
Hindawi Publishing Corporation
Journal of Ophthalmology
Volume 2011, Article ID 507037, 6 pages
doi:10.1155/2011/507037

Review Article

Cellular Origin of Spontaneous Ganglion Cell Spike Activity in
Animal Models of Retinitis Pigmentosa

David J. Margolis1, 2 and Peter B. Detwiler1

1 Program in Neurobiology and Behavior, Department of Physiology and Biophysics, University of Washington,
Seattle, WA 98195, USA

2 Department of Neurophysiology, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland

Correspondence should be addressed to Peter B. Detwiler, detwiler@u.washington.edu

Received 1 July 2010; Accepted 7 September 2010

Academic Editor: Ian M. MacDonald

Copyright © 2011 D. J. Margolis and P. B. Detwiler. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Here we review evidence that loss of photoreceptors due to degenerative retinal disease causes an increase in the rate of spontaneous
ganglion spike discharge. Information about persistent spike activity is important since it is expected to add noise to the
communication between the eye and the brain and thus impact the design and effective use of retinal prosthetics for restoring
visual function in patients blinded by disease. Patch-clamp recordings from identified types of ON and OFF retinal ganglion cells
in the adult (36−210 d old) rd1 mouse show that the ongoing oscillatory spike activity in both cell types is driven by strong rhythmic
synaptic input from presynaptic neurons that is blocked by CNQX. The recurrent synaptic activity may arise in a negative feedback
loop between a bipolar cell and an amacrine cell that exhibits resonant behavior and oscillations in membrane potential when the
normal balance between excitation and inhibition is disrupted by the absence of photoreceptor input.

1. Introduction

Retinitis pigmentosa (RP) refers to a number of related dis-
eases that result in the death of rod and cone photoreceptors
causing blindness in about one in 3,500 people, nearly 2 mil-
lion people worldwide. Not surprisingly, PubMed lists more
than 7,000 papers on RP that provide an abundant source
of information about the genetic, biochemical, physiological,
and therapeutic characteristics of the disease. The goal of
much recent work on RP has been to develop methods to
restore vision by resuscitating the retina using gene therapy
to repair the mutation that gives rise to the dystrophy [1]
or by driving it artificially using neural prosthetics that are
based on either electrical stimulation via implanted retinal
electrodes [2] or optical stimulation via light activation
of ectopically expressed photosensitive proteins [3–9]. The
success of any of these approaches ultimately depends on
the functional integrity of retinal ganglion cells (RGCs),
the output cells of the retina whose axons carry spike-
encoded information to the visual centers in the central
nervous system. To make optimal use of ganglion cells for
communicating with the brain, it is necessary to know how

they are affected by the degenerative loss of photoreceptors
and the accompanying changes in the cellular architecture of
the retina [10–15].

2. RP Increases Spontaneous Spike Activity in
Ganglion Cells

Out of the several thousand publications on RP, less than a
dozen have addressed questions about the effects of retinal
degeneration on RGC firing properties. The responses of
individual cells cannot be evaluated using the electroretino-
gram (ERG), which is the widely employed standard method
for assessing the functional changes in the retina resulting
from loss of photoreceptor input. An early study by Drager
and Hubel [16] based on extracellular single unit recordings
from either optic nerve, superior colliculus (SC), or visual
cortex reports an increase in spontaneous spike activity
with maintained rhythmic firing in rd1 mice that was not
present in normal animals. The patterned spike activity was
reversibly abolished by temporarily occluding blood flow
to the eye, providing evidence of its retinal origin. The
frequency of the persistent discharge was dependent on the
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anesthetic and ranged between 9−14 Hz. These findings were
confirmed subsequently using autocorrelgrams to demon-
strate the rhythmicity of maintained spike activity in units
recorded from the SC in dystrophic but not nondystrophic
Royal College of Surgeons (RCS) rats [17]. There are
also reports of increased c-fos-like immunoreactivity in the
superior colliculus and lateral geniculate nucleus in rd1 mice
and RCS rats that is eliminated by intraocular injection of
TTX or optic nerve transection [18, 19]. The increase in c-
fos expression was attributed to the generation of rhythmic
input from retinal ganglion cells.

The changes in RGC spike activity during the progression
of photoreceptor degeneration has been documented more
directly using extracellular single RGC recording in the RCS
rat [20] as well as multielectrode array recordings in retina
from the rd1 mouse [21] and the P23H rat, an animal
model of human autosomal dominant RP [22]. In agreement
with the earlier accounts the single cell and multielectrode
recordings showed a marked increase in the frequency of
maintained spontaneous spike activity with rhythmic bursts
[9, 21] in adult animals that have lost their ability to respond
to light. An increase in glutamate-mediated excitatory sig-
naling has also been observed in rodent models of RP using
organic cations and immunoreactivity to map neuronal
activity [11]. Taken together, the overall conclusion of these
studies is that photoreceptor death due to degenerative
disease leads to hyperactivity in ganglion cells.

It is important to understand the properties of the ongo-
ing spike activity that is present in RP because it represents an
undesirable noise source that degrades the communication
between the eye and the brain that the aforementioned
strategies to restore vision in patients blinded by degenerative
disease depend upon. Here we review experiments designed
to investigate the cellular mechanisms responsible for the
increase in maintained spike activity and explore the retinal
circuitry that may give rise to it.

3. RP-Induced Changes in Spike Activity in
Identified Retinal Ganglion Cells

To determine whether RGC hyperactivity was caused by
changes in the intrinsic properties of RGCs, such as ion
channel function or distribution, or by altered synaptic
input, intracellular recording was used to study the effect
of photoreceptor loss on the electrophysiological properties
of selected types of ganglion cells in rd1 retina [23]. RGCs
with the soma diameters (≥20 µm)—which, by virtue of
their large size, are referred to here as alpha cells [24]—were
targeted for whole cell current or voltage clamp recording
and filled by internal dialysis with an intracellular fluorescent
indicator. Images obtained by 2-photon laser scanning
fluorescent microscopy [25] were used to classify recorded
RGCs as either ON, OFF transient, or OFF-sustained alpha
cells, based on their dendrite stratification depth in the inner
plexiform layer [24]. The use of morphological criteria to
reliably identify RGC subtypes in blind animals is made
possible by the fact that the dendritic morphology of
ganglion cells is not affected by photoreceptor degeneration
[23, 26].

Unlike ganglion cells from normal animals, which
generate resting spike activity with no obvious temporal
periodicity, the rate of spontaneous spike discharge in alpha
RGCs from animals blinded by degeneration is increased and
consists of continuous rhythmic bursts of spikes (Figure 1)
with a beat frequency of ∼10 Hz; the same frequency as
the persistent discharge was reported by Drager and Hubel
[16]. The clockwork firing of the alpha RGCs is maintained
24/7 in adult animals ranging in age from 36 to 210 days;
experiments were not done on older animals. During this
time the intrinsic network and electrophysiological proper-
ties of the cells were remarkably stable [23]. More specifically
rd1 alpha RGS retained the characteristic differences in the
weights of excitatory and inhibitory synaptic inputs that ON
and OFF cell types receive. They also continued to generate
rebound excitation in OFF cells and gave rise to voltage-
evoked dendrite calcium signals that were similar to those
recorded from the dendrites of RGCs in non-dystrophic
retina [27]. The rhythmic bursts of spikes that are a hallmark
of rd1 alpha RGC activity are triggered by oscillatory synaptic
inputs as shown by the fact that they persist under voltage
clamp recording conditions and are eliminated by CNQX, a
glutamatergic blocker (Figure 1).

4. Source of Enhanced Synaptic Inputs

The presynaptic source of the synaptic inputs that give rise
to rhythmic firing is not known. That rd1 ON and OFF
RGCs retain their normal distinguishing differences in the
strengths of the excitatory and inhibitory inputs they receive,
in spite of the ongoing oscillations in maintained synaptic
activation, suggests that the organization and distribution
of RGC contacts with presynaptic neurons have not been
remodeled. The extensive changes in retina morphology that
have been reported in this and other models of RP [28, 29]
emerge in animals that are more than twice as old as the
oldest animals used by Margolis [23]. While the slow onset of
retinal remodeling makes it clearly important to document
the accompanying changes in the cellular physiology of
identified retinal neurons in older (P500) animals, this has
not been done for purely practical reasons having to do
with the required investments of time (nearly two years) and
money (cost of maintaining a geriatric mouse colony). Hence
the following discussion pertains to P36 to P210 rd1 animals
where it appears that functional changes have occurred but
massive remodeling of the inner retina has not taken place.

Single cell recordings from bipolar cells isolated from
dissociated rd1 retina show no evidence of having intrinsic
pacemaker activity that gives rise to spontaneous fluctuations
in membrane potential [30]. This indicates that the rhythmic
synaptic input to RGCs does not originate in bipolar cells
suggesting instead that it first arises in a subset of amacrine
cells. The underlying circuitry must, however, also include
bipolar cells, since amacrine cell synaptic output is inhibitory
and mediated by release of either GABA or glycine while the
rhythmic synaptic input that drives ganglion hyperactivity
is blocked by CNQX and is thus glutamatergic (Figure 1). A
retinal circuit (Figure 2) that could give rise to the observed
rhythmic spike discharge in ON and OFF RGCs begins with
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Figure 1: Spontaneous activity in rd1 alpha ganglion cell. (a) Whole-cell current clamp recordings of ongoing spiking activity in wild-type
(top) and rd1 (bottom) ON-type retinal ganglion cells. Horizontal tick mark at left indicates −60 mV for wt and −70 mV for rd1 cells,
respectively. (b) Whole-cell voltage clamp recording of ongoing synaptic currents in an rd1 ON ganglion cell before (left) and after (right)
bath application of CNQX.
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Figure 2: Retinal circuit that may give rise to spontaneous ganglion
cell spike activity. The membrane potential of the amacrine cell
oscillates spontaneously due to resonance (see text) which drives
oscillatory release of inhibitory transmitter on to the bipolar cell
causing oscillations in bipolar voltage triggering pulsatile release
of excitatory transmitter on to the ganglion cell, causing rhythmic
spike discharge, and the amacrine cell with negative feedback to the
bipolar. The reverberating input to the ganglion cell arises from
the presence of a negative feedback loop that includes a resonant
oscillator.

an amacrine cell having the necessary intrinsic combination
of ion conductances to produce resonant oscillations in
membrane voltage [31]. This is not an unusual property to
ascribe to a member of the amacrine cell population where
spontaneous oscillations in current and voltage have been
reported to occur in starburst [32], wide field [33] and
dopaminergic [34, 35] amacrines. In this speculative circuit,
subthreshold oscillations in amacrine cell voltage, with
or without amplification by voltage-gated conductances,
are postulated to trigger oscillatory changes in inhibitory
transmitter release, which, in turn, generate oscillations
in the membrane potential of the bipolar cells they are
synaptically coupled to. The resulting periodic variation in
bipolar cell potential gives rise to pulsatile glutamate release
and rhythmic excitatory synaptic input to RGCs.

This hypothesized mechanism for oscillatory spike dis-
charge could be tested by recording from bipolar cells in an
intact dystrophic retina to determine if rhythmic changes
in membrane voltage are present and sensitive to inhibitory
synaptic blockade. Note that the proposed circuit cannot
be rejected solely on the basis of finding no evidence of
periodic fluctuations in baseline voltage in recordings from
bipolar cells in retinal slices [36]. In such a preparation,
there are affiliated uncertainties about whether the cellular
connections required for rhythmic synaptic interactions have
been disrupted in the process of slicing the retina. If the
proposed feedback circuitry drives rhythmic spike activity in
the rd1 retina, it might be expected that oscillations in spike



4 Journal of Ophthalmology

10 pA

1 s

Control Ames

+ inhibitory blockers

(a)

10 pA

100 ms

Control Ames

+ inhibitory blockers

(b)

Figure 3: Loose patch extracellular recording of spontaneous spike activity from wild-type (non-dystrophic) retinal ganglion cell perfused
with Control Ames solution without (top traces (a) and (b)) and with (lower traces (a) and (b)) the addition of mixture of inhibitory synaptic
blockers containing 40 uM Gabazine, 50 uM TPMPA, and 1 uM Strychnine. Boxed region outlined by the dash lines in (a) are shown on a
faster time in (b). The trace shown on an expanded time scale in control Ames (b) was taken from a region of trace in (a) that was shifted to
the right to avoid the period of baseline instability.

discharge would not be confined to local spatial areas, but
would instead be rather widespread. Stasheff [21], however,
did not find evidence of correlations in spiking between pairs
of ganglion cells. This either suggests that ganglion cells are
in fact independent, or that correlations exist but only on a
spatial scale smaller than the 200 µm spacing of the electrode
array that the study made use of.

5. Oscillations Arising from Resonance in
a Feedback Loop

In the proposed circuit the oscillations that give rise to
rhythmic RGC spike discharge originate in an unidentified
amacrine cell as a result of photoreceptor death and deaf-
ferentation. In this scenario, it is the loss of photoreceptor
synaptic input that unbalances the circuitry of the normal
retina and in so doing exposes the resonant membrane
properties of an amacrine cell that is normally held in check
in the functionally intact retina. Resonance is a consequence
of the interactions between the active and passive membrane
properties of a cell [24] that effectively combines a high-pass
filter, arising from the presence of an active, that is, voltage-
dependent, conductance [37], and a low pass filter that is
an inherent consequence of the cell’s passive membrane
properties. The interplay between the two filters produces the
equivalent of a notch filter that passes inputs with a select
frequency band and rejects inputs with frequencies outside
its band-pass. Changes in the input to the cell may influence
the expression of resonant behavior and the generation of

oscillations in two ways by changing the active and passive
membrane properties that set the resonant frequency and by
shifting the frequency of the input relative to the band-pass
of the resonant filter, which under the right conditions can
generate reverberating activity in a negative feedback loop.
As anyone who has attempted to build an electronic feedback
amplifier knows, the output of a circuit like the one we have
proposed is much more likely to be oscillatory than station-
ary. Similarly, the output of a neural network, with multiple
synaptic feedback loops, such as the retina, is particularly
prone to oscillations. This notion is supported by recent
results in non-dystrophic mouse retina showing that in the
presence of a mixture of inhibitory synaptic blockers RGCs
generate spontaneous bursts of spikes (Figure 3) that are
eliminated by addition of CNQX, showing that the periodic
bursts of activity are produced by excitatory synaptic input
(Newkirk and Detwiler unpublished observations). These
observations suggest that the synaptic circuitry in the healthy
retina is critically tuned to establish a balance between
excitation and inhibition in a way that minimizes resonance
and optimizes the dynamic range and response properties
of the output cells, that is, the RGCs. Unbalanced synaptic
interactions may also be the mechanistic explanation for the
marked increase in spontaneous ganglion cell spike activity
in transplanted retina [38].

6. Conclusions

The RP retina retains functional connections with the brain
as shown originally by Drager and Hubel [16] who found
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that the 10 Hz rhythmic spike discharges they recorded from
the optic track of rd1 mice were also present in single
unit recordings in the visual cortex. Thus it is likely that
the increased level of spontaneous activity that has been
described in animals models of RP is also be present in
patients with degenerative retinal disease and may participate
in the generation of the phantom visual images that are
reported by some RP patients [39–41]. These sensations
are not continuous, as one might expect they would be
if produced by sustained rhythmic spike activity. They are
described as being intermittent, as if produced by “lights”
that twinkle, flash, or shimmer. This, however, does not rule
out the possibility that spontaneous RGC spike activity is
the underlying substrate for this phenomenon that when
processed by normal or rd1-modified CNS circuitry gives rise
to discontinuous visual sensations. In any case uncontrolled
spontaneous spike activity would be expected to degrade the
action potential encoded messages RGCs send to the brain
and thus hinder attempts to restore vision using electrical
or optical prosthetics designed to directly evoke RGC spike
trains that the brain can interpret as meaningful visual
information.

Research designed to evaluate the treatment of RP using
electronic or optical retinal prosthetics has not considered
the influence that increased spontaneous RGC spike dis-
charge might have on the successful use of prosthetics. While
electrical stimulation of the retina in blind subjects can evoke
the sensation of light and provide a rudimentary means
of detecting motion, it has not been possible to use this
approach to elicit the complex pattern percepts that are
associated with more robust visual function [2]. Whether
this has to do with the degradation of the retinal output
signal by increased “noise” due to maintained rhythmic spike
activity is not known but worthy of further investigation.
Thus far studies focused on optical prosthetics have demon-
strated that genetic incorporation of light-sensitive proteins,
which included either melanopsin [5] or channelrhodopsin-
2 alone [3, 4, 9] or coexpressed with halorhodopsin [7, 8],
can restore light-evoked spike production in RGCs in animal
models of RP; they have not been attempted in human
subjects. Here again, however, the influence of increased
spontaneous activity has not been addressed, but will need
to be considered in order for treatments based on optical
prosthetics to be optimized.
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