
S~dhan& Vol. 18, Part 2, June 1993, pp. 279-300. © Printed in India.

Cellular logic array processing techniques for high-throughput
image processing systems

E G RAJAN

Department of Electrical Engineering, Indian Institute of Technology,

Kanpur 208 016, India

Abstract. This paper describes certain image processing techniques

within the framework of cellular automata and normal algorithms for

high-throughput data processing. The central idea on which these

techniques have been developed is that a digital image can be treated as

a cellular automaton configuration, and an image processing operation, as

an evolution of the automaton due to an updating rule that describes a

relational attribute among the pixel values in a specific neighbourhood.

Filtering operations on digital images, like that of thinning, edge detection

segmentation, erosion and dilation are modelled and realized using cellular

automata.

Keywords. Pattern recognition; image processing; cellular automata;

symbolic processing; computer vision; pattern-directed array processing

computer graphics.

1. Introduction

The literature on computer vision now has much work on advanced techniques for

image processing and pattern recognition. Most of them are either spatial domain

or transform domain techniques developed around the common idea that a digital

image is represented as an array of numbers, and an operation on the image is carried

out by applying a numerical algorithm to the array. In other words, an

image-processing operation is a transformation g(x, y) = T[f (x , y)], where f (x , y) is

the input image, g(x, y) is the output image and T is the transformation operator on

f, defined over some neighbourhood of (x, y). Regardless of the nature of operations,

however, the general approach is to scan a given 2-D array by a window, and update

all the pixel values with the computed ones, the computations involving the coefficients

of the window and of the scanned image pixels.

But, there are occasions when one can carry out a required operation using a

simple pattern matching and updating technique instead of computing update values

from an expression involving the window coefficients and the corresponding image

pixel values. For example, let us take the case of edge detection which is an operation

of locating the pixels that form a transition between two regions of distinct gray

level properties in an image. Numerous edge detection algorithms are available in

the literature, and most of them could be seen to carry out the operation of edge

279

280 E G Rajan

detection using arithmetic rules. Alternatively, the pattern-directed edge detection

technique that is described in this paper makes use of a simple non-numerical

operation of assigning the gray value 0 to a pixel if it along with its neighbours forms

a particular homogeneous pattern inside a 3 x 3 window. By using this edge detection

technique, we could achieve a considerable increase in the computational speed and

the quality of the output image as compared to that observed in obtaining an edge

map using various traditional techniques. A comparative study has been made, in

our laboratory, of our edge detection technique with certain other conventional

techniques, and the results are tabulated in § 5.2a(i).

All these show that pattern-directed array processing techniques play an important

role in the image processing practice where speed and quality of output are of primary

concern.

Combining the notions of Markov's algorithms and cellular automata, we have

developed here, in our image processing laboratory, a formal logical framework, that

we call cellular logic array processing (CLAP) scheme (Rajan 1990; Ra jan& Sinha 1991),

in which one can develop ways to construct fast algorithms for carrying out various

pattern-directed array processing operations. With images treated as symbolic array

configurations of cellular automata, our concern here is to consider the realization

of various image processing operations in terms of pattern matching and substitution

operations using what we call generalized Markov algorithms (GMA).
In the precise formulation of the concept of an algorithm, notions of recursive

functions, Turing machines, Post's working hypothesis and Markov's normal

algorithms play equivalent roles. While the first three of these occupy a

well-established place in theoretical computer science and other related areas including

that of signal and image processing, normal algorithms have received very little

attention from the point of view of applications in these areas. The potentials for

such applications would, however, seem to be enormous, considering the fact that

normal algorithms play a key role in the works of Markov (1961), Shanin (1963,

1968) and others on constructive real numbers and analysis. Our choice of normal

algorithms from amongst the equivalent notions just mentioned is based on these

considerations.

In what follows, we review very briefly that part of the formalism which is essential

for describing the concepts and the working principle of a normal algorithm, a

generalized normal algorithm and a cellular automaton (Bobrow 1968; Kushner 1984;

Wolfram 1986).

2. What is meant by a normal algorithm?

The notion of a normal algorithm was proposed by Markov (1961) with the idea of

bringing out a precise definition of an algorithm. This notion plays a fundamental

role in mathematics similar to that due to Kleene's recursive functions and Turing

machines. We shall understand this notion of a normal algorithm in the following

manner.

By alphabet we mean a finite, unordered list of primitive symbols known as letters.

For example, ,~/= { (I - } denotes an alphabet .~.¢ which contains the three letters (/. I

and . Binary operations between alphabets are interpreted in exactly the same way

as the set-theoretic operations such as union, intersection and d{fference. We shall use

the same symbols vo, c~ and \ to denote respectively the union, intersection and

Cellular logic array processing techniques 281

difference operations between letters of the alphabet. Similarly all the relation symbols

such as __, ~-, _D, ~ and other symbols like ~ and ¢ are also used which convey

the same meanings they do in set theory.

By a generic variable, we mean a variable whose values are the letters taken from

an alphabet. We shall use the symbols ~, ~/and # and their subscripted versions to

denote generic variables, irrespective of the alphabet over which they range. But,

whenever a generic variable is used, we shall define its alphabet range.

A string of letters drawn from an alphabet ~ and written one after another is

called a word from the given alphabet. The word consisting of no letters is called

empty word or the null word, which is denoted by the symbol A. The concatenation

of two words from an alphabet is also a word from the same alphabet.

DEFINITION 2.1

A word U is called the left factor of a word P if the condition UV = P holds for P,

where V is another word. in this case, V is called the right factor of P. In general, a

word V is called a factor of another word P if the condition UVW - P holds for P

where U and W are two other words (Rajan 1990).

In a word of the form UVW, the factors U and W are called the delimiters of the

factor V.

Now let us consider an alphabet ~ ' and two other symbols--, and. that are not in

M. Then words of the types: (i) P ~ Q and (ii) P ~" Q from the alphabet d u {. --, }

are called substitution formulas; the former is called a simple substitution formula

and the latter a terminal substitution formula. P and Q are words from the alphabet

~¢, and are known as the left and the right parts of the corresponding formula.

Substitution formulas of the types (i)- ,Q (i i)P~ and (iii)--,. whose blank parts

are empty words, are admissible formulas, and those of the first type, we call injection
formulas.

By application of a substitution formula to a word, we mean the replacement of

the left part of the formula that occurs in the given word, by the right part of the

formula.

An ordered list of simple and terminal substitution formulas is called a scheme.
Let us denote such a scheme by the symbol 6. Now, the ordered pair (~ , 6)

consisting of a specific alphabet ~ and a scheme G is known as a normal algorithm,
denoted in general by the symbol ¢4C By the operation of . ~ on a word, say P, we

mean the application of the formulas of its scheme to the word P in accordance with

the following rules:

(i) If none of the left parts of the substitution formulas of A/" is a factor of P, then

A r is not applicable to P; symbolically we say -1 !Jff(P).

(ii) If at least one of the left parts of the substitution formulas of ¢C is a factor of

P, then ¢4 r is definitely applicable to P (i.e., P is an input to at r) and we say kAr (P).

(iii) If !At(P), then from the ordered list of Jff, the first substitution formula that

is applicable to P is identified and the right part of the identified formula is

substituted for the first occurrence in P of this formula's left part. Let the result

of this substitution be the word Q. If the applied formula is of the terminal

type, the word resulting from the substitution is treated as the desired word

transformed by ..4 r and we write ~r:PI--Q. If the applied formula is of the

simple type, then the word produced by the substitution is again subjected to

.A/" as outlined in the earlier steps. In this case, we express the one-step

282 E G Rajan

INPUT

I

÷
.--[P,-.,q,

I

÷
OUTPUT

-.-qp OUTPUT

Figure 1. Functional block
diagram of a normal algorithm.

transformation as ~,¢':P I-Q. The process of applying ,A r can stop at some step

either naturally (i.e., when no formula can be applied further) or by means of

a terminal formula.

The rules are illustrated as shown in figure 1; here the symbol ~ stands for the

empty word A if the corresponding formula is simple, and for the symbol.if the

formula is terminal. At a particular stage of computation, let us assume that the

formula Ps--* ~Q~ is applicable to a current input word P. Then the first occurring

factor P~ in P is replaced by Q~ and the resulting word is routed through channel 3

if ~ stands for • or through channel 2 if ~ stands for A.

3. The notion of a generalized Markov algorithm (GMX)

Since a normal algorithm over an alphabet d , is a map of type d*-- , ,~*, it is

difficult to realize computable mappings of the type (d*)~ - - , d *. d * is the free

monoid of the alphabet ~ , and is defined as the set of all possible words from d

together with the associative binary operation of concatenation. For example, it is

inconvenient to process arrays of more than one-dimension consisting of symbols

from an alphabet d , using a simple normal algorithm over d . However, efforts were

made to solve this problem by actually providing an extension to the concept of

Markov algorithms. The concept of a GMA is one such extension which was formulated

by Caracciolo Di Fornio for the purpose of defining string processing languages

(Bobrow 1968).

As described by Caracciolo (Bobrow 1968), the concept of generalized Markov

algorithms is obtained by admitting certain higher order type substitution formulas,

without altering the original sequencing scheme and functional rules.

There are two kinds of higher order substitution formulas, one representing algebraic

expressions of the types D(A +f2)--,D(A) + D(A) and D(fI"A)-,D(A)'(f2) +
(fl)" D(f2), and the other representing expressions of the type X Y--, X~ I'X, Y] where

~b denotes a mapping from the set Ax'Ay of all pairs of strings respectively belonging

to X and Y into ~* . Normal algorithms of the first kind are called simple-generalized
Markov algorithms (S-GMA) and those of the second kind conditional functional-

Cellular logic array processing techniques 283

generalized Markov algorithms (CF-GMA). In addition, a CF-GMA admits conditional

clauses of the type provided fl(p), where fl(P) is a Boolean function depending on P

which has to be satisfied in order to make the formula P ~ Q admissible.

It is to be noted here that both the concepts of S-GM and CF-GM algorithms were

developed with an idea of providing a basic tool for defining the string processing

languages PANON-1 and PANON-2. Though a PANON program is itself a string which

is operated on by structural production rules, the rules from the argument string

allow traditional numerical computations. Hence, it does not provide the capabilities

of the required pattern-directed rewriting system in the true sense.

In order to overcome this difficulty, we consider here a particular type of generaliza-

tion for Markov algorithms. As per this generalization, different factors located at

various places in a string are together viewed as a pattern, that is, a subset of (~t uS)*

and substituted by their values. For example, let us consider the string P1 P2"'" Pi""

P,[-IQ1Q2""Qi '"Qn from an alphabet ~ u g , where P~, Qi; 1 ~< i~< n are words

from zg and [] is a symbol from 8. Now, a formula of the type LPIJI.QIJ--*R,

where the symbols J and l denote respectively the right and the left parentheses,

is an admissible substitution formula as per this generalization. We refer to this

substitution formula as conjoint substitution formula, the details of which are given

in Ra jan& Ramprasad (1991). The result of applying this formula to the string

P1P2.. .Pi . . .P,[-IQIQ2.. .Qt. . .Qn would be RP2.. .Pi. . .Pn["IQe.. .Qi. .-Q, or

P2"'" Pi"" P, [] RQ2"'" Q~"" Q~, and this depends on the type of rewriting chosen as

to whether R has to replace P1 or Q~. So all computable mappings of the type

(~*~' ~ * can be realized in terms of mappings of the type (~u~r)* ~ t * using

this concept of a generalized Markov algorithm, of course, with the help of simple

pattern-directed search and replace procedures.

4. The notion of a cellular automaton

The concept of cellular automata was originally introduced by von Neumann and

Ulam, under the name cellular spaces, as a possible idealization of biological systems,

with a particular purpose of modelling biological self-reproduction (Toffoli &

Margolus 1987). Later, this concept has been reinterpreted, for various purposes,

under different names like tesselation automata, homogeneous structures, cellular

structures and iterative arrays.

The term cellular automaton, jn general, denotes a regular uniform lattice, usually

infinite in extent, with a discrete variable at each site. The state of a cellular automaton,

at a time instant, is determined by the corresponding configuration, that is, by the

array of values (numerical) of these variables at that time instant. We are concerned

here only with two-dimensional cellular automata, and we denote their configurations

as square array configurations.

A cellular automaton evolves in discrete time steps, with the value of the variable

at one site being affected by the values of the variables at sites in its neighbourhood

on the pervious time step. By neighbourhood of a site we mean the site itself along

with all or some of its immediately adjacent sites. The site values corresponding to

a configuration at a particular time step, say t, are updated, all at once, based on the

values in their neighbourhood, according to a definite set of updating rules. The

resulting configuration at time step t + 1, is the evolved version of the one at time step t.

Updating rules are classified in the following manner. An updating rule which

Cellular logic array processing techniques 283

generalized Markov algorithms (CF-GMA). In addition, a CF-GMA admits conditional

clauses of the type provided fl(p), where fl(P) is a Boolean function depending on P

which has to be satisfied in order to make the formula P ~ Q admissible.

It is to be noted here that both the concepts of S-GM and CF-GM algorithms were

developed with an idea of providing a basic tool for defining the string processing

languages PANON-1 and PANON-2. Though a PANON program is itself a string which

is operated on by structural production rules, the rules from the argument string

allow traditional numerical computations. Hence, it does not provide the capabilities

of the required pattern-directed rewriting system in the true sense.

In order to overcome this difficulty, we consider here a particular type of generaliza-

tion for Markov algorithms. As per this generalization, different factors located at

various places in a string are together viewed as a pattern, that is, a subset of (~t uS)*

and substituted by their values. For example, let us consider the string P1 P2"'" Pi""

P,[-IQ1Q2""Qi '"Qn from an alphabet ~ u g , where P~, Qi; 1 ~< i~< n are words

from zg and [] is a symbol from 8. Now, a formula of the type LPIJI.QIJ--*R,

where the symbols J and l denote respectively the right and the left parentheses,

is an admissible substitution formula as per this generalization. We refer to this

substitution formula as conjoint substitution formula, the details of which are given

in Ra jan& Ramprasad (1991). The result of applying this formula to the string

P1P2.. .Pi . . .P,[-IQIQ2.. .Qt. . .Qn would be RP2.. .Pi. . .Pn["IQe.. .Qi. .-Q, or

P2"'" Pi"" P, [] RQ2"'" Q~"" Q~, and this depends on the type of rewriting chosen as

to whether R has to replace P1 or Q~. So all computable mappings of the type

(~*~' ~ * can be realized in terms of mappings of the type (~u~r)* ~ t * using

this concept of a generalized Markov algorithm, of course, with the help of simple

pattern-directed search and replace procedures.

4. The notion of a cellular automaton

The concept of cellular automata was originally introduced by von Neumann and

Ulam, under the name cellular spaces, as a possible idealization of biological systems,

with a particular purpose of modelling biological self-reproduction (Toffoli &

Margolus 1987). Later, this concept has been reinterpreted, for various purposes,

under different names like tesselation automata, homogeneous structures, cellular

structures and iterative arrays.

The term cellular automaton, jn general, denotes a regular uniform lattice, usually

infinite in extent, with a discrete variable at each site. The state of a cellular automaton,

at a time instant, is determined by the corresponding configuration, that is, by the

array of values (numerical) of these variables at that time instant. We are concerned

here only with two-dimensional cellular automata, and we denote their configurations

as square array configurations.

A cellular automaton evolves in discrete time steps, with the value of the variable

at one site being affected by the values of the variables at sites in its neighbourhood

on the pervious time step. By neighbourhood of a site we mean the site itself along

with all or some of its immediately adjacent sites. The site values corresponding to

a configuration at a particular time step, say t, are updated, all at once, based on the

values in their neighbourhood, according to a definite set of updating rules. The

resulting configuration at time step t + 1, is the evolved version of the one at time step t.

Updating rules are classified in the following manner. An updating rule which

Cellular logic array processing techniques 285

One can construct a total of N N' local rules for a five-neighbourhood N-ary valued

two-dimensional cellular automaton, and N N" rules for a nine-neighbourhood N-ary

valued two-dimensional cellular automaton.

For example, let us take the case of a binary-valued five-neighbourhood two-

dimensional cellular automaton. A local rule, in this case, can be viewed as a 32-bit

word as shown in the table 1. This table displays 232 local rules ~bo, ~bt, ~b2,.... The

column under ~b i is to be treated as the local rule ~ .

In the same manner, an updating rule in the case of a nine-neighbourhood

automaton, can be viewed as a 512-bit word, and there are 2 s~2 such local rules for

us to choose from.

Example 1: Let us consider a 2-D, 5-neighbourhood binary valued cellular

automaton characterized by the rule ¢~222772222"
The 32-bit word corresponding to this rule is

00001101010001110011101111111110.

Let the configuration of this automaton at a particular stage of evolution t be

0 1 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0.

Then the configuration of this automaton at the next stage of evolution t + 1 would be

0 0 0 0 0

0 1 0 1 0

0 1 0 1 0

0 I 0 1 0

0 0 0 0 0.

Example patterns generated after one hundred and twenty four evolutions of 2-D

cellular automata starting from various seed values are shown in figure 3 (plate 1).

4.2 The notion of cellular logic array processing

With a view to reduce the space occupied by various cellular automata rules, and to

provide a generalized mechanism of rule-writing, we introduce here the notion of

cellular logic array processing.

As described earlier, an r-neighbourhood cellular automaton rule is nothing but

a look-up table consisting of an ordered list of N ' patterns in one column with their

corresponding N" values in the other column. For a large value of N, specifying the

individual entries of the corresponding look-up table is a tedious and error-prone

job. Moreover, the look-up table would occupy considerable amount of space.

Therefore, what we can do is to adhere to a structured approach to rule-writing, or

to have a language for expressing a rule in whatever terms we find most suitable,

and a mechanism for interpreting our needs and translating them into a look-up

286 E G Rajan

table, in practice, we can use any extensible programming language for interpreting

our needs but we cannot get them translated without a set of specialized primitives

of the language for realizing them in a particular machine.

The notion of a generalized cellular logic scheme, on the other hand, does not

require any specialized primitives of a high-level language. It mainly deals with the

relational aspects of cell values in a specified neighbourhood, and pattern-directed

symbol rewriting techniques. The term pattern is to be understood here as a group

of cell values in a particular neighbourhood arranged in a manner described by a

relational expression or a logical sentence. Any extensible programming language

can be used for constructing logical sentences corresponding to various updating

rules. More importantly, a logical sentence will not generate the look-up table of the

corresponding rule. On the other hand, it will generate a minimal set of

pattern-directed rules required for the processing of a cellular automaton

configuration.

A simple example would illustrate this notion. Let us take the case of a two-

dimensional binary-valued cellular automaton and a five-neighbourhood rule described

by the following expression:

If r~(o ~(o ~.) ~(o 1, ~(t) 1 is odd, then ~t~ is 1; otherwise it is O. The term L ~ i , j , ~ i , j + l , ~ i + l , j , ~ i , j - ~ i - l , j J l

[~(o ~(o ~,) ~(o ~(z) 1 refers to the number of ls in a subarray under the
"~i,j ~ *oi,j+ 1 ' h i + l , j ' ~ i , j - 1 ~ ~ i - 1, j - I1

five neighbourhood structure.

This expression refers to the following sixteen pattem-directed rules:

00001-*-,1, 00010-*1, 00100-,1, 00111-.1,

01000-*1, 01011-*1, 01101-*1, 01110-*1,

10000-.1, 10011-.1, 10101-.1, 10110-.1,

11001-.1, 11010-.1, 11100-.1, 11111-.1.

The functional " (') - (') (0 (0 (0 (0 • • expression ~.j - ~i',~ ~ ~,~+, ~ ~ + la (~ ~.~- 1 ~ ~ - 1.~ which is usually

used to describe the updating rule discussed above will, on the other hand, generate

the following look-up table with thirty two entries in it.

00000-*0 01000-*1 10000-.1 11000-*0

00001-.1 01001-*0 10001-*0 11001-*1

00010-*1 01010-*0 10010-*0 11010-*1

00011-*0 01011-*-'1 10011-.1 11011-*0

00100-.1 01100-.0 10100-*-*0 11100-.I

00101-*-*0 01101-.1 10101-.1 11101-*0

00110-*0 01110-.1 10110-.1 11110-*0

00111- '1 01111-*0 10111-*0 11111,-.1

It is clear from the above example, that relational pattern-directed approach to

cellular automata realizations would be a convenient and .more efficient means of

doing array processing. We call this a cellular logic array processing scheme.

4.3 The concept of growing configuration of a cellular automaton

This concept has been introduced here with the purpose of reducing computation

time involved in implementing especially 2-D and 3-D cellular automata which evolve

from single-site seed configurations.

Cellular logic array processing techniques 287

Usually, an initial configuration of a 2-D cellular automaton is treated as a square

array of O's, say of the size N x N, but with a nonzero value at the centre of the

array. This nonzero value :~" " acts as the seed to a 2-D cellular automaton, and "~N/2,N/2

it grows as per a 5- or 9-neighbourhood rule. Note that the first evolution is obtained

only after (N - 2) x (N - 2) computations if we follow the traditional methods.

Here as per our method, an array of O's, of size 5 x 5, with a nonzero value at the

centre, is treated as the initial configuration of a 2-D cellular automaton. Thus the

number of site-values to be processed turns out to be just 9. After the first evolution,

ths resulting array size is increased to 7 x 7 and it is treated as the input configuration

for the second evolution. This technique of increasing the size of a configuration

before causing an evolution is referred to here as growing configuration.
For example, let us consider the following type-1 square array configuration of

size 11 x 11, with the seed value N at the centre.

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 N 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 .

In this case, the first evolution is usually obtained, only after processing 81 site-

values as per an updating rule. The maximum growth of the seed N that one could

expect in the first evolution would be as shown below.

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 N N N 0 0 0 0

0 0 0 0 N N N 0 0 0 0

0 0 0 0 N N N 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 00.

As a matter of fact, this growth can be effectively obtained from the following

square array configuration of size 5 x 5, with the geed value N at the centre, instead

of from the 11 x 11 array considered above. The total number of site-values to be

processed in this case is just 9.

0 0 0 0 0

0 0 0 0 0
0 0 N 0 0

0 0 0 0 0

0 0 0 0 0 .

288 E G Rajan

The configuration obtained after the first evolution would be of the form

0 0 0 0 0

0 N N N 0

0 N N N 0

0 N N N 0

0 0 0 0 0 .

The grown configuration after the first evolution, which is used as input to the

second evolution, would then be of the form

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 N N N 0 0

0 0 N N N 0 0

0 0 N N N 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 O.

In the same manner, the second evolution could be obtained from this grown

configuration after processing 25 site-values as per the updating rule. The grown

configuration with a maximum growth at this second stage of evolution would be

as shown below.

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 N N N N N O 0
0 0 N N N N N O 0
0 0 N N N N N 0 0
0 0 N N N N N 0 0
0 0 N N N N N 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 .

Thus, irrespective of the nature of the 2-D cellular automaton and the type of its

updating rule, we have the initial square array configuration of size 5 x 5, and this

configuration grows aRer every evolution.

5. Image processing using cellular logic principles

In our discussions so far, our attention has primarily been focussed on the role of

cellular automata in the generation of patterns and pattern-like-images. We now look

at their role in implementing image processing operations. In this role, the image to

be processed forms the initial configuration from which a cellular automaton evolves

as per a cellular logic array processing scheme and produces the desired processed

image as its final configuration. In what follows, we provide high-throughput

techniques for implementing morphological operations, and for implementing

operations of segmentation, binarization, and edge detection and extraction on digital

images.

Note that most of the traditional image processing operations involve numerical

Cellular logic array processing techniques 289

computations, and so their implementation in a number-crunching digital computer

purely in terms of pattern-directed algorithms, would lead to unwarranted complexity

and consumption of more cPu time. Consequently, wherever it is necessary, we make

use of these numerical operations as such in our fast operating pattern-directed

algorithms, so that they form, together with a digital computer, a high throughput

image-processing system. Needless to say, the operations of multiplication and

division are totally avoided in these algorithms.

5.1 Morphological operations on binary and gray level images

The fundamental operations of mathematical morphology are the two dual operations

of dilation and erosion. The operation of dilation is commutative, whereas that of

erosion is not. These two operations have been defined separately for binary and

gray level images.

5.1a Dilation and erosion of binary valued images: Let us consider a set of numbers

E to denote the row and column positions of the pixels in binary images A and B.

Let us treat the image B as the structuring element. Then the dilation of A by B is

defined as the Minkowski addition, A ~ B = {x[for some a~A and b~B, x = a + b},

and, the erosion of A by B is defined as the Minkowski subtraction, A ~ B = {x[for

every b~B, x + b~A}.

5. lb Dilation and erosion of gray level images: For any two gray level digital images

A and B, the dilation is defined as the Minkowski addition, ~ (A , B) = A (~ B =

EXTSUP(x,y)~D,[Ax,y + B(x, y)], where D a is the domain of the image B, and EXTSUP

is an operation of supremum over the union of the domains. The operation of erosion

is defined using the Minkowski subtraction, A ~ B = INF(x,y)~om[Ax,y + B(x, y)] as

8(A, B)= INF(x,y)~Dj[A, _ y - B(x, y)], where DB is the domain of the image B, and

INF is an operation of infimum over the intersection of the domains. Following these

definitions for both binary and gray level digital images (Giardina & Dougherty

1988), the morphological filtering operations of closing and opening are defined in

the following manner.

The closing of A by B is represented as A o B and defined as A o B = (A ~3 B) e B.

The opening of A by B is represented as A • B and defined as A • B = (A e B) ~ B.

In the case of binary-valued images A and B, the morphological operations

A~)B={x l for some aeA and b~B, x=a+b} , and A e B = { x l for every b~B,

x + beA} are simulated here, by a 2-dimensional, 9-neighbourhood binary-valued

cellular automaton characterized by two updating rules, one for dilation and another

for erosion.

The dilation rule has the code 0(1) st1 and it consists of the following 512 conjoint

substitution formulas:

Formula

number

001

OO2

512

Substitution formulas

LoooJ LOOOj LOOOj ~ o
LOOlj LOOOl I ooOJ --~ 1

[olO/LOOOl LooOJ-~ 1
L l l l J L l l l j L l l l J -) 1.

290 E G Rajah

The erosion rule has the code (0) 511 1 and it consists of the following set of 512

substitution formulas:

Formula Substitution formulas
number

ooi LOOOj Loooj Loooj-~o
002 LOOl J tOOOJ [O00J ~ 0

i ' l l L I 1 0 J L l l l J L l l l J ~ 0

512 L I l I I L l l l J L l l l J ~ I .

5.1c Fast algorithms for dilating/eroding binary images: In view of the special form

of the above two groups of substitution formulas their practical implementation is

rather simple. In the case of dilation, if the left part of the first substitution formula

is encountered, a 0 is substituted, and if it is not encountered a 1 is substituted.

Likewise in the case of erosion, if the left part of the last substitution formula is

encountered then a 1 is substituted, otherwise a 0 is substituted. Note that this

algorithm does not involve even a single numerical operation.

Example 2: Figure 4a shows a random noise pattern of size 75 x 75. The image of

figure 4b, of size 75 x 75, is masked by this noise pattern and the result is shown in

figure 4c. Figure 4d shows the result of applying one pass of the opening operation

implemented in terms of normal algorithmic cellular automata. The opening is done

with a 3 x 3 square structure element consisting of l's in all the cells.

5.1d Fast algorithms for dilating/eroding gray level images: Unlike what has been

done in the case of binary dilation and erosion, the operations of gray level dilation

and erosion cannot be simulated directly and exclusively by a 2-dimensional cellular

automaton. The algorithm is described in a summarized form using the pseudo code

given below. Here.pixel is referred to as pel. Figure 5a (plate 2) shows an input image

and a noise pattern, both of size 225 x 225. Figure 5b (plate 2) shows the image

corrupted with the noise and the cleaned up image by opening it with a structuring

element of size 3 x 3 consisting of the gray value 3 in all its cells.

Algorithm for erosion:
repeat sliding the. structuring element over the image {

subtract pels of structuring element from the corresponding

(i) 0') (c) (a)

Figure 4. Morphological opening of a binary image.

Cellular logic array processing techniques 291

pels of the image, find the minimum, k, among all of them

if all the structuring element pels are less than the corresponding

image pixels then replace the central pel in the image with k

else replace it with 0

} until the structuring element spans whole of the image.

Algorithm for dilation:
repeat sliding the structuring element over the image {

add pels of structuring element to the corresponding

pels of the image, find the maximum, k, among all of them,

if at least one of the image pels that are spanned by structuring

element is non-zero then replace the central pel in the image with k

else replace it with 0

until the structuring element spans whole of the image.

5.2 Fast algorithms for traditional image processing operations on binary and gray
level images

The algorithms for the basic image processing operations of binarization, edge
detection, segmentation, and feature extraction are described here with an emphasis

on that of edge detection.

5.2a Binarization of gray level images: The given digital image of size, say, N x N

is scanned by a 3 x 3 window. On each move, the 3 x 3 sub-image covered by the

window is examined to see whether the central pixel value lies in between a specified

gray region including its lower and upper threshold values. If it is found to lie in

that region, then the central cell is assigned a particular gray value. If not, it is

assigned the value 0. This procedure is continued till the entire image is scanned. The

overall effect is that the entire gray level image is transformed into an image having

only two values.

5.2b Edge detection of digital images: Among tbe various types of edge detection

algorithms that are available now, those which make use of neighbourhood principles,
detect edges in a multiple gray level image by locating edge points at places where

abrupt changes in gray levels occur.

We too make use of the neighbourhood principle, but with the difference that

instead of locating abrupt changes in gray levels we locate boundaries of regions over

which gray levels do not change. In order to understand this technique, we first take

the case of detecting the edges of a digital image consisting of regions of uniform

gray levels.

5.2b(i) Algorithm for detecting edges of an image consisting of various uniform gray
levels - The given digital image of size, say, N x N is scanned by a 3 x 3 window.

On each move, the 3 x 3 sub-image covered by the window is examined to see whether

some or all of its pixels form a convex region of a single gray level. The smallest

convex region inside a 3 x 3 window is that formed by pixels in a five-neighbourhood

structure (se¢ figure 2). Note that such regions can be formed in sixteen different ways

as shown in figure 6. Of these, the sixteenth one is covered in the rest. To identify

whether any of these regions has been encountered or not, it is therefore adequate

to check for the sixteenth one alone.

292 E G Rajah

0 0 0 O 0 O O 0 D e O e O O 0 O O 0 O 0

O O 0 O O 0 O O 0 O e O O O 0 O 0 0 O 0 0 O O 0

O 0 0 O O O O 0 O 0 O 0 O 0 • •

1 2 3 4 5 6 7 8

O 0 • O 0 B O 0 • O 0 •

0 0 0 O O 0 O 0 0 O e O O O 0 O O e O 0 0 O O O

O O 0 D O 0 O D O 0 0 9 0 9 • •

9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Figure 6. Sixteen convex pat-
terns in a 3 x 3 window.

If the sub-image is found to contain the sixteenth pattern of figure 6, then its central

cell is assigned the 0 gray level. This procedure is continued till the entire image is

scanned. The overall effect is that the boundaries of various single gray level regions

in the given image arc retained and the interior parts arc erased thus giving us the

edge detected version of the original image (see figure 7, plate 2).

This algorithm is given below in the form of a pseudo code which can be easily

translated into any computer language.

Pseudo code:
repeat sliding the 5-ncighbourhood empty window over the image {

if all the five pixcl values of the sub-image covered by the

scanning structure are identical then replace the central

pixel value with 0, else slide the 5-ncighbourhood window

} until the structuring element spans whole of the image.

Figure 7 (plate 2) shows an image and its edge detected version.

5.2b(ii) Algorithm for detecting edges of an imaoe consisting of regions that appear

to be uniform - The technique of detecting the edges of various single-gray-level regions

is easily extended to detecting the edges of regions that appear to be single-gray-level

regions. A region that appears to have a single-gray-level may actually contain several

adjacent gray levels. That they appear to be same is the result of visual quantization

made by the observer. The process of partitioning a given gray level image into

several regions, each of which appears to an observer to have a single-gray-level, is

called seamentation. Hence, the central idea behind this extension is that the given

image is first segmented using a threshold-based-quantization scheme and then the

boundaries of the quantizcd regions arc detected. We proceed as follows.

Similar to what is done in the previous case, the given digital image is scanned by

the fivc-neighbourhood empty window. On each move, the 3 x 3 sub-image covered

by this window is examined to see whether the gray-distance, say D, which is the

difference between the maximum and the minimum gray values corresponding to

that sub-image, is less than or equal to a threshold value, say T. If D is less than or

equal to T, then the central cell is assigned the gray-value 0; otherwise the original

value contained in the central cell is left as it is. This procedure is continued till the

entire image is scanned. The overall effect is that the boundaries of various regions

in the given image, that appear to be uniform, arc retained, and their interior parts

arc erased, thus giving us the edge-detected version of the original image. The pseudo

code of this algorithm is as follows:

Pseudo code:

repeat sliding the 5-ncighbourhood empty window over the image { find the maximum

gray-value

Cellular logic array processing techniques 293

G max; find the minimum gray value G min; if the difference between these two

values D is less

than or equal to the specified threshold value T then replace the central pixel

value with 0, else

slide the 5-neighbourhood window } until the structuring element spans th e

whole of the image.

Figure 8b shows the edge-detected version of the image shown in figure 8a (plate 3).

The above algorithm has been tested in our image-processing laboratory, and a

comparative study with various traditional edge detection algorithms has been made.

The results of the study are given in table 2. The digital data corresponding to figure

8a was taken as the standard input to all the algorithms. This image is of size

256 x 256, and contains a maximum gray value of 255. All the operations were carried

out in a root transputer INMOS T800 with an IBMPC/AT-386 used as a server.

The edge-enhancement operator given in table 2 is the most recent one reported

in the literature (Galbiati 1990). The algorithm corresponding to this operator is

given below. The given digital image is scanned by the/fine-neighbourhood empty

window. On each move, the maximum gray value contained in the 3 x 3 sub-image

covered by this window is determined, the central cell value is subtracted from this

maximum value, and the difference is assigned to the central cell. This procedure is

continued till the entire image is scanned. The overall effect is that the boundaries

of various regions in the given image, which appear to be uniform, are enhanced thus

giving us the edge-detected version of the original image (see figure 9, plates 3 & 4).

Though this operator is somewhat similar to ours, it tampers with the original

data, and causes difficulty in obtaining a contour map of a given image. In fact,

contour information is completely lost in the process of edge enhancement. On the

other hand, our algorithm does not alter the original pixel values, and provides precise

contour information contained in a given digital image (see figure 8, plate 3).

5.2b(iii) Algorithm for segmenting various regions of a given digital gray image - Our

approach to edge detection is easily extended to segmentation. The term segmentation

Table 2. Results of a comparative study.

Processing time
Type of operator Threshold (milliseconds) Remarks

Sobel 150 4670 See figure 9a. The original pixel values
are altered

Robert 10 1395

Edge-enhancement - - 3190

Our algorithm 45 3670

See figure 9b. The original pixel values
are altered

See figure 9c. The original pixel values
are altered. Contour information is
completely lost

See figure 8b. The original pixel values
are not altered. Contour information is
preserved

*Figures 8 & 9 are on plates 3 & 4.

294 E G Rajan

refers to the process of partitioning a given image into regions each of which appears

to an observer to have a single gray level. A region that appears to have a single

gray level may actually contain several adjacent gray levels. That they appear to be

same is the result of visual quantization done by the observer. Segmentation requires

that we modify the pixel intensities of the given image in accordance with this

quantization scheme. There are two ways of carrying out segmentation in a given

image. First, the given image could be partitioned as a disjoint union of various

known gray level distributions. Second, a global rule could be specified which would

automatically partition the given image into various regions of statistically ,disjoint

gray level distributions. Here, we provide an algorithm pertaining to the latter

technique.

The given digital image is scanned by the five-neighbourhood empty window. On

each move, the sub-image covered by this window is examined to see whether the

gray-distance, say D, that is the difference between the maximum gray value G max

and the minimum gray value G min corresponding to that sub-image, is lessthan

or equal to a threshold value, say T. If D is less than.or equal to T, then the central

cell is assigned the gray value G min + (D/2); otherwise the original value contained

in the central cell is left as it is. This procedure is continued till the entire image is

scanned. The overall effect is that various regions of statistically disjoint gray level

distributions in the image are partitioned thus giving us the segmented version of

the original image.

5.2b(iv) Solid object extraction in oray level imaoes - The algorithm for solid object

extraction is somewhat similar to that of binarization. Here, the given digital image

of size, say, N × N is scanned b y a window of specified size. On each move, if the

number of pixels, contained in the sub.image covered by the window that lie outside

the specified gray range, is more than half the total pixels in the window, then the

central pixel in the window is replaced with a zero, otherwise it is left untouched. In

this way solid objects, bigger than the specified size and lying in the required gray

range, are extracted. Figure 10 (plate 4) shows the image of an aircraft with a noisy

background and a clean image extracted from it using a window of size 3 × 3 with

the gray range between 18 and 31.

6. Conclusions

Speed and quality of output are the two major objectives of a high-throughput

image processing system. But, more often than not, both these objectives are not

simultaneously met. For example, in order to increase the processing speed we have

to reduce the computational effort, that is, the number of local variables involved in

the computation has to be reduced, which means loss of detail in a picture. Generally,

spatial domain image processing techniques are used to obtain better results but they

involve considerable time. On the other hand, transform domain image-processing

techniques may notnecessarily yield quality output but would certainly consume less

processing time. It is in this complex situation that we found cellular logic array

processing techniques to be of immense use in meeting both the objectives of speed

and quality of output.

Cellular looic array processing techniques 295

I express my sincere thanks to Prof B L Deekshatulu for his constant encouragement

and support during the entire process of writing this paper. My thanks also to the

anonymous referee for his constructive criticism without which this paper would not

have taken this shape. I am grateful to my students and other research engineers

who have been deeply involved in our group activities and have contributed their

best towards the completion of this work.

References

Bobrow D G 1968 Symbol manipulation languages and techniques. Proceedings of the IFIP
Working Conference on Symbol Manipulation Languages (Amsterdam: North-Holland)

Galbiati L J 1990 Machine vision and digital image processing fundamentals (Englewood Cliffs,
NJ: Prentice Hall)

Giardina C R, Dougherty E R 1988 Morphological methods in image and signal processing
(Englewood Cliffs, NJ: Prentice Hall)

Kushner B K 1984 Lectures on constructive mathematical analysis (Providence, Rhode Island:
Am. Math. Soc.) vol. 60

Markov A A 1961 Theory of algorithms: The Israel program for scientific translations, Jerusalem
Rajan E G 1990 Study of signals and systems in the framework of Marker's constructive

mathematical logic, Ph D thesis, Indian Institute of Technology, Kanpur
Rajan E G, Ramprasad V V 1991 Pattern-directed array processing, Technical Report,

DSP-TR-91-5, Department of Electrical Engineering, Indian Institute of Technology, Kanpur
Rajan E G, Sinha V P 1991 Image processing using normal algorithmic cellular automata,

Technical Report, DSP-TR-91-4, Department of Electrical Engineering, Indian Institute of
Technology, Kanpur

Shanin N A 1963 On the constructive interpretation of mathematical judgements. Am. Math.
Soc., Transl. 23:

Shanin N A 1968 Constructive real numbers and constructive function spaces (Providence, Rhode
Island: Am. Math. Soc.)

Toffoli T, Margolus N 1987 Cellular automata machines (Cambridge, MA: MIT Press)

Wolfram S 1986 Theory and applications of cellular automata (Singapore: World Scientific)

P
la

te
 1

,~
re

 3
.

E
x

a
m

p
le

 p
a

tt
er

n
s

g
en

er
a

-
b

y
 2

D
,

5
-n

ei
g

h
b

o
u

rh
o

o
d

 c
el

lu
la

r
o

m
a

ta
.

3"

E
"

,o

,.
.I

298 E G Rajah

Plate 2

(a)

(b)

Figure 5. Morphological opening of a gray level image; (a) Input image and a
noise pattern (size 225 × 225): (b) image corrupted with the noise and the cleaned
up image

(a) (b)

Figure 7. An image (a) and its edge detected version (b), consisting of various
uniform gray level regions.

Cellular logic array processing techniques 299

P la te 3

Figure 8. (a) Image consisting of regions that appear to be uniform, and (b) its
edge detected version.

(a) (b)

Figure 9. (a) & (b) (caption on p. 300).

300 E G Rajan

• ' f

Figure 9. (c)

Plate 4

Figure 9. Edge detection of a gray level
image using known algorithms. Original
pixel values are altered in (a) & (b), while in
(e) contour information is also completely
lost.

Figure 10. Solid object extraction from a noisy image.

