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Abstract. This paper describes certain image processing techniques 

within the framework of cellular automata and normal algorithms for 

high-throughput data processing. The central idea on which these 

techniques have been developed is that a digital image can be treated as 

a cellular automaton configuration, and an image processing operation, as 

an evolution of the automaton due to an updating rule that describes a 

relational attribute among the pixel values in a specific neighbourhood. 

Filtering operations on digital images, like that of thinning, edge detection 

segmentation, erosion and dilation are modelled and realized using cellular 

automata. 
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1. Introduction 

The literature on computer vision now has much work on advanced techniques for 

image processing and pattern recognition. Most of them are either spatial domain 

or transform domain techniques developed around the common idea that a digital 

image is represented as an array of numbers, and an operation on the image is carried 

out by applying a numerical algorithm to the array. In other words, an 

image-processing operation is a transformation g(x, y) = T[ f (x ,  y)], where f (x ,  y) is 

the input image, g(x, y) is the output image and T is the transformation operator on 

f, defined over some neighbourhood of (x, y). Regardless of the nature of operations, 

however, the general approach is to scan a given 2-D array by a window, and update 

all the pixel values with the computed ones, the computations involving the coefficients 

of the window and of the scanned image pixels. 

But, there are occasions when one can carry out a required operation using a 

simple pattern matching and updating technique instead of computing update values 

from an expression involving the window coefficients and the corresponding image 

pixel values. For example, let us take the case of edge detection which is an operation 

of locating the pixels that form a transition between two regions of distinct gray 

level properties in an image. Numerous edge detection algorithms are available in 

the literature, and most of them could be seen to carry out the operation of edge 
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detection using arithmetic rules. Alternatively, the pattern-directed edge detection 

technique that is described in this paper makes use of a simple non-numerical 

operation of assigning the gray value 0 to a pixel if it along with its neighbours forms 

a particular homogeneous pattern inside a 3 x 3 window. By using this edge detection 

technique, we could achieve a considerable increase in the computational speed and 

the quality of the output image as compared to that observed in obtaining an edge 

map using various traditional techniques. A comparative study has been made, in 

our laboratory, of our edge detection technique with certain other conventional 

techniques, and the results are tabulated in § 5.2a(i). 

All these show that pattern-directed array processing techniques play an important 

role in the image processing practice where speed and quality of output are of primary 

concern. 

Combining the notions of Markov's algorithms and cellular automata, we have 

developed here, in our image processing laboratory, a formal logical framework, that 

we call cellular logic array processing (CLAP) scheme (Rajan 1990; Ra jan& Sinha 1991), 

in which one can develop ways to construct fast algorithms for carrying out various 

pattern-directed array processing operations. With images treated as symbolic array 

configurations of cellular automata, our concern here is to consider the realization 

of various image processing operations in terms of pattern matching and substitution 

operations using what we call generalized Markov algorithms (GMA). 
In the precise formulation of the concept of an algorithm, notions of recursive 

functions, Turing machines, Post's working hypothesis and Markov's normal 

algorithms play equivalent roles. While the first three of these occupy a 

well-established place in theoretical computer science and other related areas including 

that of signal and image processing, normal algorithms have received very little 

attention from the point of view of applications in these areas. The potentials for 

such applications would, however, seem to be enormous, considering the fact that 

normal algorithms play a key role in the works of Markov (1961), Shanin (1963, 

1968) and others on constructive real numbers and analysis. Our choice of normal 

algorithms from amongst the equivalent notions just mentioned is based on these 

considerations. 

In what follows, we review very briefly that part of the formalism which is essential 

for describing the concepts and the working principle of a normal algorithm, a 

generalized normal algorithm and a cellular automaton (Bobrow 1968; Kushner 1984; 

Wolfram 1986). 

2. What is meant by a normal algorithm? 

The notion of a normal algorithm was proposed by Markov (1961) with the idea of 

bringing out a precise definition of an algorithm. This notion plays a fundamental 

role in mathematics similar to that due to Kleene's recursive functions and Turing 

machines. We shall understand this notion of a normal algorithm in the following 

manner. 

By alphabet we mean a finite, unordered list of primitive symbols known as letters. 

For example, ,~/= { ( I  - } denotes an alphabet .~.¢ which contains the three letters (/. I 

and . Binary operations between alphabets are interpreted in exactly the same way 

as the set-theoretic operations such as union, intersection and d{fference. We shall use 

the same symbols vo, c~ and \ to denote respectively the union, intersection and 
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difference operations between letters of the alphabet. Similarly all the relation symbols 

such as __, ~-, _D, ~ and other symbols like ~ and ¢ are also used which convey 

the same meanings they do in set theory. 

By a generic variable, we mean a variable whose values are the letters taken from 

an alphabet. We shall use the symbols ~, ~/and # and their subscripted versions to 

denote generic variables, irrespective of the alphabet over which they range. But, 

whenever a generic variable is used, we shall define its alphabet range. 

A string of letters drawn from an alphabet ~ and written one after another is 

called a word from the given alphabet. The word consisting of no letters is called 

empty word or the null word, which is denoted by the symbol A. The concatenation 

of two words from an alphabet is also a word from the same alphabet. 

DEFINITION 2.1 

A word U is called the left factor of a word P if the condition UV = P holds for P, 

where V is another word. in this case, V is called the right factor of P. In general, a 

word V is called a factor of another word P if the condition UVW - P holds for P 

where U and W are two other words (Rajan 1990). 

In a word of the form UVW, the factors U and W are called the delimiters of the 

factor V. 

Now let us consider an alphabet ~ '  and two other symbols--, and. that are not in 

M. Then words of the types: (i) P ~ Q and (ii) P ~" Q from the alphabet d u {. --, } 

are called substitution formulas; the former is called a simple substitution formula 

and the latter a terminal substitution formula. P and Q are words from the alphabet 

~¢, and are known as the left and the right parts of the corresponding formula. 

Substitution formulas of the types (i)- ,Q (i i)P~ and (iii)--,. whose blank parts 

are empty words, are admissible formulas, and those of the first type, we call injection 
formulas. 

By application of a substitution formula to a word, we mean the replacement of 

the left part of the formula that occurs in the given word, by the right part of the 

formula. 

An ordered list of simple and terminal substitution formulas is called a scheme. 
Let us denote such a scheme by the symbol 6. Now, the ordered pair ( ~ ,  6 )  

consisting of a specific alphabet ~ and a scheme G is known as a normal algorithm, 
denoted in general by the symbol ¢4C By the operation of . ~  on a word, say P, we 

mean the application of the formulas of its scheme to the word P in accordance with 

the following rules: 

(i) If none of the left parts of the substitution formulas of A/" is a factor of P, then 

A r is not applicable to P; symbolically we say -1 !Jff(P). 

(ii) If at least one of the left parts of the substitution formulas of ¢C is a factor of 

P, then ¢4 r is definitely applicable to P (i.e., P is an input to at r) and we say kAr (P). 

(iii) If !At(P), then from the ordered list of Jff, the first substitution formula that 

is applicable to P is identified and the right part of the identified formula is 

substituted for the first occurrence in P of this formula's left part. Let the result 

of this substitution be the word Q. If the applied formula is of the terminal 

type, the word resulting from the substitution is treated as the desired word 

transformed by ..4 r and we write ~r:PI--Q. If the applied formula is of the 

simple type, then the word produced by the substitution is again subjected to 

.A/" as outlined in the earlier steps. In this case, we express the one-step 
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Figure 1. Functional block 
diagram of a normal algorithm. 

transformation as ~,¢':P I-Q. The process of applying ,A r can stop at some step 

either naturally (i.e., when no formula can be applied further) or by means of 

a terminal formula. 

The rules are illustrated as shown in figure 1; here the symbol ~ stands for the 

empty word A if the corresponding formula is simple, and for the symbol.if the 

formula is terminal. At a particular stage of computation, let us assume that the 

formula Ps--* ~Q~ is applicable to a current input word P. Then the first occurring 

factor P~ in P is replaced by Q~ and the resulting word is routed through channel 3 

if ~ stands for • or through channel 2 if ~ stands for A. 

3. The notion of a generalized Markov algorithm (GMX) 

Since a normal algorithm over an alphabet d ,  is a map of type d*-- , ,~*,  it is 

difficult to realize computable mappings of the type (d* )~ - - , d  *. d *  is the free 

monoid of the alphabet ~ ,  and is defined as the set of all possible words from d 

together with the associative binary operation of concatenation. For example, it is 

inconvenient to process arrays of more than one-dimension consisting of symbols 

from an alphabet d ,  using a simple normal algorithm over d .  However, efforts were 

made to solve this problem by actually providing an extension to the concept of 

Markov algorithms. The concept of a GMA is one such extension which was formulated 

by Caracciolo Di Fornio for the purpose of defining string processing languages 

(Bobrow 1968). 

As described by Caracciolo (Bobrow 1968), the concept of generalized Markov 

algorithms is obtained by admitting certain higher order type substitution formulas, 

without altering the original sequencing scheme and functional rules. 

There are two kinds of higher order substitution formulas, one representing algebraic 

expressions of the types D(A +f2)--,D(A) + D(A) and D(fI"A)-,D(A)'(f2) + 
(fl)" D(f2), and the other representing expressions of the type X Y--, X~ I'X, Y] where 

~b denotes a mapping from the set Ax'Ay of all pairs of strings respectively belonging 

to X and Y into ~* .  Normal algorithms of the first kind are called simple-generalized 
Markov algorithms (S-GMA) and those of the second kind conditional functional- 
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generalized Markov algorithms (CF-GMA). In addition, a CF-GMA admits conditional 

clauses of the type provided fl(p), where fl(P) is a Boolean function depending on P 

which has to be satisfied in order to make the formula P ~ Q admissible. 

It is to be noted here that both the concepts of S-GM and CF-GM algorithms were 

developed with an idea of providing a basic tool for defining the string processing 

languages PANON-1 and PANON-2. Though a PANON program is itself a string which 

is operated on by structural production rules, the rules from the argument string 

allow traditional numerical computations. Hence, it does not provide the capabilities 

of the required pattern-directed rewriting system in the true sense. 

In order to overcome this difficulty, we consider here a particular type of generaliza- 

tion for Markov algorithms. As per this generalization, different factors located at 

various places in a string are together viewed as a pattern, that is, a subset of (~t uS)* 

and substituted by their values. For example, let us consider the string P1 P2"'" Pi"" 

P,[-IQ1Q2""Qi '"Qn from an alphabet ~ u g ,  where P~, Qi; 1 ~< i~< n are words 

from zg and [] is a symbol from 8. Now, a formula of the type LPIJI.QIJ--*R, 

where the symbols J and l denote respectively the right and the left parentheses, 

is an admissible substitution formula as per this generalization. We refer to this 

substitution formula as conjoint substitution formula, the details of which are given 

in Ra jan& Ramprasad (1991). The result of applying this formula to the string 

P1P2.. .Pi . . .P,[-IQIQ2.. .Qt. . .Qn would be RP2.. .Pi. . .Pn["IQe.. .Qi. .-Q, or 

P2"'" Pi"" P, [] RQ2"'" Q~"" Q~, and this depends on the type of rewriting chosen as 

to whether R has to replace P1 or Q~. So all computable mappings of the type 

(~*~' ~ *  can be realized in terms of mappings of the type (~u~r)* ~ t *  using 

this concept of a generalized Markov algorithm, of course, with the help of simple 

pattern-directed search and replace procedures. 

4. The notion of  a cellular automaton 

The concept of cellular automata was originally introduced by von Neumann and 

Ulam, under the name cellular spaces, as a possible idealization of biological systems, 

with a particular purpose of modelling biological self-reproduction (Toffoli & 

Margolus 1987). Later, this concept has been reinterpreted, for various purposes, 

under different names like tesselation automata, homogeneous structures, cellular 

structures and iterative arrays. 

The term cellular automaton, jn general, denotes a regular uniform lattice, usually 

infinite in extent, with a discrete variable at each site. The state of a cellular automaton, 

at a time instant, is determined by the corresponding configuration, that is, by the 

array of values (numerical) of these variables at that time instant. We are concerned 

here only with two-dimensional cellular automata, and we denote their configurations 

as square array configurations. 

A cellular automaton evolves in discrete time steps, with the value of the variable 

at one site being affected by the values of the variables at sites in its neighbourhood 

on the pervious time step. By neighbourhood of a site we mean the site itself along 

with all or some of its immediately adjacent sites. The site values corresponding to 

a configuration at a particular time step, say t, are updated, all at once, based on the 

values in their neighbourhood, according to a definite set of updating rules. The 

resulting configuration at time step t + 1, is the evolved version of the one at time step t. 

Updating rules are classified in the following manner. An updating rule which 
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One can construct a total of N N' local rules for a five-neighbourhood N-ary valued 

two-dimensional cellular automaton, and N N" rules for a nine-neighbourhood N-ary 

valued two-dimensional cellular automaton. 

For  example, let us take the case of a binary-valued five-neighbourhood two- 

dimensional cellular automaton. A local rule, in this case, can be viewed as a 32-bit 

word as shown in the table 1. This table displays 232 local rules ~bo, ~bt, ~b2,.... The 

column under ~b i is to be treated as the local rule ~ .  

In the same manner, an updating rule in the case of a nine-neighbourhood 

automaton, can be viewed as a 512-bit word, and there are 2 s~2 such local rules for 

us to choose from. 

Example 1: Let us consider a 2-D, 5-neighbourhood binary valued cellular 

automaton characterized by the rule ¢~222772222" 
The 32-bit word corresponding to this rule is 

00001101010001110011101111111110. 

Let the configuration of this automaton at a particular stage of evolution t be 

0 1 1 0 0 

0 1 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0. 

Then the configuration of this automaton at the next stage of evolution t +  1 would be 

0 0 0 0 0 

0 1 0 1 0 

0 1 0 1 0 

0 I 0 1 0 

0 0 0 0 0. 

Example patterns generated after one hundred and twenty four evolutions of 2-D 

cellular automata starting from various seed values are shown in figure 3 (plate 1). 

4.2 The notion of cellular logic array processing 

With a view to reduce the space occupied by various cellular automata rules, and to 

provide a generalized mechanism of rule-writing, we introduce here the notion of 

cellular logic array processing. 

As described earlier, an r-neighbourhood cellular automaton rule is nothing but 

a look-up table consisting of an ordered list of N '  patterns in one column with their 

corresponding N" values in the other column. For  a large value of N, specifying the 

individual entries of the corresponding look-up table is a tedious and error-prone 

job. Moreover, the look-up table would occupy considerable amount  of space. 

Therefore, what we can do is to adhere to a structured approach to rule-writing, or 

to have a language for expressing a rule in whatever terms we find most suitable, 

and a mechanism for interpreting our needs and translating them into a look-up 
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table, in practice, we can use any extensible programming language for interpreting 

our needs but we cannot get them translated without a set of specialized primitives 

of the language for realizing them in a particular machine. 

The notion of a generalized cellular logic scheme, on the other hand, does not 

require any specialized primitives of a high-level language. It mainly deals with the 

relational aspects of cell values in a specified neighbourhood, and pattern-directed 

symbol rewriting techniques. The term pattern is to be understood here as a group 

of cell values in a particular neighbourhood arranged in a manner described by a 

relational expression or a logical sentence. Any extensible programming language 

can be used for constructing logical sentences corresponding to various updating 

rules. More importantly, a logical sentence will not generate the look-up table of the 

corresponding rule. On the other hand, it will generate a minimal set of 

pattern-directed rules required for the processing of a cellular automaton 

configuration. 

A simple example would illustrate this notion. Let us take the case of a two- 

dimensional binary-valued cellular automaton and a five-neighbourhood rule described 

by the following expression: 

If r~(o ~(o ~.) ~(o 1, ~(t) 1 is odd, then ~t~ is 1; otherwise it is O. The term L ~ i , j , ~ i , j + l , ~ i + l , j , ~ i , j -  ~ i -  l , j J l  

[~(o ~(o ~,) ~(o ~(z) 1 refers to the number of ls in a subarray under the 
"~i,j ~ *oi,j+ 1 ' h i +  l , j '  ~ i , j -  1 ~ ~ i -  1, j - I1  

five neighbourhood structure. 

This expression refers to the following sixteen pattem-directed rules: 

00001-*-,1, 00010-*1, 00100-,1, 00111-.1, 

01000-*1, 01011-*1, 01101-*1, 01110-*1, 

10000-.1, 10011-.1, 10101-.1, 10110-.1, 

11001-.1, 11010-.1, 11100-.1, 11111-.1. 

The functional " (') - (') (0 (0 (0 (0 • • expression ~.j - ~i',~ ~ ~,~+, ~ ~ + la (~ ~.~- 1 ~ ~ -  1.~ which is usually 

used to describe the updating rule discussed above will, on the other hand, generate 

the following look-up table with thirty two entries in it. 

00000-*0 01000-*1 10000-.1 11000-*0 

00001-.1 01001-*0 10001-*0 11001-*1 

00010-*1 01010-*0 10010-*0 11010-*1 

00011-*0 01011-*-'1 10011-.1 11011-*0 

00100-.1 01100-.0 10100-*-*0 11100-.I 

00101-*-*0 01101-.1 10101-.1 11101-*0 

00110-*0 01110-.1 10110-.1 11110-*0 

00111- '1 01111-*0 10111-*0 11111,-.1 

It is clear from the above example, that relational pattern-directed approach to 

cellular automata realizations would be a convenient and .more efficient means of 

doing array processing. We call this a cellular logic array processing scheme. 

4.3 The concept of growing configuration of a cellular automaton 

This concept has been introduced here with the purpose of reducing computation 

time involved in implementing especially 2-D and 3-D cellular automata which evolve 

from single-site seed configurations. 
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Usually, an initial configuration of a 2-D cellular automaton is treated as a square 

array of O's, say of the size N x N, but with a nonzero value at the centre of the 

array. This nonzero value :~" " acts as the seed to a 2-D cellular automaton,  and "~N/2,N/2 

it grows as per a 5- or 9-neighbourhood rule. Note  that the first evolution is obtained 

only after (N - 2) x (N - 2) computations if we follow the traditional methods. 

Here as per our method, an array of O's, of size 5 x 5, with a nonzero value at the 

centre, is treated as the initial configuration of a 2-D cellular automaton. Thus the 

number of site-values to be processed turns out to be just 9. After the first evolution, 

ths resulting array size is increased to 7 x 7 and it is treated as the input configuration 

for the second evolution. This technique of increasing the size of a configuration 

before causing an evolution is referred to here as growing configuration. 
For example, let us consider the following type-1 square array configuration of 

size 11 x 11, with the seed value N at the centre. 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 N 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 .  

In this case, the first evolution is usually obtained, only after processing 81 site- 

values as per an updating rule. The maximum growth of the seed N that one could 

expect in the first evolution would be as shown below. 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 N N N 0 0 0 0 

0 0 0 0 N N N 0 0 0 0 

0 0 0 0 N N N 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 00. 

As a matter  of fact, this growth can be effectively obtained from the following 

square array configuration of size 5 x 5, with the geed value N at the centre, instead 

of from the 11 x 11 array considered above. The total number of site-values to be 

processed in this case is just 9. 

0 0 0 0 0 

0 0 0 0 0 
0 0 N 0 0 

0 0 0 0 0 

0 0 0 0 0 .  
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The configuration obtained after the first evolution would be of the form 

0 0 0 0 0 

0 N N N 0 

0 N N N 0 

0 N N N 0 

0 0 0 0 0 .  

The grown configuration after the first evolution, which is used as input to the 

second evolution, would then be of the form 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 N N N 0 0 

0 0 N N N 0 0 

0 0 N N N 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 O. 

In the same manner, the second evolution could be obtained from this grown 

configuration after processing 25 site-values as per the updating rule. The grown 

configuration with a maximum growth at this second stage of evolution would be 

as shown below. 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 N N N N N O  0 
0 0 N N N N N O  0 
0 0 N N N N N 0 0 
0 0 N N N N N 0 0 
0 0 N N N N N 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 .  

Thus, irrespective of the nature of the 2-D cellular automaton and the type of its 

updating rule, we have the initial square array configuration of size 5 x 5, and this 

configuration grows aRer every evolution. 

5. Image processing using cellular logic principles 

In our discussions so far, our attention has primarily been focussed on the role of 

cellular automata in the generation of patterns and pattern-like-images. We now look 

at their role in implementing image processing operations. In this role, the image to 

be processed forms the initial configuration from which a cellular automaton evolves 

as per a cellular logic array processing scheme and produces the desired processed 

image as its final configuration. In what follows, we provide high-throughput 

techniques for implementing morphological operations, and for implementing 

operations of segmentation, binarization, and edge detection and extraction on digital 

images. 

Note that most of the traditional image processing operations involve numerical 
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computations, and so their implementation in a number-crunching digital computer 

purely in terms of pattern-directed algorithms, would lead to unwarranted complexity 

and consumption of more cPu time. Consequently, wherever it is necessary, we make 

use of these numerical operations as such in our fast operating pattern-directed 

algorithms, so that they form, together with a digital computer, a high throughput 

image-processing system. Needless to say, the operations of multiplication and 

division are totally avoided in these algorithms. 

5.1 Morphological operations on binary and gray level images 

The fundamental operations of mathematical morphology are the two dual operations 

of dilation and erosion. The operation of dilation is commutative, whereas that of 

erosion is not. These two operations have been defined separately for binary and 

gray level images. 

5.1a Dilation and erosion of binary valued images: Let us consider a set of numbers 

E to denote the row and column positions of the pixels in binary images A and B. 

Let us treat the image B as the structuring element. Then the dilation of A by B is 

defined as the Minkowski addition, A ~ B  = {x[ for some a~A and b~B, x = a + b}, 

and, the erosion of A by B is defined as the Minkowski subtraction, A ~ B = {x[ for 

every b~B, x + b~A}. 

5. lb Dilation and erosion of gray level images: For any two gray level digital images 

A and B, the dilation is defined as the Minkowski addition, ~ ( A , B ) = A ( ~ B =  

EXTSUP(x,y)~D,[Ax,y + B(x, y)], where D a is the domain of the image B, and EXTSUP 

is an operation of supremum over the union of the domains. The operation of erosion 

is defined using the Minkowski subtraction, A ~ B = INF(x,y)~om[Ax,y + B(x, y)] as 

8(A, B)= INF(x,y)~Dj[A, _ y -  B(x, y)], where DB is the domain of the image B, and 

INF is an operation of infimum over the intersection of the domains. Following these 

definitions for both binary and gray level digital images (Giardina & Dougherty 

1988), the morphological filtering operations of closing and opening are defined in 

the following manner. 

The closing of A by B is represented as A o B and defined as A o B = (A ~3 B ) e  B. 

The opening of A by B is represented as A • B and defined as A • B = (A e B) ~ B. 

In the case of binary-valued images A and B, the morphological operations 

A~)B={x l  for some aeA and b~B, x=a+b} ,  and A e B = { x l  for every b~B, 

x + beA} are simulated here, by a 2-dimensional, 9-neighbourhood binary-valued 

cellular automaton characterized by two updating rules, one for dilation and another 

for erosion. 

The dilation rule has the code 0(1) st1 and it consists of the following 512 conjoint 

substitution formulas: 

Formula 

number 

001 

OO2 

512 

Substitution formulas 

LoooJ LOOOj LOOOj ~ o 
LOOlj LOOOl I ooOJ --~ 1 

[olO/LOOOl LooOJ-~ 1 
L l l l J L l l l j L l l l J - )  1. 
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The erosion rule has the code (0) 511 1 and it consists of the following set of 512 

substitution formulas: 

Formula Substitution formulas 
number 

ooi LOOOj Loooj Loooj-~o 
002 LOOl J tOOOJ [O00J ~ 0 

i ' l l  L I 1 0 J L l l l J L l l l J ~ 0  

512 L I l I I L l l l J L l l l J ~ I .  

5.1c Fast algorithms for dilating/eroding binary images: In view of the special form 

of the above two groups of substitution formulas their practical implementation is 

rather simple. In the case of dilation, if the left part of the first substitution formula 

is encountered, a 0 is substituted, and if it is not encountered a 1 is substituted. 

Likewise in the case of erosion, if the left part of the last substitution formula is 

encountered then a 1 is substituted, otherwise a 0 is substituted. Note that this 

algorithm does not involve even a single numerical operation. 

Example 2: Figure 4a shows a random noise pattern of size 75 x 75. The image of 

figure 4b, of size 75 x 75, is masked by this noise pattern and the result is shown in 

figure 4c. Figure 4d shows the result of applying one pass of the opening operation 

implemented in terms of normal algorithmic cellular automata. The opening is done 

with a 3 x 3 square structure element consisting of l's in all the cells. 

5.1d Fast algorithms for dilating/eroding gray level images: Unlike what has been 

done in the case of binary dilation and erosion, the operations of gray level dilation 

and erosion cannot be simulated directly and exclusively by a 2-dimensional cellular 

automaton. The algorithm is described in a summarized form using the pseudo code 

given below. Here.pixel is referred to as pel. Figure 5a (plate 2) shows an input image 

and a noise pattern, both of size 225 x 225. Figure 5b (plate 2) shows the image 

corrupted with the noise and the cleaned up image by opening it with a structuring 

element of size 3 x 3 consisting of the gray value 3 in all its cells. 

Algorithm for erosion: 
repeat sliding the. structuring element over the image { 

subtract pels of structuring element from the corresponding 

(i) 0') (c) (a) 

Figure 4. Morphological opening of a binary image. 
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pels of the image, find the minimum, k, among all of them 

if all the structuring element pels are less than the corresponding 

image pixels then replace the central pel in the image with k 

else replace it with 0 

} until the structuring element spans whole of the image. 

Algorithm for dilation: 
repeat sliding the structuring element over the image { 

add pels of structuring element to the corresponding 

pels of the image, find the maximum, k, among all of them, 

if at least one of the image pels that are spanned by structuring 

element is non-zero then replace the central pel in the image with k 

else replace it with 0 

until the structuring element spans whole of the image. 

5.2 Fast algorithms for traditional image processing operations on binary and gray 
level images 

The algorithms for the basic image processing operations of binarization, edge 
detection, segmentation, and feature extraction are described here with an emphasis 

on that of edge detection. 

5.2a Binarization of gray level images: The given digital image of size, say, N x N 

is scanned by a 3 x 3 window. On each move, the 3 x 3 sub-image covered by the 

window is examined to see whether the central pixel value lies in between a specified 

gray region including its lower and upper threshold values. If it is found to lie in 

that region, then the central cell is assigned a particular gray value. If not, it is 

assigned the value 0. This procedure is continued till the entire image is scanned. The 

overall effect is that the entire gray level image is transformed into an image having 

only two values. 

5.2b Edge detection of digital images: Among tbe various types of edge detection 

algorithms that are available now, those which make use of neighbourhood principles, 
detect edges in a multiple gray level image by locating edge points at places where 

abrupt changes in gray levels occur. 

We too make use of the neighbourhood principle, but with the difference that 

instead of locating abrupt changes in gray levels we locate boundaries of regions over 

which gray levels do not change. In order to understand this technique, we first take 

the case of detecting the edges of a digital image consisting of regions of uniform 

gray levels. 

5.2b(i) Algorithm for detecting edges of an image consisting of various uniform gray 
levels - The given digital image of size, say, N x N is scanned by a 3 x 3 window. 

On each move, the 3 x 3 sub-image covered by the window is examined to see whether 

some or all of its pixels form a convex region of a single gray level. The smallest 

convex region inside a 3 x 3 window is that formed by pixels in a five-neighbourhood 

structure (se¢ figure 2). Note that such regions can be formed in sixteen different ways 

as shown in figure 6. Of these, the sixteenth one is covered in the rest. To identify 

whether any of these regions has been encountered or not, it is therefore adequate 

to check for the sixteenth one alone. 
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0 0 0  O 0  O O 0  D e  O e O  O 0  O O 0  O 0  

O O 0  O O 0  O O 0  O e O  O O 0  O 0 0  O 0 0  O O 0  

O 0 0  O O O  O 0  O 0  O 0  O 0  • • 

1 2 3 4 5 6 7 8 

O 0  • O 0  B O 0  • O 0  • 

0 0 0  O O 0  O 0 0  O e O  O O 0  O O e  O 0 0  O O O  

O O 0  D O 0  O D  O 0  0 9  0 9  • • 

9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  

Figure 6. Sixteen convex pat- 
terns in a 3 x 3 window. 

If the sub-image is found to contain the sixteenth pattern of figure 6, then its central 

cell is assigned the 0 gray level. This procedure is continued till the entire image is 

scanned. The overall effect is that the boundaries of various single gray level regions 

in the given image arc retained and the interior parts arc erased thus giving us the 

edge detected version of the original image (see figure 7, plate 2). 

This algorithm is given below in the form of a pseudo code which can be easily 

translated into any computer language. 

Pseudo code: 
repeat sliding the 5-ncighbourhood empty window over the image { 

if all the five pixcl values of the sub-image covered by the 

scanning structure are identical then replace the central 

pixel value with 0, else slide the 5-ncighbourhood window 

} until the structuring element spans whole of the image. 

Figure 7 (plate 2) shows an image and its edge detected version. 

5.2b(ii) Algorithm for detecting edges of an imaoe consisting of regions that appear 

to be uniform - The technique of detecting the edges of various single-gray-level regions 

is easily extended to detecting the edges of regions that appear to be single-gray-level 

regions. A region that appears to have a single-gray-level may actually contain several 

adjacent gray levels. That they appear to be same is the result of visual quantization 

made by the observer. The process of partitioning a given gray level image into 

several regions, each of which appears to an observer to have a single-gray-level, is 

called seamentation. Hence, the central idea behind this extension is that the given 

image is first segmented using a threshold-based-quantization scheme and then the 

boundaries of the quantizcd regions arc detected. We proceed as follows. 

Similar to what is done in the previous case, the given digital image is scanned by 

the fivc-neighbourhood empty window. On each move, the 3 x 3 sub-image covered 

by this window is examined to see whether the gray-distance, say D, which is the 

difference between the maximum and the minimum gray values corresponding to 

that sub-image, is less than or equal to a threshold value, say T. If D is less than or 

equal to T, then the central cell is assigned the gray-value 0; otherwise the original 

value contained in the central cell is left as it is. This procedure is continued till the 

entire image is scanned. The overall effect is that the boundaries of various regions 

in the given image, that appear to be uniform, arc retained, and their interior parts 

arc erased, thus giving us the edge-detected version of the original image. The pseudo 

code of this algorithm is as follows: 

Pseudo code: 

repeat sliding the 5-ncighbourhood empty window over the image { find the maximum 

gray-value 
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G max; find the minimum gray value G min; if the difference between these two 

values D is less 

than or equal to the specified threshold value T then replace the central pixel 

value with 0, else 

slide the 5-neighbourhood window } until the structuring element spans th e  

whole of the image. 

Figure 8b shows the edge-detected version of the image shown in figure 8a (plate 3). 

The above algorithm has been tested in our image-processing laboratory, and a 

comparative study with various traditional edge detection algorithms has been made. 

The results of the study are given in table 2. The digital data corresponding to figure 

8a was taken as the standard input to all the algorithms. This image is of size 

256 x 256, and contains a maximum gray value of 255. All the operations were carried 

out in a root transputer INMOS T800 with an IBMPC/AT-386 used as a server. 

The edge-enhancement operator given in table 2 is the most recent one reported 

in the literature (Galbiati 1990). The algorithm corresponding to this operator is 

given below. The given digital image is scanned by the/fine-neighbourhood empty 

window. On each move, the maximum gray value contained in the 3 x 3 sub-image 

covered by this window is determined, the central cell value is subtracted from this 

maximum value, and the difference is assigned to the central cell. This procedure is 

continued till the entire image is scanned. The overall effect is that the boundaries 

of various regions in the given image, which appear to be uniform, are enhanced thus 

giving us the edge-detected version of the original image (see figure 9, plates 3 & 4). 

Though this operator is somewhat similar to ours, it tampers with the original 

data, and causes difficulty in obtaining a contour map of a given image. In fact, 

contour information is completely lost in the process of edge enhancement. On the 

other hand, our algorithm does not alter the original pixel values, and provides precise 

contour information contained in a given digital image (see figure 8, plate 3). 

5.2b(iii) Algorithm for segmenting various regions of a given digital gray image - Our 

approach to edge detection is easily extended to segmentation. The term segmentation 

Table 2. Results of a comparative study. 

Processing time 
Type of operator Threshold (milliseconds) Remarks 

Sobel 150 4670 See figure 9a. The original pixel values 
are altered 

Robert 10 1395 

Edge-enhancement  - -  3190 

Our algorithm 45 3670 

See figure 9b. The original pixel values 
are altered 

See figure 9c. The original pixel values 
are altered. Contour information is 
completely lost 

See figure 8b. The original pixel values 
are not altered. Contour information is 
preserved 

*Figures 8 & 9 are on plates 3 & 4. 
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refers to the process of partitioning a given image into regions each of which appears 

to an observer to have a single gray level. A region that appears to have a single 

gray level may actually contain several adjacent gray levels. That they appear to be 

same is the result of visual quantization done by the observer. Segmentation requires 

that we modify the pixel intensities of the given image in accordance with this 

quantization scheme. There are two ways of carrying out segmentation in a given 

image. First, the given image could be partitioned as a disjoint union of various 

known gray level distributions. Second, a global rule could be specified which would 

automatically partition the given image into various regions of statistically ,disjoint 

gray level distributions. Here, we provide an algorithm pertaining to the latter 

technique. 

The given digital image is scanned by the five-neighbourhood empty window. On 

each move, the sub-image covered by this window is examined to see whether the 

gray-distance, say D, that is the difference between the maximum gray value G max 

and the minimum gray value G min corresponding to that sub-image, is lessthan 

or equal to a threshold value, say T. If D is less than.or equal to T, then the central 

cell is assigned the gray value G min + (D/2); otherwise the original value contained 

in the central cell is left as it is. This procedure is continued till the entire image is 

scanned. The overall effect is that various regions of statistically disjoint gray level 

distributions in the image are partitioned thus giving us the segmented version of 

the original image. 

5.2b(iv) Solid object extraction in oray level imaoes - The algorithm for solid object 

extraction is somewhat similar to that of binarization. Here, the given digital image 

of size, say, N × N is scanned b y  a window of specified size. On each move, if the 

number of pixels, contained in the sub.image covered by the window that lie outside 

the specified gray range, is more than half the total pixels in the window, then the 

central pixel in the window is replaced with a zero, otherwise it is left untouched. In 

this way solid objects, bigger than the specified size and lying in the required gray 

range, are extracted. Figure 10 (plate 4) shows the image of an aircraft with a noisy 

background and a clean image extracted from it using a window of size 3 × 3 with 

the gray range between 18 and 31. 

6. Conclusions 

Speed and quality of output are the two major objectives of a high-throughput 

image processing system. But, more often than not, both these objectives are not 

simultaneously met. For example, in order to increase the processing speed we have 

to reduce the computational effort, that is, the number of local variables involved in 

the computation has to be reduced, which means loss of detail in a picture. Generally, 

spatial domain image processing techniques are used to obtain better results but they 

involve considerable time. On the other hand, transform domain image-processing 

techniques may notnecessarily yield quality output but would certainly consume less 

processing time. It is in this complex situation that we found cellular logic array 

processing techniques to be of immense use in meeting both the objectives of speed 

and quality of output. 
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Plate 2 

(a) 

(b) 

Figure 5. Morphological opening of a gray level image; (a) Input image and a 
noise pattern (size 225 × 225): (b) image corrupted with the noise and the cleaned 
up image 

(a) (b) 

Figure 7. An image (a) and its edge detected version (b), consisting of various 
uniform gray level regions. 
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P la te  3 

Figure 8. (a) Image consisting of regions that appear to be uniform, and (b) its 
edge detected version. 

(a) (b) 

Figure 9. (a) & (b) (caption on p. 300). 
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• ' f 

Figure 9. (c) 

Plate 4 

Figure 9. Edge detection of a gray level 
image using known algorithms. Original 
pixel values are altered in (a) & (b), while in 
(e) contour information is also completely 
lost. 

Figure 10. Solid object extraction from a noisy image. 


