. In short, high-binding 96-well EIA/RIA plates (Corning 
Inc., Corning, NY, USA) were coated with anti-Syn-1 antibody at 0.3 µg/ml (BD Biosciences, San Diego, CA, USA) 
at 4 °C overnight. Plates were blocked with 1% bovine serum albumin in PBS for 3 hr in room temperature before 
samples were applied for 1 hr at room temperature. For detection, an anti-synuclein antibody (FL-140, Santa Cruz 
Biotechnology) was used at a concentration of 0.3 µg/ml, followed by incubation with an HRP-conjugated goat 
anti-rabbit antibody diluted 1:5000 (Vector Laboratories). Enhanced K-Blue TMB substrate (Neogen, Lansing, 
MI, USA) was added and the reaction was stopped with 1 M HCl and the absorbance at 450 nm was measured 
using a microplate reader (Spectramax M3, Molecular Devices). All experiments were repeated at least three times.

Flow cytometry. Cells were treated with pHrodo-labeled α-synuclein �brils for 8 hr and harvested with 
trypsin, centrifuged, resuspended in a solution of 1 mM EDTA in PBS and immediately analyzed by �ow cytome-
try (BD FACSCalibur). CellQuest so�ware was used to analyze the acquired data. Each condition was performed 
in triplicate, and 10000 cells from each well were analyzed.

Confocal microscopy. Cells were treated with AlexaFluor594-labelled α-synuclein �brils before being 
washed 3 times in PBS and �xed with 4% paraformaldehyde at di�erent time-points. Cells were made per-
meable with 0.25% Triton-X100, blocked with 10% horse serum (Vector Labs, Burlingame, CA, USA), 
stained with anti-heparan sulfate antibody 10E4 (AMSBIO) at a dilution of 1:100, followed by staining with 
�uorescein-conjugated secondary antibody (1:100, Vector Labs). Slides were mounted with ProLong® Gold 
Antifade Mountant (�ermo Fisher Scienti�c) and studied with a Axiovert 35 microscope (Zeiss, Germany) with 
an attached MRC1024 laser scanning confocal microscope system (BioRad, Hercules, CA, USA) and analyzed 
with Image J v1.43 so�ware (NIH, Bethesda, MD, USA).

Statistical analyses. All values are shown as mean values ± standard deviation. Tests for signi�cance were 
performed with one-way ANOVA with Sidak’s multiple comparisons test or Student’s t-test. P ≤ 0.05 was consid-
ered signi�cant. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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