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Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer.
Althoughmolecular signatures characterising pluripotency andmultipotency exist, there is, as yet, no single
quantitative mark of a cellular sample’s position in the global differentiation hierarchy. Here we adopt a
systems view and consider the sample’s network entropy, a measure of signaling pathway promiscuity,
computable from a sample’s genome-wide expression profile. We demonstrate that network entropy
provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells,
recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network
entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample’s
differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem
cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification
of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical
property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by
the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure
of a cell’s undifferentiated state, defining its elevation in Waddington’s landscape.

T
he observed diversity of mature cells and human tissues arises as a result of a complex, intricate program of
cellular differentiation, ultimately originating from (pluripotent) embryonic stem cells1. Although systems
biology principles underpinning the transitions between specific cellular states, such as pluripotency and

progenitor states, are in the process of being elucidated2–5, much remains to be learned. In the case of hematopoi-
esis, one of the best understood developmental systems, the full repertoire of transcription factors and signaling
pathways dictating cell-fate is still unknown5–9. Other studies have focused on characterising the pluripotent and
progenitor states in terms of genome-wide gene expression10–15, DNA methylation and chromatin state pro-
files16–20. Although these molecular signatures can discriminate cells of specific differentiation stages from each
other, there is, as yet, no single quantitative measure that can correctly place a sample within the global differ-
entiation hierarchy. Rephrased in the context of Waddington’s differentiation landscape21, we do not yet have a
molecular measure that can represent the energy potential, i.e. the elevation, in Waddington’s landscape.

Recently, it has been proposed that pluripotency, andmore generally, the undifferentiated state, is an emergent
statistical property of a population of cells22–24, not well-defined at the single-cell level. Specifically, it has been
argued that high cellular diversity underpins the pluripotent or multipotent capacity of stem cell populations,
with differentiated cell populations representing a more uniform synchronised state22. Motivated by this, we here
explore a system’s property of a cellular sample, called network entropy, in the context of cellular differentiation.
At the single-cell level network entropy can be thought of as an approximate measure of signaling pathway
promiscuity22,25–27. Thus, a highly undifferentiated cell, such as a pluripotent stem cell, would have a high network
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entropy since it must maintain the option to initiate the activation of
a wide number of different signaling pathways associated with com-
mitment to diverse cell fates6. In contrast, a terminally differentiated
cell would have a low network entropy, since it must maintain activa-
tion of a few pathways specific to their fate. At the population level,
high network entropy would thus imply increased cellular heterogen-
eity, since the increased signaling promiscuity results in an increased
stochasticity across single cells. Thus, we posited that network
entropy would provide a direct molecular correlate of the undiffer-
entiated state of a cellular sample, allowing us to place an arbitrary
sample at its appropriate elevation in Waddington’s landscape.
To test our hypothesis, we here compute sample-specific network

entropies for a large number of gene expression data sets relevant to
cellular differentiation, reprogramming and cancer, encompassing
over 800 samples, including cell-lines and primary tissue. Our main
key findings are: (i) network entropy is a highly accurate discrim-
inator of pluripotent and non-pluripotent cell-types, (ii) it can fur-
ther discriminate cellular states of varying degrees of multipotency
within distinct lineages, (iii) it provides a more robust and general
measure of a cell’s position in the global differentiation hierarchy
than gene expression signatures, and does so independently of cell
proliferation, and (iv) it predicts a higher cellular heterogeneity in
cancer stem cells compared to ordinary cancer cells.

Results
Construction and rationale of network entropy. To compute net-
work entropy requires estimation of the signaling/interaction
probabilities of proteins in a given sample. Thus, we integrated the
gene expression profile of a given sample with a comprehensive
protein interaction signaling network (PIN) (see SI28), using the
mass-action principle to construct a sample-specific stochastic

matrix pij where i and j label two distinct genes. The stochastic
matrix provides a rough proxy for the interaction probabilities
present in the given sample and its construction is based on the
assumption that two genes known to interact at the protein level
will have a greater interaction probability when they are both
highly expressed (see SI). From the stochastic matrix, the network
entropy can be calculated as the entropy rate29,30

SR~
X

i

piSi ð1Þ

where Si is the local entropy of node (gene/protein) i and where pi is
the i’th element of the stationary distribution of pij (i.e. pp 5 p, see
Methods, SI). Thus, the entropy rate gives a steady state average
measure of the uncertainty (or promiscuity) in signaling informa-
tion flow over the network. To facilitate comparison of entropy rates
obtained from samples profiled on different expression arrays, values
were always normalised to the maximum possible entropy rate of a
given integrated network (SI, fig. S1).
We posited that the entropy rate of a sample (e.g. a cell-line), as

computed above, would capture the average level of signaling path-
way promiscuity and hence of the cellular heterogeneity in the sam-
ple. Under this model, highly undifferentiated and plastic cells, such
as stem cells, would be characterised by a state of high network
entropy, allowing them the option to differentiate into diverse cell
lineages (Fig. 1A). Similarly, since differentiation implicates activa-
tion of specific molecular signaling pathways, this activation would
lead to a reduction in the uncertainty/promiscuity of information
flow, i.e. a low entropy state (Fig. 1A).
As a proof of concept that the entropy rate does indeed measure

the level of signaling promiscuity we first devised a simulationmodel
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Figure 1 | Network entropy as the energy potential inWaddington’s landscape. (A) Illustration of network entropy’s role in cellular differentiation. The
z-axis represents the network entropy rate (SR) of a cell, which is a measure of the promiscuity/redundancy in the signaling patterns within the cell. The

two-dimensional plane spanned by the x-and-y axis represents gene expression state/phase space. We model a cell in a pluripotent stem-cell like state as

being in a corresponding shallow attractor in phase space, characterised by increased signaling promiscuity (high network entropy), thus allowing each

cell in the population to explore more freely the underlying phase space, resulting in a high cellular diversity. In contrast, a terminally differentiated cell is

defined by activation of specific signaling pathway(s), corresponding to less uncertainty in how signals flow in the network (a state of low entropy).

Cells in this state are in deep attractors and cellular diversity at the population level is low. (B) Simulation of pathway activation in a realistic protein

interaction network (only a small subnetwork is shown). In the left, edge weights are defined equally, so that the randomwalk on the network is unbiased.

On the right, a specific pathway is activated by increasing the relative weights of edges connecting the genes in the pathway (shown in dark red). Lower

panel compares the entropy rate (SR) of the unbiased state, representing a highly promiscuous poised cellular state (magenta diamond), to the entropy

rates obtained by separately activating each individual gene in the network (. 1000 perturbations, ‘‘Commt(Pert.)’’), and to the entropy rates obtained by

activating whole signal transduction pathways (100 pathways, ‘‘Commt.(Path)’’). Binomial test P-values are given.
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(SI). We compared the entropy rate of our PIN with weights defined
by a uniform stochastic matrix (i.e. one with pij / 1/kiwhere ki is the
degree of node i) representing a promiscuous poised state, to the
entropy rate obtained by randomly activating individual genes and
specific signal transduction pathways in the network (SI, Fig. 1B). In
the case where individual genes were activated, this led, in approxi-
mately 70% of perturbations, to a reduction in the global entropy rate
(Binomial P , 0.001, Fig. 1B). However, in the case where whole
signaling pathways were activated, the reduction in the entropy rate
was observed in 85% of cases (Binomial P, 10210, Fig. 1B), consist-
ent with a substantially lower uncertainty in the information flow.

Network entropy quantifies the level ofmultipotency.Based on the
simulation results, we sought to determine if network entropy could
discriminate biological samples that differ in terms of their signaling
promiscuity. Thus, we computed the network entropy rate of
samples in the ‘‘stem cell matrix’’ (SCM), a compendium of over
219 samples (mostly cell-lines), all profiled with the same Illumina
arrays, 59 of which were deemed pluripotent, with the rest (160)
deemed non-pluripotent11. We observed that network entropy was
significantly higher in the cell-lines deemed pluripotent (P, 10210,
Fig. 2A). To provide an independent benchmark we also computed a
t-test based pluripotency score (TPSC, SI), constructed from an
independent 19-gene pluripotency expression signature, contain-
ing important pluripotency markers such as NANOG and
LIN28A12. The TPSC pluripotency score was also significantly
higher in the pluripotent cell lines (SI, fig. S2), and both measures
were significantly correlated, confirming that network entropy is
indeed a marker of pluripotency (Fig. 2B). In an independently
generated data set profiling 107 human embryonic and 52 induced
pluripotent stem cell lines, as well as 32 differentiated tissue
samples31, the entropy rate achieved 100% accuracy in discriminat-
ing pluripotent from differentiated samples (Figs. 2C–D). Crucially,

all these results were independent of cell proliferation, as we verified
by removing cell proliferation and cycling genes32 from the network
(see SI, figs. S3–S4). Furthermore, passage number and sex did not
have noticeable effects on the entropy rate as assessed in 107 human
embyronic stem cell (hESC) lines (SI, fig. S5). Consistent with
network entropy being a marker of pluripotency we observed that
induced pluripotent stem cell samples exhibited high entropy values,
similar to that of hESCs, and significantly higher than that of their
parental differentiated cells (P , 0.0001, SI, figs. S6–S7).
Next, we compared the network entropy of hESCs to that of com-

mitted butmultipotent cell types, including neural stem cells (NSCs),
hematopoietic stem cells (HSCs) and mesenchymal stem cells
(MSCs). Confirming our hypothesis, all of these stem cell types
exhibited entropies which were lower than that of hESCs/iPSCs,
but higher than their differentiated progeny (Fig. 3A, SI, S8–S9).
Thus, network entropy can discriminate cells within a lineage
according to their differentiation status. To test this further, in a
combined haematological data set33, encompassing a number of
different blood cell types including differentiated types (e.g. mono-
cytes), and less differentiated ones (e.g. CD341 HSCs and erythro-
blasts/megakaryocytes), network entropy recapitulated a differenti-
ation hierarchy consistent with prior knowledge34,35 (see SI, fig. S10).
Importantly, we observed that network entropy was a relatively
robust measure, being fairly insensitive to the normalisation or plat-
form used (SI, figs. S8–S11), although in the case of MSCs biological
variations were evident (SI, figs. S8)36,37.

Network entropy is reduced during differentiation. If network
entropy is a general measure of the undifferentiated state of cells, it
ought to exhibit dynamic changes in time course differentiation data.
To this end, we considered expression data of differentiated retinal
pigment epithelial cells, which were induced to de-differentiate,
followed by a period of re-differentiation (SI). Remarkably, network
entropy increased upon de-differentiation, reaching a maximum,
with values subsequently dropping upon re-differentiation (Fig. 3B).
As another example, we considered a time course data set consisting
of human promyelocytic leukemia progenitor (HL60) cells, differe-
ntiating into neutrophils38. There were two separate time courses,
using distinct stimuli to induce differentiation of HL60 cells. In
both cases, network entropy was significantly reduced with time
(ATRA stimulus, R2

5 0.96, P , 1028, Fig. 3B). Once again, these
dynamic changes were independent of cell-proliferation (SI, fig. S12).

Network entropy discriminates cancer stem cells, cancer and
normal cells. Differentiation is a key distinctive feature of cancer
and normal cells, with cancer representing a less differentiated and
more heterogeneous state. Confirming this, network entropy was
consistently higher in cancer tissue compared to normal cells,
across four different tissue types, with cancer cell-lines exhibiting
even higher values (Fig. 4A). We further analysed an expression
data set profiling putative cancer stem cells (CSCs) and their
parental cancers across a number of different tissues39. This showed
that CSCs exhibited a marginally higher network entropy than their
non-stem like counterparts, consistent with the view that CSCs retain
a higher level of plasticity (Fig. 4B).
Interestingly, comparing the network entropy of hESCs to terato-

carcinomas and germ cell tumours (all from the SCM and all deemed
pluripotent), revealed marginally higher values in the hESCs (SI, fig.
S13). This pattern of higher network entropy in normal stem cells
was also seen in the non pluripotent context: for instance, the net-
work entropy of HSCs and NSCs was, in general, higher than that of
leukemic stem and glioma stem cells, respectively (SI, fig. S13–S14).
Thus, while CSCs and ordinary cancer cells exhibit significantly
increased cellular heterogeneity compared to normal differentiated
tissue, CSCs do not appear to exhibit higher values relative to their
normal stem cell counterparts, and even appear to show reduced
levels of entropy compared to normal stem cells.
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Dynamic changes in local network entropy identifies key differen-
tiation genes and pathways. To demonstrate that the dynamic
changes in entropy can be related to changes in activation of
specific pathways, we considered, as a proof of principle, the
case of Notch-signaling. Notch signaling is inactive yet inducible
in the pluripotent state, with activation normally associated with
differentiation40–45. Thus, essential components of the Notch
signaling pathway should exhibit a lower network entropy in the
non-pluripotent state. Using data from the stem cell matrix11, we
were able to confirm this for 12 of the 13 Notch pathway genes (SI,
figs. S15–S16). To confirm the statistical significance of this, in none
of 10000 random selections of 13 genes from the PIN did we observe
the same level of consistency and statistical significance as for the
Notch pathway genes (P, 0.0001), indicating that reduced entropy
of the Notch pathway is a key feature of the non-pluripotent state (SI,
fig. S17). It is also important to demonstrate that the interactors
driving the lower entropy of Notch genes are other Notch-pathway
genes. FormanyNotch genes (e.g.NOTCH2, NOTCH3, DLL1, JAG1,
PSENEN, APH1A, APH1B) this was indeed the case, despite the fact
that there were also many non-Notch pathway interactors present
(SI, figs. S16,S18).
To further test the added value of local network entropy, we revis-

ited the HL60 to neutrophil time course data. Using linear regres-
sions we identified the genes showing the most significant decreases
and increases in network entropy. Ranking genes according to those
showing the largest reductions in network entropy and performing a
subsequent Gene Set Enrichment Analysis (GSEA), we identified
JAK-STAT signalling as one of the key pathways (SI, fig. S19–S20).
The involvement of this pathway is heavily supported by
previous studies46–49. Attesting to the statistical significance of the
JAK-STAT pathway, computing entropies after randomly permut-
ing the gene expression profiles over the nodes in the network led to
no significantly enriched biological terms (adjusted P-values. 0.05).
This is an important result because it shows that the dynamic net-
work entropy changes inferred from the integrated PIN are indeed
targeting specific signaling pathways. Finally, using non-network
based approaches did not identify the JAK-STAT pathway (SI,
fig. S19).

Discussion
Here we have taken a systems analysis view of cellular differentiation,
proposing the concept that network entropy is inversely correlated
with the differentiation status of a sample. By computing the network
entropy of over 800 samples, encompassing cell types from many
diverse cell-lineages and differentiation stages, and profiled using a
variety of different microarray platforms, we have demonstrated that
entropy provides a near absolute quantification measure of the
undifferentiated state of any given sample.
In the context of normal physiology, hESCs and other pluripotent

cell types were correctly predicted to exhibit the highest levels of
network entropy, followed by multipotent stem cells (e.g. NSC/
HSC/MSC), with terminally differentiated cells exhibiting signifi-
cantly lower entropy (Fig. 5). In the context of cancer, CSCs exhibited
higher levels of cellular entropy than ordinary cancer cells, although
this difference appears substantially reduced in comparison to what
is observed between normal stem cells and their differentiated pro-
geny (Fig. 5). Cancer cell lines exhibited a higher entropy than prim-
ary cancers, with cancer tissue possessing higher values than normal
tissue (Fig. 5). All these findings are consistent with network entropy
being a direct measure of the average intrasample cellular heterogen-
eity, supporting the view that cellular states such as pluripotency are a
statistical property of a cell population6,22. Indeed, although we have
not analysed genome-wide single-cell expression data, it is highly
plausible that the degree of cellular heterogeneity is determined by
the level of signaling promiscuity, and hence stochasticity, in single
cells6,22. The observation that cancer stem cells exhibit a high but

marginally lower network entropy than their normal stem cell coun-
terparts is also consistent with the view that CSCs must be charac-
terised by oncogenic pathway dependencies, which, as shown in a
previous study, lead to a lowering of network entropy26. Local
entropy analyses aimed at identifying the specific oncogenic path-
ways driving the lower entropy in CSCs could thus offer novel thera-
peutic opportunities26.
It is important to stress again that network entropy provides a very

general system’s measure of the undifferentiated state of a sample. In
this regard, we remark that reported pluripotency expression signa-
tures12,15, which lack a systems-level interpretation and underst-
anding, could only consistently discriminate pluripotent from
non-pluripotent cell types, but generally failed to discriminate cell
types located further down the differentiation hierarchy, irrespective
of normal or cancer physiology (SI, figs. S21–S27). Thus, the fact that
network entropy provides amore refined classification of the distinct
cell types across the global differentiation hierarchy, and that it did so
independently of cell-proliferation indices, attests to the biological
importance of this measure and of the statistical mechanical frame-
work on which it is based.
Although we observed some variation in entropy rates between

studies profiling the same cell types using the same technology, it is
nevertheless also important to note that these variations were in
general small and that network entropy provided a relatively robust
measure of the undifferentiated cellular state: for instance, hESCs
always showed the highest levels of network entropy, irrespective
of study or platform. This robustness stems from two key features.
First, network entropy is a self-calibrating measure, as it is con-
structed by taking ratios of gene expression intensity values. This
makes it a dimensionless quantity and fairly insensitive to the micro-
array or normalisation method used, unlike the scores derived from
pluripotency signatures which showed significant variations between
studies (see SI, fig. S28). Second, network entropy is not affected by
overfitting since it is a quantity which does not depend on feature
selection. Thus, unlike pluripotency expression signatures12,14,15, net-
work entropy does not depend on tunable parameters. It follows
that network entropy could provide a simple, general and robust
quantitative test for assessing the pluripotency or multipotency of
a cellular sample. For instance, it could be used to assess the quality of
iPSCs in reprogramming experiments or even to identify mislabeled
samples.
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Since a sample’s network entropy is computed from integration of
its genome-wide expression profile with a protein interaction net-
work, it is important to also comment on the robustness of the results
in relation to the network, and more importantly on the number of
genes that are measure. Considering the HL60 differentiation time
course data set as a test case, we observed that randomly subsampling
from the underlying integrated network and recomputing the
entropy rates for the resulting maximally connected components,
still resulted in significant decreases of the entropy rate with differ-
entiation stage, as long as we subsample at least 40% of genes in the
network (SI, fig. S29). That the association between network entropy
and differentiation stage is robust to subsampling indicates that the
dynamic changes in entropy are driven by a subtle interplay between
the gene expression changes and the topological properties of the
nodes exhibiting these changes. We leave investigation of this and
other aspects to a future study.
In summary, we have proposed a relatively simple, computable,

systems property of a genome-wide expression profile, called net-
work entropy, which provides an estimate of signaling promiscuity
and cellular heterogeneity, and which correlates with the undiffer-
entiated state of cells. Network entropy may thus serve as a quant-
itative in-silico proxy for a sample’s differentiation potential in
Waddington’s epigenetic landscape.

Methods
Full details of the data sets, interaction network and all statistical methods used are
provided in SI. Below, we give a brief sketch of how network entropy is calculated.

Construction of the sample specific stochastic matrix and network entropy rate.
The sample specific stochastic matrix is estimated by integrating the gene expression
profile of the sample with a comprehensive protein interaction network. Specifically,
we invoke the mass action principle: let Ei denote the normalised expression level of
gene i in a given sample. For a given neighbour jg N(i) (where N(i) labels the
neighbours of i in the PIN), the mass-action principle states that the probability of
interaction with i is approximated by the product EiEj. Normalising this to ensure that
Sj pij 5 1, we get

pij~
Ejs

Sk[N ið ÞEks
Vj[N ið Þ ð2Þ

Clearly, if j1N(i), then pij5 0. This then defines a sample-specific stochastic matrix.
From this stochastic matrix one can then construct a local network entropy for each
gene i in the PIN, as

Si~{

X

j[N ið Þ

pij log pij ð3Þ

which reflects the level of uncertainty or promiscuity in the local interaction
probabilities around gene i. We note that the above expression for the local entropy is
not normalised so that the maximum possible entropy depends on the degree (ki) of
the node i. In fact, max Si 5 log ki. Thus, it is convenient to also define a normalised
local entropy as (see25),

~Si~{

1

log ki

X

j[N ið Þ

pij log pij ð4Þ

We stress again that this local network entropy can be computed for each gene i in
each given sample. When defining a global network entropy (i.e. for the whole
network) one can, in principle, consider the average of these normalised local
entropies. This average however is a nonequilibrium entropy26, in contrast to the
global entropy rate, SR, which is defined in terms of the stationary distribution, p, of
the stochastic matrix p, i.e. through pp5 p. Specifically, the global entropy rate, SR, is
defined by29,30

SR~
X

i

piSi ð5Þ

where Si are the unnormalised local entropies. We note that the network entropy rate
is bounded between 0 and a positive maximum value that depends only on the
adjacency matrix of the network50. Indeed, it can be shown that the maximum
possible entropy rate is attained by a stochastic matrix, pij, defined by pij 5 Aijvj/lvi,
where Aij is the adjacency matrix (i.e. unweighted) of the PIN, and v and l are the
dominant eigenvector and eigenvalue of this adjacency matrix, respectively. The
maximum attainable entropy rate, MR, will thus depend on the specifics of the
network, including total number of genes, edges and topology. Thus, to facilitate
comparison between networks, the network entropy rate, SR, can be scaled relative to

themaximum attainable value in that given network, ~SR:SR=MR, so that ~SR is always

bounded between 0 and 1. In this work, all reported entropy rates have been
normalised in this way.

We note that computation of the entropy rate is computationally intensive as it
requires estimation of the stationary distribution of a large stochastic matrix. For a
connected network of size 8290 nodes, computation of a sample’s entropy rate takes
, 10 minutes on a Dell Precision T5400 workstation. R-scripts performing the
computations are freely available on request.
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