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Abstract: During the last few decades, improvements in the planning and application of radiotherapy

in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients.

However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of

tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of

ionizing radiation. These limitations demand the development of drugs for either radiosensitization

of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed

understanding of the cellular pathways involved in radiation response is an absolute requirement.

This review describes the most important pathways of radioresponse and several key target proteins

for radiosensitization.
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1. Introduction

Radiotherapy is an integral component of tumor treatment, providing a locoregional therapy

that complements local and systemic treatment by surgery and chemotherapy, respectively. Thus,

radiotherapy is applied in at least 50% of all cancer patients treated with curative intent [1], resulting in

a cure rate of about 40% [2,3]. However, the effect of radiotherapy is limited by the radioresistance of the

tumor cells to the applied doses in a fractionated regimen [4,5] and by adverse reactions in the normal

tissues surrounding the tumor. The importance of the therapeutic window between tumor control

and normal tissue damage was already pointed out in the early days of radiotherapy [6]. Although

improved treatment modalities [7–13] and fractionated irradiation led to an increase in the efficiency

of radiotherapy and to a decrease of normal tissue complications [14,15], further broadening of the

therapeutic window is clinically important. Two strategies might be followed: (1) radiosensitization of

the tumor cells without sensitizing normal tissue cells; (2) specific radioprotection of normal tissue

cells. For both approaches, a detailed understanding of the cellular pathways involved in the cellular

response to irradiation is mandatory in order to identify molecular targets for medical intervention.

In this review, the basic properties of ionizing radiation will be introduced, and the various cellular

pathways involved in the cellular radiation response leading to survival or induction of either cell death

or senescence will be described. Furthermore, promising target proteins for radiosensitization will be

highlighted. Current strategies for radioprotection of normal tissue have been reviewed recently [16].
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2. Properties and Biological Effects of Ionizing Radiation

Different qualities of ionizing radiation are characterized by the ionization density of their tracks

quantified by the mean energy deposited per track length, termed linear energy transfer (LET) [15,16].

X-rays, γ-rays and electrons with typical LET values in the range of 0.2 to 5 keV/µm are called low-LET

radiation, while neutrons and heavier ions with typical LET values in the range of 50 to 200 keV are

called high-LET radiation and have increased relative biologic effectiveness (RBE) [17].

The main cellular target of ionizing radiation is the DNA. The track of a charged particle

(an electron or an ion) may pass through and ionize DNA directly (direct action) or ionize water

molecules in the vicinity, thereby producing highly reactive OH‚ radicals, which can diffuse to DNA

and react with the target molecule (indirect action). Other aqueous free radicals and reactive oxygen

species (ROS), including O2
‚´ and H2O2, are less important than OH‚ for producing lethal DNA

damage [18,19]. Direct action dominates for high-LET radiations, where only three to four dense tracks

of ionizations cross each nucleus per Gy (Gray) of energy deposited. By contrast, the ratio between

indirect and direct action is approximately 3:1 for low-LET radiation, which deposits approximately

one thousand electron tracks in the nucleus per unit dose of 1 Gy. Chemical reactions in DNA

induced either by direct ionization or indirectly by OH‚ radicals may damage a base, interrupt the

sugar-phosphate backbone, resulting in a single- or in a double-strand break (SSB or DSB) or produce

a DNA crosslink. Approximately 3000 damaged bases, 1000 SSBs and 40 DSBs are induced in a cell

by an X-ray dose of 1 Gy [20]. Nevertheless, base damage and SSB are of minor relevance for cell

survival, since these lesions are essentially all repaired by the highly efficient base excision repair

(BER) mechanism [21]. Even the vast majority of DSBs induced by low-LET radiation are also repaired

(see Section 3.2). However, a small fraction (<5%) of DSBs induced by low-LET radiation cannot

be repaired because of their higher complexity and constitute the most severe DNA damage after

irradiation leading to cell death, senescence, mutations or genomic instability. DSBs produced by

high-LET radiations are mostly of the complex type, and little DSB repair occurs.

3. Signaling Pathways of the Cellular Radiation Response

3.1. p53 as a Guardian of Genomic Stability: Repair or Cell Death

The first step in the DNA damage response (DDR) is sensing of the DNA damage by ATM

(ataxia-telangiectasia mutated) and ATR (ataxia-telangiectasia and RAD3-related), which are the

initiating kinases phosphorylating and activating various downstream proteins [22,23]. ATM is the

master regulator of DDR sensing DSBs induced by ionizing irradiation [24]; ATR is mostly active after

SSBs or stalling of replication forks caused by UV light or hydroxyurea [25].

Arrest of the cell cycle is an important part of DDR, facilitating DNA repair and maintenance of

genomic stability [26]. Regulators of cell cycle arrest are activated by phosphorylation by ATM and

ATR (Figure 1). The transducers CHK1 and CHK2 (checkpoint kinase-1 and -2) lie directly downstream

of ATM [27]. The tumor suppressor protein p53 is a central stress protein in the DDR. ATM, CHK1 and

CHK2 phosphorylate p53 at different positions [28], resulting in stabilization of p53 by dissociation

from MDM2 (mouse double minute 2 homolog) and accumulation in the nucleus, where it acts as a

transcription factor [29]. Under normal conditions, p53 is constitutively expressed, but is bound by the

E3 ubiquitin ligase MDM2 and undergoes proteasomal degradation. The degree of DNA damage and

the extent of modifications of p53 (e.g., phosphorylation, acetylation, methylation) determine which

of the two alternative pathways are activated by p53, either cell survival or cell death [30]. Stronger

DNA damage causes enhanced and prolonged activation of p53. A recent model predicts a “digital”

response of p53 to DNA damage: the “arrester” p53 is phosphorylated at Ser 15; the “killer” p53 is

additionally phosphorylated at Ser 46 and mediates apoptosis [31]. Moreover, the decision between

cell cycle arrest and apoptosis is determined by the varying spectrum of p53 responsive genes in

different cell lineages [32]. Due to this pivotal role in the decision of cell survival or cell death and

genomic stability, p53 has been termed “the guardian of the genome” [33].



Int. J. Mol. Sci. 2016, 17, 102 3 of 32

For cell cycle arrest, p53 induces transcription of p21 (CDKN1A, cyclin-dependent kinase inhibitor

1A) (Figure 1), and activated p53 phosphorylates and activates the p21 protein, resulting in inhibition

of the activity of CDK4 and CDK6 and, thus, in G1 arrest [34]. Enhanced expression of p21 in response

to activated p53 also blocks transition from the G2 to M phase; p21 binds the CDK1-cyclinB complex,

thereby preventing its activation [35]. Additional faster cell cycle control is performed by CHK1 and

CHK2, which phosphorylate the three isoforms of the CDC25 (cell division cycle 25) phosphatase,

initiating their ubiquitination and degradation. The consequence is the inhibition of dephosphorylation

and activation of CDK2-cyclinE and of CDK1-cyclinB, resulting in cell cycle arrest in the G1 phase or

in the G2 phase, respectively [36].

 

′ ′

Figure 1. Induction of cell cycle arrest after irradiation. The hydroxyl radical is the most important

aqueous radical induced by ionizing radiation (symbolized by the sinuous arrow and the trefoil)

affecting the integrity of DNA (parallel lines) by induction of double strand breaks (DSB, gap in

DNA). Subsequently, the ATM (ataxia-telangiectasia mutated) kinase is activated by phosphorylation

(encircled P) and, in turn, phosphorylates p53. ATR (ataxia-telangiectasia and RAD3-related) is

activated by single-stranded DNA and stalled replication forks arising from the repair process.

Activated p53 acts as a transcription factor and causes the expression of the cyclin-dependent kinase

(CDK) inhibitor p21, which induces cell cycle arrest during the G1 and G2 phases. On the other

hand, activation of CHK1 and CHK2 (checkpoint kinase-1 and -2) leads to phosphorylation of the

three CDC25 (cell division cycle 25) isoforms, resulting in its degradation. As a consequence, CDC25

no longer activates CDK2 or CDK1 (cyclin-dependent kinase), and thus, the cell cycle is stopped in

the G1 or G2 phase, respectively. Arrows symbolize activation; bar-headed lines symbolize inhibition.

Targets for radiosensitization are in red. See text for details.

3.2. Signaling for Double-Strand Break Repair

After cell-cycle arrest, DSBs are repaired mainly by two pathways, non-homologous end joining

(NHEJ) and homologous recombination (HR) [37]. NHEJ can repair DSBs throughout the cell cycle,

but is mainly used during the G1 phase. NHEJ accurately repairs simple DSBs with complementary

overhangs and phosphorylated and hydroxylated 51 and 31 ends, respectively. However, NHEJ will
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become inaccurate if DNA ends require processing before ligation; then, NHEJ causes short additions

or deletions of DNA sequences and, thus, possibly a loss of genetic information. Furthermore,

misrepair due to ligation of DNA ends of different DSBs will cause translocations, rearrangements

and di- or acentric chromosomes, which result in the formation of micronuclei and, subsequently, in

aneuploidy [38]. In contrast to the error-prone NHEJ, HR is error free, but requires an undamaged

sister chromatid for the recombination and is therefore only available in the late S and G2 phases.

The decision of which of the two pathways becomes activated is determined by the competition

between protection and resection of the DNA ends. The Ku70–Ku80 heterodimer (Ku) senses the

DSB, binds to the DNA ends, blocks 51 end resection and holds both ends in close proximity, thus

enabling direct rejoining of DNA ends by NHEJ [38]. Ku also activates 53BP1 (p53-binding protein 1)

for additional protection of DSB ends against resection. Phosphorylation of H2AX on Ser 139 (γ-H2AX)

in the nucleosome next to the breakpoint by ATM further stabilizes the DNA ends and serves as the

scaffold for assembly of the DSB repair machinery, including PRKDC (protein kinase, DNA-activated,

catalytic subunit) and Artemis [39]. Repair of the DSB is completed by ligation of both DNA ends by

LIG4 (DNA ligase 4), XRCC4 (X-ray repair, complementing defective, in Chinese hamster, 4) and XLF

(XRCC4-like factor) [37]. Recently, a function of the androgen receptor (AR) in the radiation response

of prostate tumor cells was elucidated [40]. Dimerization of AR is induced by ionizing radiation;

subsequently, it induced the expression of especially PRKDC and Ku70 required for NHEJ. PRKDC

further stimulates AR, thus establishing a positive feedback [41,42]. However, not only activity, but

also expression of AR is upregulated after radiation, resulting in increased radioresistance of prostate

cancer cells during radiotherapy [43].

Repair by HR is initiated by the sensing MRN complex consisting of MRE11, RAD50 and NBS1 [44].

Similar to NHEJ, the signal is transmitted to the neighboring ATM and ATR, which phosphorylate

various downstream actors. For DNA end processing, resection of double-stranded ends is initiated by

the MRN complex (nicking activity of MRE11 at a distance from dsDNA ends) in combination with

CTIP (CTBP (C-terminal binding protein)-interacting protein) [37]. Due to the strand degradation in the

31 to 51 direction, Ku is released from DSB ends. Then, HR can be initiated by annealing of the generated

single-stranded DNA to the unwound sister chromatid. A pivotal role in this process is played by

RAD51, which forms nucleoprotein filaments on ssDNA as a prerequisite for strand exchange. RAD51

forms a complex BRCA2 (breast cancer 2), which becomes activated by phosphorylation after DSB,

enabling the binding of RAD51 to ssDNA [45].

HR is restricted to the S and G2 phases by phosphorylation of CTIP (Ser 327 and Thr847) by

specific CDKs, enabling CTIP to complex with MRN and BRCA1 (breast cancer 1 gene) and to activate

DSB resection [37]. Furthermore, expression of CTIP is cell cycle dependent with low expression during

the G1 phase, increased expression in the S/G2 phases and proteolytic degradation in the subsequent

G1 phase [46]. A pivotal role in the choice of NHEJ or HR is played by BRCA1; it antagonizes 53BP1 at

DSB ends during the S and G2 phases, thus impeding NHEJ and facilitating HR [47,48]. The interplay

between the mediators 53BP1 and BRCA1 and the upstream sensing molecules Ku and the MRN

complex is significant for the decision of whether NHEJ or HR is used for DNA repair [37].

If the DNA damage can be repaired completely, the cell will continue its cell cycle. In contrast, the

consequence of improper DNA repair after irradiation is the onset of cell death, either by apoptosis,

mitotic catastrophe or senescence. How the cell will die might be influenced by several parameters:

primarily the cell type, the supply with oxygen, the cell cycle phase in which irradiation occurs and,

very importantly, the dose and radiation quality [49]. Hematopoietic and lymphoid cells, and also

leukemia cells, are particularly prone to rapid radiation-induced cell death by the apoptotic pathway.

In most solid tumors, mitotic cell death (mitotic catastrophe) is as least as important as apoptosis, and

in some cases, it is the only mode of cell death. In contrast, senescence is the fate of irradiated cells in

the majority of normal tissues.
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3.3. Apoptosis

Radiation induces mostly the intrinsic apoptotic pathway (mitochondrial release of cytochrome c

and subsequent apoptosome formation), but depending on dose and cell type, the extrinsic apoptotic

pathway (death receptor-mediated caspase activation) or the membrane stress pathway (ceramide

production and subsequent second messenger signaling) might be the consequence of irradiation [50]

(Figure 2).

The intrinsic apoptotic pathway is initiated by signaling following SSBs and DSBs if DNA repair

is not successful [32]. The stronger and longer the activation of p53 as a key determinant in DDR, the

higher the chances for apoptosis instead of growth arrest [51]. p53 can contribute to both the intrinsic

mitochondria-mediated and the extrinsic death-receptor-mediated apoptosis.

 

Figure 2. Cell death pathways after irradiation. Apoptosis is mostly induced by irradiation (symbolized

by the sinuous arrows and the trefoil) in hematopoietic cells, or in cells of the mucosa in the

gastro-intestinal tract, or in p53 wildtype tumor cells. DSB-dependent activation of p53 results in

increased expression pro-apoptotic genes, inducing the intrinsic apoptotic pathway (see the text for

details). Additionally, apoptosis might be induced by irradiation due to reactive oxygen species (ROS)

production, or by activation of the second messenger ceramide, or the extrinsic apoptotic pathway.

In contrast, the cell fate in most normal tissues is senescence induced by the p53/p21 and the p16/RB1

pathways, which result in cell-cycle arrest in the G1 phase and subsequent senescence (see the text

for details). In p53-deficient cells, the blockage of CDK2-cyclinA/E by p21 is not functional; thus,

centrosome hyper-amplification might occur, which is the prerequisite for mitotic catastrophe. This

kind of cell death is caused by irradiation in most solid tumor entities. Arrows symbolize activation,

the arrow with dotted line indicates a postulated effect; bar-headed lines symbolize inhibition. Targets

for radiosensitization are in red, for radioprotection in green. See text for details.
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3.3.1. The Intrinsic Apoptotic Pathway

The control and regulation of apoptotic mitochondrial events occurs through members of the BCL2

(B-cell lymphoma 2) family of proteins [52], which govern mitochondrial membrane permeability and

can be either pro-apoptotic or anti-apoptotic. Nuclear accumulation of p53 activates the expression of

the pro-apoptotic BCL2 genes PUMA (p53-upregulated modulator of apoptosis), BAX (BCL2-associated

X protein) and NOXA [53–55]. After its translocation to the cytoplasm, PUMA disrupts a complex

by p53 and the anti-apoptotic protein BCL2L1 (BCL2-like 1 or BCL-XL). Liberated p53 dissolves

the complex of the anti-apoptotic BCL2 and the pro-apoptotic BAX. Released BAX then triggers

cell death by permeabilization of the outer mitochondrial membrane and subsequent release of

cytochrome c [53,56]. Furthermore, ionizing radiation can directly enhance the production of O2
‚´

by mitochondria triggering the release of cytochrome c [57]. O2
‚´, but also other ROS, like H2O2

or OH‚ radicals, can cause the release of Ca2+ from mitochondria [58], provoking various possible

pro-apoptotic consequences: (1) loss of the mitochondrial membrane potential [59,60]; (2) release

of proapoptotic mitochondrial proteins, which is coupled to stress response, known as the inner

mitochondrial membrane (IMM) permeability transition [61]; (3) production of ROS due to binding

of Ca2+ to cardiolipin in the IMM results in the oxidation of membrane phospholipids and proteins

and, thus, in increased membrane permeability [62]; (4) dephosphorylation of pro-apoptotic BAD

(BCL2-associated agonist of cell death) by the Ca2+/Calmodulin-dependent protein phosphatase

calcineurin causing translocation of BAD from the cytoplasm to the mitochondria followed by release

of cytochrome c from mitochondria [61,63].

The release of cytochrome c into the cytosol leads to the formation of the cytochrome c/APAF1

(apoptotic protease activating factor 1)/caspase-9 containing apoptosome complex [64]. The initiator

caspase-9 then activates the effector caspases-3 and -7, thus inducing the post-mitochondrial-mediated

caspase cascade [65]. The heat shock proteins (HSP) 27, 70 and 90 interfere with formation of the

apoptosome; either by HSP27-mediated sequestering of cytochrome c [66] or by binding of HSP70 or

HSP90 to APAF1 [67,68], and, therefore, inhibit the activation of procaspase-9. Thus, targeting one of

these three HSPs in cancer cells is a promising approach for radiosensitization (Table 1).

3.3.2. The Extrinsic Apoptotic Pathway

Radiation-induced apoptosis is also executed through the canonical extrinsic apoptotic pathway

by signaling through death receptors (DRs), which belong to the tumor necrosis factor receptor

(TNFR) super family [123,124]. Activation of p53 by radiation causes downstream transactivation

of the receptor CD95, DR5 and the CD95 ligand (CD95L or CD178) [125,126]. Binding of CD178

to CD95 results in trimerization of CD95 and clustering of its intracellular death domain (DD).

The DD recruits the adaptor protein FADD (FAS (FAS cell surface death receptor)-associated death

domain) [126]. Subsequently, procaspase-8 interacts with the death effector domain (DED) of FADD,

forming the death-inducing signaling complex (DISC). Activation of the initiator caspase-8 results

again in activation of procaspase-3 and procaspase-7. In addition, downstream of CD95, activation of

caspases can also proceed through the intrinsic mitochondria-dependent mechanisms [127].
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Table 1. Targets of radiosensitizing approaches and the effected pathways. Only those references are stated describing the combination with irradiation.

Target Substance Radiosensitization of Cell Line/Tumor Entity Comments Reference

ATM CP466722 HeLa (cervix carcinoma) only in vitro results [69]

ATM KU-55933
various tumor cell lines HeLa, MCF-7, ovary cancer cells, bladder cancer
cell, etc.

up to now no clinical trial [70–73]

ATM KU-60019 glioblastoma and glioblastoma-initiating cells
successor of KU-55933 [74–76]

increased radiosensitivity in p53-deficient cells [75,77]

ATR NU6027 MCF-7 (breast carcinoma) increased effects in combination with various chemotherapeutic drugs [78]

BCR-ABL imatinib
RT112 (transitional bladder cell carcinoma), H1299 (lung carcinoma),
PANC1 (pancreatic adenocarcinoma), PC3 (prostate adenocarcinoma)

no increased radiation gut toxicity in an animal model with
xenotransplantation of PC3

[79]

CDK1, 2, 4 flavopiridol (alvocidib) various cancer cell lines and xenografts
successful clinical studies in combination with standard chemotherapeutic
regimens

[80–82]

CDK1, 2, 9 AZD5438 A549, H1299, and H460 (non-small cell lung cancer)
discontinued clinical development due to low tolerability in
phase II studies

[83]

CDK4/6 palbociclib (PD0332991)
human glioblastoma U87 intracranial xenografts and brainstem glioma
mouse model

FDA approval for potential treatment of breast cancer [84,85]

CHK1 UCN-01
A549 (lung carcinoma), NCI-H460 (large-cell lung carcinoma), K562
(erythroblastoid leukemia cell line), glioblastoma stem-like cells in vitro
and in xenografts

no effect on BEAS-2B (immortalized normal bronchial epithelial cell line)
enhanced radiosensitivity of lung cancer cell lines in combination with
celecoxib and of head and neck squamous cell carcinoma by combination
with ATRA (8 all-trans retinoic acid)

[86–89]

CHK2 PV1019 MCF-7 (breast carcinoma), U251 (glioblastoma) radioprotective in mouse thymocytes [90]

CHK2 XL-844 HT-29 (colon carcinoma) only one in vitro study with irradiation [91]

EGFR cetuximab several clinical trials combined with standard chemoradiotherapy
FDA approval only for treatment of locally advanced head and neck
cancer in combination with radiation

[92,93]

HDAC LBH589 (panobinostat) prostate cancer and glioblastoma cells
obatoclax, inhibitor of BCL-2, for increased radiosensitization of
glioblastoma cells resistant to LBH589 and SAHA

[94–96]

HDAC PCI-24781 (abexinostat)
cervical and colon carcinoma cells, nasopharyngeal carcinoma cells
in vitro and in xenografts

two phase I studies as mono- or combination (with doxorubicin) therapy
in patients with metastatic carcinoma, lymphomas

[97,98]
[99,100]

HDAC SAHA (vorinostat)
LN18 and U251 (glioblastoma cells), osteosarcoma (OS) and
rhabdomyosarcoma cell lines and OS xenografts

two finished phase I trials to determine the maximum well-tolerated dose [101–106]

HSP90 17-AAG (geldanamycin)
DU145 (prostate carcinoma), SQ-5 (lung squamous carcinoma), T98G
and U87-MG (glioblastoma), esophageal cancer cells

enhanced radiosensitization in combination with the PARP inhibitor
olaparib; no radiosensitizing effect in normal tissue cells

[107–109]
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Table 1. Cont.

leftTarget Substance Radiosensitization of Cell Line/Tumor Entity Comments Reference

leftHSP90 17-DMAG MiaPaCa (pancreatic carcinoma), NSCLC cell lines no radiosensitizing effect in normal tissue cells; radioprotective in PBMC [110,111]

leftHSP90
NVP-AUY922,
NVP-BEP800, NVP-HSP990

various tumor cell lines: A549, GaMG, HT 1080, SNB19, MIA PaCa-2
and U251

no clinical trial [112,113]

leftHSP90 STA-9090 (ganetespib)
oropharyngeal squamous cell carcinoma (SCC) tissue samples HCT 116
(colorectal cancer cell line)

effective also in combination with cisplatin and in xenografts
combined with capecitabine two ongoing clinical trials in combination
with chemoradiation

[114,115]

leftMDM2 nutlin-3a prostate cancer cell lines, NSCLC cells activation of p53 resulted in increased senescence [116–118]

leftMDM2 PXN727 HCT116 (colon cancer cell line) upregulation of secretion of HSP70 [118]

leftMRN-complex telomelysin (OBP-301) orthotopic human esophageal cancer xenograft model
ongoing analysis of the safety and efficacy of telomelysin in patients with
hepatocellular carcinoma

[119]

leftp53 PRIMA-1MET MIRA-1
SCLC cell lines with mutant p53 in vitro and as xenografts in
mouse experiments

reactivation of p53 and radiosensitization [30]

leftPRKDC NU7441
C4-2 and PC3 (prostate carcinoma), MCF-7 SW620 (colon carcinoma)
cell culture and xenografts

increased radiosensitization of MCF-7 cells in combination with K55933
no effect in PRKDC-deficient V3 cells

[120–122]

Abbreviations: Tergets: ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and RAD3-related), BCR-ABL (break-point cluster region-Abelson murine leukemia
viral oncogene homolog), CDK (cyclin-dependent kinase), CHK (checkpoint kinase), EGFR (epidermal growth factor receptor), HDAC (histone deacetylases), HSP90 (heat shock
protein 90), MDM2 (mouse double minute 2 homolog), MRN (complex of MRE11, RAD50 and NBS1), PRKDC (protein kinase, DNA-activated, catalytic subunit); Substances: SAHA
(suberanilohydroxamic acid), 17-AAG (17-N-allylamino-17-demethoxygeldanamycin), 17-DMAG (17-Dimethylaminoethylamino-17-demethoxygeldanamycin).
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The damage response to ionizing radiation involves activation of the JNK (c-JUN N-terminal

kinase) signaling pathway in radiation-sensitive cells [128,129]. The JNK cascade is initiated by MEKK1

(MAP/ERK (mitogen activated protein/extracellular signal-regulated kinase) kinase kinase 1) and

requires sequential phosphorylation and activation of MEKK4, JNK and JUN (for a review, see [130]).

Activation of the pro-apoptotic JNK pathway may also occur downstream of membrane-derived

signals, releasing ceramide [129,131] and DAXX (death associated protein 6), a CD95 binding protein.

Binding of HSP27 to DAXX prevents its translocation to the cell membrane and interaction with CD95,

resulting again in suppression of apoptosis [132]. Cross-talk exists between the JNK and caspase

cascades [133]. In addition to JUN, targets for JNK in the induction of apoptosis include p53, BAX and

caspases [134,135].

3.3.3. The Membrane Stress Apoptotic Pathway

In contrast to DNA damage-dependent apoptotic processes, DNA damage-independent apoptotic

processes do not require p53. Radiation-induced ROS inflict lipid oxidative damage in the plasma

membrane, which results in activation of sphingomyelinase [136,137], followed by rapid hydrolysis

of sphingomyelin in the plasma membrane, releasing the second messenger ceramide [138–140]. The

most important target of ceramide is the RAC1/MEKK pathway, which directly leads to activation

of MAPK8 (mitogen-activated protein kinase 8) and of the effector caspases-1, -3 and -6, as well as

the autocrine stimulation of the death receptor pathway. MAPK8 has been implicated in apoptosis

induced by TNF (tumor necrosis factor) [129]. A second source of ceramide is directly related to DSBs

induced by high doses of ionizing radiation, which trigger the activation of ceramide synthase and,

thus, the ceramide apoptotic pathway [141,142].

Recent studies suggest that ionizing irradiation can directly induce regulated tumor cell

necrosis [143]. Programmed necrosis (necroptosis) displays some overlap with apoptosis. It is a

cellular mechanism of necrotic cell death by apoptotic stimuli, i.e., ligand-DR engagement, under

conditions where the apoptotic machinery is either deficient or blocked [144].

3.4. Mitotic Catastrophe

Mitotic catastrophe has been characterized as the main form of cell death induced by ionizing

irradiation [145] and results from premature induction of mitosis before completion of the S and G2

phase [146]. Inhibition or knockout of proteins that control the G2 checkpoint of the cell cycle, like ATM,

ATR, CHK1, CHK2 and p21, promote mitotic catastrophe [147–149]. It starts with uneven chromatin

condensation around the nucleoli, which resembled premature chromosome condensation [150]. Cell

death may occur in the first or the subsequent cell division following irradiation. Aberrant mitosis

produces an atypical chromosome segregation and cell division causing the formation of giant cells

with aberrant nuclear morphology, multiple nuclei or several micronuclei [151,152].

Additionally, radiation-induced mitotic catastrophe is associated with hyper-amplification

and overduplication of chromosomes, resulting in multipolar mitosis and subsequent micronuclei

formation [152–156]. Centrosome hyper-amplification is a result of DNA damage and compromised

DNA repair mechanisms [154]. The centrosome amplification at the G1/S boundary is initiated by

the complex of CDK2 and cyclin A or E [157]. Centrosome hyper-amplification is frequently observed

in cells lacking functional p53 [158]. In contrast with functional p53, an inhibitor of CDK2, p21, gets

activated, inducing cellular senescence (Figure 2).

Mitotic catastrophe can result in cell death either during the M phase, “mitotic death”, or during

the following interphase [159]. In some cells, apoptotic pathways are activated during the metaphase,

resulting in a delayed type of apoptosis up to six days after irradiation [160–162].

Cells that do not undergo mitotic death, but escape mitotic arrest often fail cytokinesis, resulting

in a tetraploid DNA content and abnormal nuclei forming giant cells [163]. Giant cells with functional

p53 will undergo apoptosis via the BAX-dependent mitochondrial apoptotic pathway during the

next G1 phase [164]. However, p53 mutant giant cells can continue several cell cycles and acquire



Int. J. Mol. Sci. 2016, 17, 102 10 of 32

an increasing amount of chromosomal aberrations before they finally die via delayed apoptosis or

necrosis [158].

3.5. Senescence

Alternative to the induction of apoptosis, activation of p53 by ionizing radiation and subsequent

expression of p21 followed by permanent G1-arrest [165–169] may cause senescence [170–172]. The

senescent cell phenotype is frequently termed stress-induced premature senescence (SIPS) [29,171,173].

In some cases, notably in normal diploid fibroblasts, cells express a prematurely differentiated

phenotype that may continue to function over very long time spans [165,174–176]. Most p53 wildtype

normal human cells, and even many tumor cells, respond to ionizing radiation by undergoing SIPS

and not apoptosis [29,167,169,177]. The progeny of irradiated cells accumulate structural chromosomal

aberrations in a dose-dependent fashion preceding senescence [178]. Accelerated senescence, like

apoptosis, is proposed to be a programmed protective response of the organism to potentially

carcinogenic damage [179]. Senescent cells are arrested, but remain viable, metabolically active

and are able to secrete factors, including some that may promote tumor growth and progression.

However, in the context of tumor cells, it has been proposed that growth arrest may not be irreversible,

but induction of senescence might be used by tumor cells in order to escape from radiation-induced

cytotoxicity [180]. According to the second view, senescent tumor cells are dormant and might be

reawakened by external stimuli, e.g., by factors secreted from tumor stroma cells, months or years

after radiotherapy [181].

In normal cells, the p53–p21 and the p16 (CDKN2A)-RB1 pathways act as senescence check

points determining terminal growth arrest. The p21-induced G1 cell-cycle arrest is paralleled by p53

suppression of cyclinB1 expression during radiation-induced G2 cell cycle arrest. P16 is also a CDK

inhibitor, which acts on CDK4/6, thereby preventing phosphorylation of RB1 (retinoblastoma 1), which

remains bound to the transcription factor E2F and, thus, represses the expression of genes required

for progression from the G1 to the S phase. Although, the relationship between the two regulatory

pathways is still not completely understood, p16-RB1 does not seem to be involved in transient

cell-cycle arrest, but may be a redundant backup mechanism for longer-term p21-mediated arrest [182,183]

(Figure 2). After induction of the cell cycle arrest in senescent cells, the level of p21 decreases followed

by a constitutive upregulation of p16, associating it with the maintenance of growth arrest in senescent

cells [184,185]. However, cells without functional p53 will not undergo a permanent cell cycle arrest

and senescence, but will die by apoptosis, necrosis, autophagy or mitotic catastrophe [116,186].

3.6. Autophagy

Autophagy is a process of self-digestion of organelles in double-membrane vesicles called

autophagosomes [187]. In some cells, such lysosomal degradation may be followed by apoptosis, but

the surviving cells use the metabolites as energy sources. Autophagy is initiated by a signaling cascade

starting with UNC51-like kinase 1 (ULK1). A cytoprotective form of autophagy was described in

hypoxic cancer cells leading to digestion of mitochondria damage by radicals. Thus, increased activity

of HIF1 (hypoxia-inducible factor 1) further results in increased activity of BNIP3 (BCL2/adenovirus

E1B 19-kD protein-interacting protein 3), blocking BCL2, thereby releasing the block of Beclin1, which

is an inducer of autophagy [188]. Autophagy plays a dual role during carcinogenesis: development of

tumor cells is delayed since damaged mitochondria get eliminated; however, in tumor cells, autophagy

is proposed to be responsible for chemo- or radio-resistance by clearing ROS-produced damage [189].

Various studies support the notion that stress-induced damaged organelles or macromolecules are

digested before cells enter growth arrest and senescence [190,191].

3.7. EGFR (Epidermal Growth Factor Receptor) and PI3K (Phosphatidylinositol 3-Kinase)

Ionizing radiation can mimic the action of ligand binding to EGFR (epidermal growth factor

receptor) and was shown to induce receptor dimerization and, subsequently, autophosphorylation
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at residue T654 [192]. This is followed by receptor internalization [193], compartmentalization into

caveolae and translocation into the nucleus [192]. Here, it functions as a transcription factor for the

expression of cyclin D1, iNOS (inducible nitric oxide synthase) and B-MYB, facilitating G1/S cell cycle

progression and increased proliferation [192,194,195].

In response to irradiation, EGFR also functions anti-apoptotically, especially in heterodimers

with ERBB2 [196], and transcriptionally activates anti-apoptotic BCL2L1 via SRC and STAT3 (signal

transducer and activator of transcription 3) signaling [197]. Furthermore, EGFR–ERBB2 heterodimers

lead to activation of the PI3K/AKT1 pathway [198,199] (Figure 3), where AKT1 is activated by PDK1

and PDK2 and, in turn, phosphorylates several target proteins. This results in: (1) activation of IKK

(IκB-kinase), which is followed by activation of anti-apoptotic NFκB; (2) inactivation of pro-apoptotic

effector proteins, such as BAD and pro-caspase 9 [196]; and (3) suppression of the translocation of

the cell cycle inhibitors p21 and p27 to the nucleus. Furthermore, translocated EGFR in the nucleus

stimulates the repair of radiation-induced DSB [200–203].

 

κ
κ
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Figure 3. AKT1 as a proliferation and anti-apoptotic factor. Irradiation (symbolized by the sinuous

arrow and the trefoil) of heterodimers of EGFR (epidermal growth factor; ERBB1) and of ERBB2 results

in activation of PI3K. The subsequently activated PDK1 (pyruvate dehydrogenase kinase 1) and PDK2

phosphorylate and activate AKT1. AKT1 acts as an inhibitor of cell cycle arrest, since it phosphorylates

p21 and p27; therefore, both proteins remain in the cytoplasm (indicated by the arrow with a cross)

and cannot act as nuclear cell cycle inhibitors. The anti-apoptotic function of AKT1 is fulfilled by the

activation of IKK (I-kappa-B kinase), which phosphorylates IκB (I-kappa-B protein, not shown) falling

off from the heterodimer with NFκB (nuclear factor kappa-B, subunit 1), which then translocates to

the nucleus, inducing transcription of anti-apoptotic genes. Furthermore, Akt1 suppresses apoptosis

(indicated by the arrow with a cross) by phosphorylation and inactivation of the two pro-apoptotic

proteins BAD (BCL2-associated agonist of cell death) and pro-caspase-9. HSP90 (heat shock protein 90)

and HSP27 both stabilize AKT1 and promote degradation of IκB, resulting in enhancement of NFκB

activity. HSP27 inhibits cleavage and thus activation of pro-caspase-9. Activation of MTOR (mechanistic

target of rapamycin), on the one hand, stimulates cell growth and, on the other hand, inhibits autophagy.

Arrows symbolize activation or translocation to the nucleus (described in the text); bar-headed lines

symbolize inhibition. Targets for radiosensitization are in red, for radioprotection in green. See text

for details.
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Nuclear translocation of EGFR in irradiated cells was accompanied by an increase of Ku70 and

Ku80 proteins in the nucleus, indicating activation of non-homologous end joining (NHEJ) [192]

(Figure 4). In the nucleus, EGFR physically interacts with and phosphorylates PRKDC, which is

required for NHEJ. On the other hand, mutations of the phosphorylation sites of PRKDC caused

enhanced cellular sensitivity to ionizing radiation [204]. Phosphorylation of AKT1 by the PI3K domain

of ATM resulted in activation of PRKDC and, thus, modulates post-irradiation survival [205,206].

In contrast, inhibition of either AKT1 or upstream regulators of AKT1 prevented radiation-induced

phosphorylation of PRKDC [199,207]. In addition, EGFR governs radiosensitivity by affecting the

transcription of genes coding for proteins that are involved in base excision repair and nucleotide

excision repair. For example, the expression of XRCC1 induced by ionizing radiation is dependent on

EGFR/RAS signaling [208,209].

κ κ

 

Figure 4. Induction of DNA repair by EGFR signaling. Irradiation (symbolized by the sinuous arrows

and the trefoil) results in ligand-independent dimerization of EGFR and autophosphorylation at the

cytoplasmic domains, resulting, on the one hand, in activation of the classical RAS/RAF/MAPK

pathway, which causes the expression of XRCC1 (X-ray repair cross-complementing group 1) and,

thereby, the activation of the nucleotide excision repair. On the other hand, EGFR is internalized in

complex with CAV1 and then released into the nucleus, where it functions as a transcription factor for

genes required during G1/S progression and activates PRKDC (DNA-PKcs), which plays a pivotal

role during NHEJ. AKT1 was also shown as an activator of PRKDC. During the G1 phase, Ku and

53BP1 bind to the DSB (double strand break as symbolized by a gab in the DNA) band activate ATM,

which possesses a PI3K domain enabling phosphorylation and activation of AKT1. During the S and

G2 phase, the MRN complex and BRCA1 inhibit Ku and 53BP1 and induce DNA repair by homologous

recombination (HR). Arrows symbolize activation or translocation to the nucleus (described in the text);

bar-headed lines symbolize inhibition. Targets for radiosensitization are in red. See text for details.

ERBB receptors are also potent stimulators of the RAS/RAF/MAPK pathway. Constant activation

of this pathway, i.e., through mutated or constitutively-activated RAS in several tumor types, mediates

radiation resistance [210,211]. Mutated RAS proteins not only stimulate the pro-proliferative MAPK

pathway, but also the pro-survival PI3K-AKT1 pathway. A constitutively-activated autocrine loop

of EGFR-ligand production and receptor stimulation is most likely the reason for the radioresistance

of RAS-mutated cells [212–214]. Constitutive activity of mutated RAS, especially K-RAS, leads
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to an enhanced production of EGFR-ligands, e.g., TGFα and amphiregulin. This autocrine EGFR

stimulation loop selectively activates EGFR signaling and activation of PRKDC through the PI3K-AKT1

pathway [215]. Activation of mTOR by AKT1 after irradiation mediates the radioresistance of cancer

cells. However, resistance to EGFR inhibitors may result from an EGFR-independent aberrant

activation of the PI3K-AKT1-mTOR pathway in tumor cells [216]. Furthermore, activation of mTOR

antagonizes autophagy [217]. These data indicate that a combination therapy using inhibitors of EGFR

and of mTOR might function synergistically for radiosensitization.

4. Targets for Radiosensitization

The aim of radiotherapy must be the elimination of all cancer stem cells (CSC) [218]. According

to the CSC hypothesis, only these cells are able to proliferate infinitely and repopulate the tumor in

contrast to the mass of cancer cells without the potential for self-renewal [219]. Thus, survival of a

single CSC will consequently result in recurrence. However, CSC are not only more radioresistant than

“normal” tumor cells (non-CSC,) but often acquire a more radioresistant phenotype when exposed to

radiotherapy. For example, an increased capability for DNA-repair and for scavenging of ROS was

shown for CSC of breast cancer [220], glioblastoma [221,222] and lung cancer [223]. As mentioned

above, increased expression and activity of the androgen receptor and hypoxia-induced autophagy

result in increased radioresistance of CSC. This obstacle of CSC-inherent radioresistance should be

overcome by combining radiotherapy with radiosensitizers.

Many of the proteins acting in the radiation-induced cellular pathways described above are

promising targets for either radiosensitizing approaches. Several strategies with different success have

been followed to radiosensitize tumor cells and will be described in the following. These include

inhibition of DNA (DSB) repair, induction of cell death pathways, suppression of survival pathways or

reactivation of p53 (Table 1).

4.1. Inhibition of Cell Cycle Control

Interfering with the cell cycle control might result in a loss of G1 or G2/M block, failure of DNA

repair and, thus, induction of cell death.

4.1.1. Inhibition of CHK1 or CHK2 (Checkpoint Kinase-1 and -2)

UCN-01 (7-hydroxystaurosporine) was isolated from the culture broth of Streptomyces nearly

thirty years ago [224] and has been tested in chemotherapeutic approaches in more than 20 clinical

studies (clinicaltrials.gov). In the last 20 years, it has become also a potent radiosensitizer due to its

effective inhibition of CHK1 and, thus, abrogation of the G2 checkpoint in different in vitro models [86].

Enhanced radiosensitivity was shown in combination with other drugs, like celecoxib or all-trans

retinoic acid (ATRA) [87–89]. However, only a few xenotransplantations models and no clinical study

for the combination with radiation have been published.

Specific inhibition of CHK2 has been achieved by application of the substances PV1019 or XL-844,

resulting in significant radiosensitization and reduced proliferation of various cancer cell lines [90,91].

XL-844 promoted mitotic catastrophe [91]. In contrast to its effect in tumor cells, PV1019 had a

radioprotective effect in normal mouse thymocytes, abrogating IR-induced apoptosis [90].

4.1.2. Inhibition of Cyclin-Dependent Kinases

Several inhibitors of CDK have already been successfully evaluated in combination with other

chemotherapeutics in clinical trials, although negative side effects partially restrict their clinical use

drastically [225]. Only a few of these drugs have been tested in combination with irradiation. Inhibition

of CDK1 and CDK2 by AZD5438 resulted an increase of IR-induced apoptosis in three NSCLC

(non-small cell lung cancer) cell lines by reduced DSB repair by HR [83]. However, the clinical use of

AZD5438 for radiosensitization is questionable, since low tolerance to the drug was demonstrated in

phase II studies [226].
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Downregulation of activated forms of CDK1 and CDK2 was achieved by the application of

flavopiridol (alvocidib) before or after irradiation of SEG-1 cells (human esophageal adenocarcinoma),

resulting in a G1 arrest and enhanced IR-dependent apoptosis; increased radiosensitivity using

flavopiridol was also demonstrated with SEG1 xenografts [82], in a murine glioma model [81] and

in radioresistant tumor cells [80]. Due to the disadvantages of flavopiridol, like a narrow therapeutic

window, second-generation CDK inhibitors have been developed; dinaciclib already proved its

potential in combination with other chemotherapeutic drugs in phase III trials [227], but has not

been tested for radiosensitization up to now.

Currently, second-generation pyridopyrimidine-derived inhibitors with high specificity towards

CDK4/6 are being tested clinically [228,229]. Palbociclib (PD0332991, PD) has received FDA approval

for potential treatment of breast cancer, and abemaciclib (LY2835219) is undergoing a phase III trial

for breast and lung cancer. These small-molecule CDK inhibitors cause Rb-dependent G1 arrest in

different cancer cells [84,85,230,231]. Few pre-clinical studies have addressed the combination of CDK

inhibitors with radiotherapy. Treatment of human glioblastoma U87 intracranial xenografts with PD

combined with irradiation (five daily fractions of 2 Gy/fraction) showed increased antitumor activity

in growth delay and survival assays [230]. In a brainstem glioma mouse model, seven daily doses of

PD after irradiation with a single dose of 10 Gy increased the median survival time [232].

4.2. Inhibition of DNA Repair

4.2.1. Targeting the MRN Complex

Telomelysin (OBP-301), an attenuated type-5 adenovirus with oncolytic potency, was used to

target the MRN complex as the most upstream sensor in DDR. Infection by this virus resulted in

expression of the viral protein E1B55kDa, which in turn led to degradation of the MRN complex and,

consequently, in abolishment of ATM activation and DSB repair [119]. A synergistic antitumor effect

of three cycles of treatment with telomelysin and regional radiation could be shown in a xenograft

model after transplantation of TE8 human esophageal cancer cells [119]. In a clinical phase I/II study,

“the safety and efficacy of telomelysin in patients with hepatocellular carcinoma” are currently being

analyzed (NCT02293850).

Mirin, another inhibitor of MRN, although with promising in vitro results, has not taken the

hurdle into the clinic for radiosensitization. In vitro experiments already several years ago showed that

mirin efficiently blocked direct activation of ATM by MRN, and the exonuclease activity of MRE11,

thus, abolished the IR-induced G2/M checkpoint and HR [233].

4.2.2. Targeting ATM (Ataxia-Telangiectasia Mutated) or ATR (Ataxia-Telangiectasia and
RAD3-Related)

Mutations in ATM are the cause for the hypersensitivity to ionizing radiation of patients with the

autosomal recessive disorder ataxia-telangiectasia. Thus, inhibition of ATM with loss of orderly DSB

repair should result in radiosensitization. In two different screens, specific inhibitors of ATM were

characterized: KU-55933 [234] and CP466722 [69]. Transient inhibition of ATM by both substances

disrupted phosphorylation of the ATM targets CHK2, SMC1 and p53 and furthermore resulted in

radiosensitization of HeLa cells; ATR was not affected by these compounds [69,234]. In the last few

years, KU-55933 has been tested in various radioresistant tumor cell lines resulting in increased efficient

radiosensitization [70–73]; however, a clinical trial is still pending.

KU-60019, an improved analogue of KU-55933, was 10-fold more effective than its predecessor at

blocking ATM phosphorylation [76]. Treatment of glioma or glioblastoma-initiating cells in vitro

or of orthotopic brain tumors with KU-60019 up to 1 h before irradiation resulted in increased

radiosensitization and doubled survival time of the mice, respectively, especially if the glioma cells

were mutants for p53 [74,75]. Due to these promising preclinical results and its pharmacodynamics

profile, KU-60019 will be probably introduced into clinics in the near future.
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ATR is required for the repair of SSB and stabilization of stalled replication forks, which may be

converted into DSB. Thus, inhibition of ATR by NU6027 caused in vitro radiosensitization of the breast

cancer cell line MCF-7 [78]. However, the most promising effects were shown for the combination with

various chemotherapeutic drugs. Follow-up studies using also animal models have not been published.

The efficacy of targeting the ATM and ATR pathways is likely to depend on the genetic context.

Thus, a high degree of redundancy exists in the mammalian DNA damage response. Synthetic lethality

describes the increased sensitivity that arises in cells with two redundant pathways, of which one

is non-functional, because of a mutation, and the other pathway is targeted by an inhibitor [235].

One example is the radiosensitization by knock-down or inhibition (KU-60019) of the ATM kinase in a

p53-deficient genetic background [75,77].

4.2.3. Inhibition of Homologous Recombination (HR)

RAD51 is an important downstream actor in the regulation of DSB repair by HR. Inhibition

of c-ABL by imatinib resulted in decreased expression of RAD51 in various tumor cell lines and,

thus, in their reduced clonogenic survival after irradiation with up to 6 Gy [79]. The results of

the combination of radiotherapy and imatinib in an animal model with xenotransplantation of PC3

(prostate adenocarcinoma) cells were quite promising: expression of RAD51 was reduced, and the delay

of radiotherapy-induced tumor growth was further increased by imatinib; also, very importantly, there

was no increased radiation gut toxicity as assayed by determining intestinal crypt cell survival [79].

Inhibition of the function of HSP90 by different substances was also shown to result in

increased radiosensitivity of various cancer cells lines. Although the direct target was always

HSP90, the radiosensitizing effect was postulated to be induced by different downstream proteins.

Use of 17-AAG, (17-N-allylamino-17-demethoxygeldanamycin) 24 h before irradiation with doses

up to 8 Gy blocked the function of RAD51 and subsequently of HR [107,108]. 17-DMAG

(17-Dimethylaminoethylamino-17-demethoxygeldanamycin) reduced the function of the MRN

complex and its activation of ATM [110]. Neither substance radiosensitized normal tissue

cells [107,108,111]. In fact, 17-DMAG was radioprotective in peripheral blood mononuclear cells

by induction of HSP90-dependent stabilization of p53 after irradiation [111]. Three novel HSP90

inhibitors, NVP-AUY922, NVP-BEP800 and NVP-HSP990, probably functioned via interference with

cell cycle regulation, resulting either in increased apoptosis [113] or mitotic catastrophe [112] after

irradiation. Ganetespib is the only HSP90 inhibitor that is already being tested in two ongoing clinical

trials in combination with chemoradiation: either patients with rectal cancer in combination with

capecitabine and radiation (NCT01554969) or in patients with esophageal carcinoma in combination

with carboplatin, paclitaxel and radiation (NCT02389751).

In recent years, strategies for radiosensitization based on synthetic lethality have been tested

clinically. BRCA1 and BRCA2 are involved in the HR repair pathway, but are mutated in familial

early-onset breast cancer, rendering this pathway defective. Inhibition of poly(ADP-ribose) polymerase

(PARP) sensitizes BRCA-mutated cells, but have less effect on normal cells, which retain a copy of the

gene, thus providing the scope for increasing the therapeutic window. PARP is involved in the repair of

base damage and SSB by the short-patch BER pathway, and its inhibition is considered to lead to stalled

replication forks and DSB formation during replication [236]. However, PARP is also involved in a

backup DSB repair pathway, which may be more important [237,238]. Unfortunately, the first PARP

inhibitor in a clinical trial did not inhibit PARP at the clinical doses [239]. Nevertheless, a meta-analysis

of clinical studies of BRCA-PARP synthetic lethality in combination with various chemotherapeutic

agents supports the efficacy of PARP inhibitors in improving progression-free survival, though overall

survival was not significantly improved [240]. Fewer studies have combined the synthetic lethal

approach with radiotherapy (reviewed in [241,242]), and the outcomes have not been published yet.

Synthetic lethality is not limited to BRCA-mutated cancers, since BRCA expression may be repressed

by epigenetic factors in sporadic breast cancers [243]. Whether PARP inhibitors will be useful in

such cancers or if derepression of BRCA-1 expression and induction of resistance will occur remain
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to be tested. The principle of synthetic lethality is also being explored for other repair defects than

BRCA; thus, an HR inhibitor that shows synthetic lethality in BER-defective tumor cells was recently

developed [244].

4.2.4. Inhibition of Non-Homologous End Joining (NHEJ)

Androgen deprivation therapy (ADT) in combination with radiotherapy is currently used for the

treatment of prostate cancer patients in the USA with intermediate or high risk tumors [245]. Especially

for high risk tumors, an impressive increase in overall survival of up to 78% was demonstrated

by ADT for three years starting with the first day of radiotherapy [246]. The combination of ADT

with radiotherapy and treatment with docetaxel resulted in men with high risk prostate cancer in an

increased overall survival [216].

Targeting PRKDC as an essential component in NHEJ seemed to be a further promising approach

for radiosensitization. Several studies have shown the potential of the small molecule NU7441 for

significant radiosensitization of various tumor cell lines concomitant with delayed DSB repair and

induction of a G2/M block [122,247,248]. No effect could be determined in PRKDC-deficient cells,

convincingly demonstrating its specificity for binding to this protein kinase [122]. A combination of

NU7441 with the ATM inhibitor K55933 further increased the radiosensitization of MCF-7 cells seen

also with both drugs alone [120]. The effect on cell fate seems to be cell line dependent: a combination

treatment of irradiation and NU7441 induced in three different NSCLC cell lines three different types

of cell death: mitotic catastrophe, autophagy, senescence [248]. In contrast, the combination of NU7441

with K55933 prevented IR-induced senescence of MCF-7 cells and, instead, promoted cell death [120].

This is very important with regard to the long-term negative effects of senescence as mentioned above

in 3.5 [249].

4.2.5. Histone Deacetylase (HDAC) Inhibitors

Histone deacetylases (HDACs) are involved not only in deacetylation of chromatin proteins

influencing the regulation of gene transcription, but change also the acetylation status of non-histone

proteins involved in DSB repair by HR or NHEJ, like p53, ATM, BRCA1, RAD51 and RAD50 [250].

Thus, inhibition of HDAC has been proposed as a promising approach in cancer therapy and for

radiosensitization [251]. Indeed, the use of different HDAC inhibitors (HDIs) in several in vitro and

in vivo approaches has supported this hypothesis [251]. In contrast to the first studied HDIs, sodium

butyrate and trichostatin A, which exhibited a toxicity profile proscribing their clinical use for some of

the successor substances, like SAHA (suberanilohydroxamic acid), LBH589, MS-275, depsipeptide or

PCI-24781 (vorinostat, panobinostat, entinostat, romidepsin or abexinostat), showed a much better

toxicity profile, enabling their evaluation in clinical studies. However, up to now, only vorinostat

has been tested in more than 30 clinical trials for radiosensitization (clinicaltrials.gov). The results of

two phase I clinical trials have been published: one with patients with brain metastasis and whole

brain radiotherapy and the other with pelvic palliative radiation (PRAVO (Pelvic Radiation and

Vorinostat) study) [105,106]. In both studies, the maximum well-tolerated dose of vorinostat has been

determined to be a daily dose of 300 mg (five days a week) combined with irradiation with 37.5 Gy

in 2.5 Gy fractions over three weeks or with 30 Gy in 3 Gy fractions over two weeks, respectively.

A radiosensitizing effect on overall or disease-free survival must be shown in a future phase II trial.

In vitro experiments showed that the resistance of different patient-derived glioblastoma cells to

SAHA and LBH589 was dependent on a high expression of antiapoptotic BCLXL, which prevents the

activation of caspase-3/7. This resistance was overcome by the simultaneous application of obatoclax,

an inhibitor of BCL-2 family proteins, resulting in significant net radiosensitization [94]. Analysis

according to the effects on normal tissue cells revealed that treatment of human skin fibroblasts or

human osteoblasts with SAHA 24 h before irradiation (up to 8 Gy) did not affect their proliferation

and survival [104]. Similar results were shown for a normal prostatic epithelial cell line without

increased radiosensitivity after treatment with LBH589 compared to two prostate cancer cell lines [96].
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Contradictory results were published for the treatment of human skin fibroblasts with SAHA or MS-275

where reduced DSB repair capacity and decreased clonogenic survival were shown in combination

with radiotherapy [101].

The recently-published results of the treatment of xenografts of nasopharyngeal carcinomas with

abexinostat showed not only enhanced cytotoxic effects of irradiation (1 Gy), but also depletion of

RAD51 [97], which suggested the additional use of imatinib to repress RAD51.

4.3. Suppression of Survival Pathways

4.3.1. Targeting EGFR

Overexpression of constitutively-active forms of EGFR is common for several cancer types and

associated with poor prognosis [209]. The activity of EGFR can be blocked by the use of either

antibodies (cetuximab, panitumumab) binding to the extracellular domain and inhibiting receptor

dimerization or by small molecules (gefitinib, erlotinib) blocking the intracellular kinase domain.

Up to now, most clinical trials to induce increased radiosensitivity have been performed by the

application of cetuximab combined with standard chemoradiotherapy [92]. The results have been

mostly disappointing, since increased toxicity with cetuximab was not accompanied by improved

overall survival compared to standard therapy. Thus cetuximab in combination with radiation has

only received FDA approval for the treatment of locally advanced head and neck cancer [93]. Next

generation EGFR inhibitors must prove a better toxicity profile and increased radiosensitivity.

Inhibition of the activity of nuclear EGFR is still a challenge, since anti-EGFR therapies did not

block the function and translocation of nuclear EGFR. Thus, other proteins that are required for the

function of nuclear EGFR must be targeted [252]. In vitro results showed that blocking of AKT1 or SRC

family kinases resulted in the inhibition of nuclear EGFR translocation and sensitization of cells to

anti-EGFR agents [252–254]. However, it is still a far way to the clinic.

4.3.2. Induction of Senescence

Inhibition of MDM2 by the small molecules Nutlin-3a or PXN727 caused stabilization of the tumor

suppressor p53 and subsequent expression and activation of its target p21 [116–118]. This treatment

resulted in significant radiosensitization in all tested tumor cell lines with wildtype p53 and reduced

proliferation due to induction of the premature senescence of the cancer cells. Induction of senescence

might be advantageous for a current cancer treatment; however, accumulation of senescent cells leads

to an increased secretion of inflammatory cytokines, which might cause age-related pathologies, like

secondary cancers, in the long term [182]. Nevertheless, the primary aim of cancer treatment leading

to a longer overall survival should always take preference. Thus, the hypothetical possibility that

senescent cells may be dormant with an intrinsic capability to reawaken years after the treatment is of

secondary concern, similar to the risk of inducing second cancers.

4.3.3. Inhibition of Autophagy

Prevention of autophagy might result in an accumulation of free radicals, which further should

potentiate radiation-induced damage. Chloroquine and hydroxychloroquine have been tested

successfully for inhibition of autophagy in various tumor cell types in vitro and in animal tumor

models. Recently, the results of five clinical trials of hydroxychloroquine combined with different

chemotherapeutics were published [255]. The combination with radiotherapy was analyzed only in

one study [256]; similarly to a previous report [257], an increase in overall survival was not achieved

by additional treatment with hydroxychloroquine, and thus, inhibition of autophagy or increased

radiosensitivity could not be proven. The attempts to enhance radiosensitivity by treatment with

chloroquine and hydroxychloroquine seem questionable, since it is still not clear if autophagy is

indeed induced by radiotherapy in any tumors of patients and functions radioprotectively [180].

Very important with regard to normal tissue effects is the low number of studies addressing
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radiation-induced autophagy in non-cancerous cells and if delivery of autophagy-inhibiting drugs

will be harmful for normal tissue [180]. Further tests are warranted in this field before inhibitors of

autophagy will enter the clinic as radiosensitizers.

4.4. Reactivation of p53

p53 is mutated in approximately half of all tumors and, thus, is no longer able to function in its

pivotal role as a tumor suppressor. In order to identify substances that are able to restore the function

of mutant p53, various small-molecule drug screens were performed [30]. Indeed, PRIMA-1 (and its

methylated derivative PRIMA-1(MET)) and MIRA-1 are able to restore the correct conformation of

specific mutant forms of p53 and, thus, its function as a transcription factor [258,259]. Both substances

showed efficient induction of cell death in tumor models and were successfully tested in combination

with different chemotherapeutic drugs and in xenotransplantation mouse models [30]. The first clinical

trial with PRIMA-1(MET) showed “a favorable pharmacokinetic profile” [260]. However, increased

radiosensitivity of p53Null prostate cancer cells after treatment with PRIMA-1(MET) indicated a

p53-independent mechanism of its function [261].

5. Perspectives

In order to widen the therapeutic window between tumor control and induction of adverse

reactions in normal tissue, targeting strategies for increasing CSC radiosensitivity should show

differential effects between tumor and normal tissue cells. Drugs targeting cell-cycle progression

and checkpoints take advantage of the fact that dose is frequently limited by late-reactions in tissues

characterized by resting cells with slow turnover, whereas cancer cells are actively proliferating.

Furthermore, tumors are frequently defective in the p53 pathway, whereas normal cells have wildtype

p53. Since p53 is important for the intrinsic apoptotic pathway, activating p53 would increase the

radiosensitivity of tumor cells without affecting normal cells.

At first sight, targeting DNA repair may not appear a useful approach, since normal cells

rely on repair for survival. However, DNA repair pathways form a network, including redundant

backup pathways, and the presence of repair defects in certain tumor cells has created opportunities

for developing synthetic lethality with small-molecule inhibitors without strong adverse effects in

normal tissue. The first example of this strategy was the use of PARP inhibitors, which have shown

beneficial effects in clinical trials with chemotherapeutic agents. Trials combining PARP inhibitors

with radiotherapy are underway, and new inhibitors and new targets for synthetic lethality are being

developed as our understanding of DNA repair mechanisms increases. Because this approach can also

be used for targeting cell-cycle checkpoints and because of the inherent difference between tumor and

normal cells concerning pathways related to genetic stability, synthetic lethality promises opportunities

for increasing the therapeutic window of radiotherapy.

Suppression of survival pathways has so far shown limited clinical success in combination with

radiotherapy. The efficacy of targeting the PI3K/AKT pathway directly (e.g., by mTOR inhibitor

everolimus) has been tested mostly for the treatment of glioblastoma, but did not show additional

survival benefit in a phase II trial [262]. Studies using antibodies against EGFR have had some success

in combination with radiotherapy against squamous cell carcinoma of the head and neck [263,264].

There is evidence that redundancy with other receptor tyrosine kinases (RTKs) may prevent efficient

inhibition of survival via the PI3K/AKT pathway [265]. Furthermore, the role of EGFR in DNA repair

contributes to its radioprotective effect as described above. Therefore, the clinical efficacy of EGFR

inhibitors in combination with radiotherapy is likely to depend on the genetic context, and thus,

screening of key pathway elements may be crucial for improving outcome. Dual-specificity kinase

inhibitors targeting two or more RTKs might prove more efficient than single-specificity inhibitors in

enhancing radiosensitivity, but would require active RTKs to be different in tumor cells and normal

tissue in order to widen the therapeutic window.
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6. Conclusions

During the last twenty years, our knowledge of the cellular pathways that are activated in response

to ionizing radiation has been drastically increased. However, we are still far from understanding the

complete network of interactions and regulatory mechanisms that decide whether a cell will survive or

will choose one of the possible cell death pathways. Nevertheless, based on the current knowledge, new

therapeutic approaches with highly promising drugs could be developed for radiosensitization of CSC.

The opposite approach, radioprotection of normal tissue cells, has been also investigated extensively.

This might be achieved by scavenging of ROS, induction of survival, proliferation, self-renewal and

differentiation, induction of cell cycle arrest or suppression of apoptosis (for a detailed discussion,

see [16,266]). Combining both approaches should create even more opportunities for widening the

therapeutic window of radiotherapy as part of a successful multimodality treatment of cancer.
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