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Heart failure is a serious comorbidity and the most common cause of mortality in

diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure

and function, culminating in heart failure; however, there is a dearth of specific clinical

therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular

viability under physiological and pathological conditions, particularly in the irreplaceable

cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system.

Three evolutionarily conserved molecular processes, the unfolded protein response

(UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein

turnover and preserve protein homeostasis by suppressing protein translation, degrading

misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic

proteins, recycling essential amino acids, and eliminating insoluble protein aggregates.

In response to increased cellular protein demand under pathological insults, including

the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis

and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac

proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC

mechanisms in diabetes propels a more comprehensive understanding of the molecular

pathogenesis of DCM and opens new prospective treatment strategies for heart disease

and heart failure in diabetes patients. In this review, the function and regulation of cardiac

PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart

are discussed.

Keywords: diabetic cardiomyopathy (DCM), cardiovascular disease, protein quality control (PQC), autophagy,

proteostasis, unfolded protein response, proteasome

INTRODUCTION

Diabetes mellitus is one of the fastest-growing health issues worldwide, and it is a major threat to
cardiovascular health. In 2019, it was estimated that 463 million people had diabetes, a number
predicted to reach 700 million by 2045 (1), and diabetes patients have a 2–5-fold increased
risk of developing heart failure (2, 3). Diabetic cardiomyopathy (DCM) refers to the cardiac
dysfunction and structural abnormalities subsequent to diabetes, and independent of coronary
artery disease, hypertension, and valve malfunctions (4, 5). The systemic metabolic alterations
caused by reduced insulin secretion, in type 1 diabetes mellitus (T1DM), or progressive insulin
resistance, in type 2 diabetes mellitus (T2DM), constitute continuous cardiac stress that leads to the
activation of numerous cellular responses. DCM is characterized by impaired cellular homeostasis,
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the progressive accumulation of reactive oxygen species (ROS),
reactive nitrogen species (RNS) and advanced-end glycation
products, organelle dysfunction, and chronic inflammation.
Eventually, DCM promotes pathological myocardial remodeling,
resulting in cardiac dysfunction. Clinically, diastolic dysfunction
is the first manifestation of DCM, followed by systolic
dysfunction in later stages, and, ultimately, heart failure (6,
7). However, a single anti-diabetes agent (e.g., metformin or
fibrate) is unable to ameliorate multiple comorbid conditions.
The combination of individual therapies is indispensable for
T2DM patients with other complications, including DCM.

Proteins are the primary managers of cellular homeostasis;
therefore, regulation of their synthesis, maturation, and
degradation in cardiomyocytes is essential for cardiac
performance. To cope with the imbalance in the cardiac
protein cycle in response to pathological stress, crucial protein
quality control (PQC) systems participate in maintaining cellular
protein homeostasis (8, 9) (Figure 1). Endoplasmic reticulum
(ER) stress activates the unfolded protein response (UPRER)
to reduce protein synthesis, increase the expression of folding
chaperones, and degrade non-functional proteins through the
ER-associated protein degradation (ERAD) pathway. ERAD
recognizes and translocates non-functional proteins into the
cytosol for degradation. The ubiquitin-proteasome system (UPS)
breaks down most proteins secreted by ERAD and those that
have reached the end of their lifespan. Proteins that cannot
be processed by the proteasome or protein aggregates are
broken down via the autophagy-lysosome system. Similar to ER,

FIGURE 1 | Maintenance of protein homeostasis by the principal PQC systems. Accummulation of misfolded proteins in the ER trigger the UPR to increase its folding

capacity by upregulating chaperone expression, and to decrease protein load by inhibiting translation. Misfolded proteins are exported by ERAD complexes that label

them and direct them to degradation through the UPS and autophagy. Misfolded or damaged proteins are also sequestered into protein aggregates to reduce their

toxicity, these aggregates are processed by the autophagy-lysosome system. Proteins with the KFERQ motif are translocated into the lysosomes via CMA.

Additionally, unfolded proteins in mitochondria induce the mtUPR to increase mitocondrial proteases and chaperones. Adapted from Ciechanover et al. (10) and used

under CC BY 3.0.

mitochondria have a specific UPR (UPRmt) signaling to manage
their unfolded protein load and can be selectively marked for
autophagic degradation when the damage surpasses their coping
capabilities (11). Coordination of PQC systems is adaptive and
protective, while impaired PQC contributes to cardiac aging
and diseases (12), including DCM (9). Therefore, it is crucial to
comprehensively understand the function and regulation of PQC
pathways to identify potential therapeutic targets and strategies
for DCM.

UPR

The ER is a central organelle for cellular PQC, operating as
the keeper of the multistep maturation process of nascent
polypeptides into functional proteins. The ER serves several
cellular functions, comprising protein folding, posttranslational
modifications, trafficking, calcium homeostasis, and lipid
biosynthesis (13–16). Any intracellular and extracellular
perturbations to its protein folding capacity result in ER stress
and trigger the multi-faceted UPRER necessary for cellular
PQC (17–20). Recently, mitochondria have been found to
possess their own stress response to manage the unfolded
proteins contained within them, also contributing to protein
homeostasis (21).

The UPRER Process
The primary intent of the UPRER is to adapt to any cellular
changes by restoring protein homeostasis. The chaperones
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in the ER-lumen assist protein folding by binding to the
hydrophobic regions of the nascent proteins (GRP78, GRP94),
promoting glycoprotein interactions (Calreticulin, Calnexin),
and facilitating the formation of disulfide bridges (ERP57,
ERP78) (22). The master chaperone glucose regulatory protein
78 (GRP78) also binds to calcium, assists in ER permeability
during protein translocation, and guides the misfolded proteins
for degradation. The initial step of UPRER is the release of
the transmembrane sensors, primarily bound to the master
chaperone under non-stressed conditions (23). These UPRER

sensors, including protein kinase RNA-like endoplasmic
reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1),
and activating transcription factor 6 (ATF6), are distinctively
activated by stress stimuli and elicit varied adaptive downstream
responses. Upon ER stress, PERK is majorly involved in
attenuation of translation for lessening ER protein load via
eukaryotic translation initiation factor 2α (eIF2α). PERK-eIF2α
increases the expression of key genes facilitating UPRER via
activating transcription factor (ATF4). On the other hand,
the endoribonuclease activity of IRE1 causes splicing of the
transcription factor, X-box binding protein 1 (XBP1). The
spliced XBP1 (sXBP1) upregulates the expression of genes
involved in UPRER signaling (9) and the ERAD pathway (24).
IRE1-dependent decay (RIDD) is known to regulate essential
ER-localized messenger RNAs (mRNAs) to reduce the inflow of
newly synthesized proteins into the ER (25). IRE1 also enhances
the degradation of terminally misfolded proteins via ERAD (UPS
section) (18). Finally, upon activation, ATF6 translocates from
the ER luminal domain to the Golgi apparatus, where site-1 and
site-2 proteases cleave it to form an active segment, p50ATF6.
The activated ATF6 transcriptionally regulates essential genes
responsible for UPRER (26). All three UPRER branches are
required to upregulate chaperones expression for assisting
protein proper folding (27).

The ER stress response (ERSR) initially induces an adaptive
UPRER to a certain threshold. In the face of chronic
pathological stresses, oversaturated ER ensues apoptotic ERSR
(28). Overexpression of ATF4 upregulates C/EBP homologous
protein (CHOP), growth arrest, and DNA damage-inducible
34 (GADD34) and other pro-apoptotic genes (25). CHOP
induces cell death by dysregulating the balance between pro-
and anti-apoptotic genes from B-cell lymphoma 2 (BCL2)
family. Also, oligomerization of the pro-apoptotic proteins
BAX and BAK on the ER membrane causes calcium release
into the cytosol, eventually promoting mitochondria-dependent
apoptotic pathways (29). IRE1 induces ER-mediated apoptotic
mechanisms via recruitment of TNF receptor-associated factor
(TRAF) 2 and apoptosis signal-regulating kinase 1 (ASK1),
leading to activation of c-Jun N-terminal kinase (JNK), and
caspase-12 signaling pathways. In addition to IRE1-regulated
caspase 12 cleavage, m-calpain, a cysteine protease, directly
cleaves caspase-12 upon stimulation, resulting in its activation
(30). The three UPRER branches exist to facilitate both
cytoprotective and apoptotic responses depending on the nature
of the stimulus (25, 27); therefore, it is not surprising that
temporal dynamics of the UPRER has an important role in
determining cellular fate.

Physiopathological Role of UPRER in the
Heart
ER-resident genes have been deemed essential in the heart.
GRP78 or XBP1 deficiency is implicated in impaired cardiac
development (31, 32) and cardiac dysfunction in response
to pathological stresses (33, 34). The increase in protein
disulfide isomerase (PDI) (35), an ER chaperone, and sXBP1
expression (36) in ischemic human hearts suggest UPRER is an
adaptive component of the cardiac stress response. However,
a maladaptive stress response is evident in dilated and failing
human hearts marked by an increase in CHOP expression and
cell death (37, 38). In light of the clinical evidence, it is apparent
that the ERSR has both adaptive and maladaptive roles in
cardiac pathology.

ER chaperones promote cell survival under pathological
stress in the heart; nevertheless, overexpression is damaging.
Cardiac GRP78 knockout in adult mice induced increased
cell death, reduced cardiac performance, and caused early
mortality (31). Moreover, the pre-induction of GRP78 and
GRP94 had a cardioprotective role under oxidative damage
in ischemia/reperfusion (39). On the contrary, increased
protein synthesis under cardiac hypertrophy upregulated
GRP78 expression, simultaneously, under pressure overload,
GRP78 overexpression further potentiated hypertrophy by
stimulating expression of hypertrophic factors resulting in
cardiac dysfunction (40). Additionally, the overexpression of
calreticulin, an ER chaperone, resulted in cardiac remodeling,
dysfunction, and heart failure due to prolonged UPRER

activation. This damaging effect of calreticulin overexpression in

vivo was abated by inhibition of IRE1 (41, 42), overall suggesting
the importance of balanced UPRER to tackle pathological stress
in the heart.

Several animal studies targeting the individual UPRER

branches emphasized the importance of UPRER in the
pathological hearts of different etiologies. Cardiac PERK
deficiency aggravated heart function in response to pressure
overload in mice (43), indicating the cytoprotective role of
the PERK branch. Moreover, transient IRE1-XBP1 response
following pressure overload in mice (44) limited myocardial
injury by reducing ER-associated cell death and inflammation
(45) and promoting adaptive hypertrophy, in turn preserving
contractility in hypertrophic failing hearts (25, 46). Similarly,
cardiac XBP1 deficiency enhanced pathological remodeling
and dysfunction (47). Lastly, ATF6 deletion in mouse hearts
resulted in increased oxidative stress and decreased function after
ischemia/reperfusion. The equivalent in vitro ATF6 knockdown
model in cardiomyocytes showed similar results, which were
obliterated by ATF6 overexpression (48). As noted, transient
activation of all three UPRER branches has an adaptive function
succeeding acute cardiac ER stress, while sustained activation
of UPRER results in irreversible damage to the myocardium.
This persistent stress signaling induces cardiomyocyte death
via activation of ER-mediated apoptosis following myocardial
infarction, ischemia/reperfusion, and pressure overload (23, 49).
Also, Miyazaki et al. (50) demonstrated that cardiac CHOP
deficiency inhibits ER-mediated myocardial apoptosis and
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inflammation following reperfusion injury, highlighting the role
of maladaptive ERSR.

The UPRER in DCM
Role of the UPRER and Apoptotic ERSR in DCM

Development
The role of ER stress in the development of DCM was first
observed in failing diabetic human hearts with swollen ERs
(51), indicating protein imbalance. They also presented ER-
mediated apoptosis, evidenced by increased CHOP and cell
death (52). These clinical findings imply that the impaired
UPRER predisposes the diabetic heart to failure; however, the
precise nexus is elusive. The cardiac fate following ERSR has
since been ascertained in several animal models of DCM. In
the diabetic models, the elevation of cardiac ER stress-related
markers (53) and UPRER genes (54–57) is associated with
cardiac abnormalities (58) and apoptosis (59). Although the
canonical UPRER signaling is an adaptive response, chronic ER
stress is deleterious in the diabetic heart. In T1DM, prolonged
ATF6 activation-induced cell death (60), extracellular matrix
gene expression, cardiac fibrosis (61), and reduced cardiac
compliance in rat models. Moreover, oxidative stress resulted
in cardiac dysfunction in type 1 diabetic hearts via persistent
PERK signaling (62). The role of over-activated PERK-CHOP
and ATF6 ensuing apoptotic signaling via BCL2 associated
agonist of cell death (BAD) and contributing to ER-mediated
cardiac dysfunction was also recapitulated in T2DM rodent
hearts (63). Apoptotic ERSR is associated with pathogenesis
of DCM due to irreplaceable cardiomyocyte loss associated
with the upregulation of cleaved-caspase 12, CHOP, and JNK
in type 1 and type 2 diabetic hearts (51, 54). Altogether, the
maladaptive ERSR in DCM prompts organelle dysfunction, cell
death, and subsequent myocardial remodeling (64), suggesting
that hyperactivated PERK and ATF6 are detrimental in DCM.

Metabolic Triggers of UPRER in DCM
Pathological remodeling and cardiac dysfunction in DCM are
accompanied by alterations in cellular protein synthesis, which
can facilitate ER stress and UPRER. ER stress is an early
event in DCM, and the major triggers include hyperglycemia,
hyperlipidemia, insulin deficiency/resistance, and inflammation
(65, 66) (Figure 2). High glucose and lipid overload induce
oxidative stress interceding dysregulated protein homeostasis,
prolonged UPRER, and cardiomyocyte death (67). Glucose
and lipids upregulated adaptive IRE1-XBP1 signaling (51),
and prolonged stress triggered apoptotic CHOP (63), IRE1-
JNK (68), and caspase 12 activation in human cardiac cells
(69), type 1 (55), and type 2 (30) diabetic rodent hearts.
Inflammation and hyperinsulinemia are other factors that
instigate ER stress and can be further potentiated by ER stress in
a detrimental loop. As a coping mechanism, hyperinsulinemia-
induced ER stress has emerged as a new player in the
onset of insulin resistance (70, 71), possibly via IRE1/JNK
signaling (58), contributing to reduced cardiac function in
T2DM (72). On the other hand, pro-inflammatory cytokine
interleukin-1β via interleukin 1 receptor-associated kinase 2

(IRAK2) promoted CHOP expression and cell death in T1DM,
thereby impairing cardiac function (73). IRAK2 is known to
be elevated in the condition of ER stress (74), suggesting a
feedback loop mechanism accountable for unalleviated ER stress.
However, the direct mechanism of ER-mediated inflammation
and cardiac dysfunction in DCM is yet to be determined.
Further mechanistic study of the intrinsic details of preferential
UPRER under the numerous drivers of ER stress in DCM
is essential.

Intrinsic Regulation of UPRER in DCM
The involvement of ERSR in DCM progression is well-
accepted; nonetheless, only a few regulatory mechanisms of
UPRER in diabetes are documented, where the ER machinery
coordinates with several cellular molecules and signaling
pathways (Figure 3). For instance, downregulated NAD-
dependent protein deacetylase sirtuin 1 (SIRT1) promoted
stress signaling pathways such as IRE1-JNK in T1DM (75), and
PERK-CHOP and IRE1-caspase 12 signaling in T2DM (76),
resulting in ER-mediated apoptosis and cardiac dysfunction.
A protein kinase, general control nonderepressible (GCN2),
triggered cell death, and cardiac dysfunction directly via the
eIF2α-ATF4-CHOP pathway in T1DM and T2DM (77). In
addition, increased EGFR tyrosine kinase receptor activation
instigated ER stress in T1DM (78) and in T2DM following
myocardial infarction (79) by increasing CHOP associated cell
death. The ERSR is also regulated via transcription factors.
Forkhead box O1 (FOXO1) activation leads to direct and
indirect induction of ER stress in DCM via PERK signaling
(80, 81), and peroxisome-proliferator activator receptor (PPAR)
β/γ activity promotes XBP1 splicing restoring ER balance
and providing cryoprotection under diabetic stress in human
cardiac cells (69). Additionally, microRNAs (miRNAs) have
been observed to regulate UPRER in the diabetic heart. mir455
and mir22 are cardioprotective in T1DM (61) and T2DM (82),
respectively. Mir455 reduces cardiac fibrosis via calreticulin
suppression, and mir22 alleviates ER-mediated apoptosis via
SIRT1 upregulation.

Role of Non-canonical UPRER in DCM
Apart from the regulated framework of UPRER, diabetic
condition also impairs UPRER capacity by directly regulating
ER chaperones. Elevated PDI, despite the cardioprotective
action under ischemic cardiomyopathy (35), was associated
with increased cell death in hearts from diabetes patients (56).
The lack of protective effect was attributable to the altered
redox state of PDI under type 1 diabetes. Moreover, dual-color
fluorescence imaging indicated an abnormal ER oxidative state
and altered polarity in diabetic myocardial tissue (83), suggesting
ER oxidative state may contribute to impaired UPRER under
diabetes. Therefore, the maladaptive ERSR can be promoted
by factors independent of canonical UPRER pathways in the
diabetic heart. Also, post-translational modifications such as O-
GlcNACylation are essential for protein stability and function.
The protective effect of XBP1 on O-GlcNACylation (8, 46, 84)
is absent in T2DM, leading to cardiac dysfunction (85), which is
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FIGURE 2 | Pictorial representation of triggers of ER stress and role of ERSR activated UPR in the progression of DCM. Under systemic metabolic stress, lipid

accumulation, and high glucose directly triggers ER stress and indirectly via oxidative stress. Hyperinsulinemia and inflammatory cytokines also induce ER stress, and

in a feedback loop mechanism, ER stress triggers insulin resistance and inflammation (dotted lines). Upon accumulation of misfolded proteins, UPR signaling is

activated following dissociation from GRP78. UPR sensors, IRE1, PERK, and ATF6 and its downstream network drives multiple signal outputs such as inhibition of

protein translation and increased gene upregulation. Balanced UPR restores protein homeostasis by increasing ER chaperones and ERAD genes. Prolonged stress

induces apoptotic ERSR via upregulation of CHOP, contributing to the pathogenesis of DCM. IR, Insulin receptor; IRS1, insulin receptor substrate 1; Akt, protein

kinase B; GLUT4, glucose transporter type 4; FAT, fatty acid transporter; IL-R, Interleukin 1β receptor.

likely due to delayed UPRER action, as the timely UPRER lacks in
the diabetic heart. Despite the growing knowledge about ERSR
following various stresses faced by the diabetic heart, it is still
unclear about how or when the switch between adaptive UPRER

and apoptotic ERSR supervenes.

Mitochondrial UPR (UPRmt) in the Heart
The mitochondrial proteome contains more than 1,300 proteins
and the majority of the nuclear-encoded proteins are imported
into the organelle in an unfolded state (86). Mitochondrial
PQC entails protein import and folding via chaperones (HSP60,
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FIGURE 3 | Regulation of ERSR in the diabetic heart. Some cellular molecules (FOXO1, PPARβ/γ, SIRT1, mir22, mir455) participate in regulation of adaptive ERSR by

activating UPR and inhibiting ER-mediated apoptosis (green lines). On the other hand, some molecules and stresses (oxidative stress, O-GlcNAC, EGFR, RAC1,

GCN2) stimulate maladaptive ERSR (red lines).

HSP70, and TRAP1) and degradation of misfolded proteins by
proteases (ClpP, YME1L1, LonP1, HTRA2/Omi, andOma1) (87).
In response to stresses, the UPRmt initiates a retrograde response
to the nucleus to ensure proteome integrity via induction of
the UPRmt-related chaperones (88). Akin to UPRER, UPRmt

transiently inhibits protein translation and aims to mitigate
proteotoxic stress inside the mitochondrion (89, 90). Under
physiological conditions, activating transcription factor 5 (ATF5)
is imported into the mitochondrion and degraded by LonP1;
however, stress targets ATF5 to the nucleus as the transcription
factor for the induction of UPRmt (91). Owing to the cross-
over among certain stress response proteins (PERK, ATF4, and
CHOP) and the physical linkage between ER and mitochondria,
both UPRER and UPRmt participate in an integrated stress
response to maintain cellular proteostasis (21). For instance,
consequent to eIF2α activation, translation of ATF4, CHOP
and ATF5 regulate the UPRmt. UPRmt−associated expression
of CHOP is identified by binding of c-Jun to the AP-1
promoter region in the CHOP gene (92). CHOP binding, along
with MURE1/2 elements in the promoter region, increases
transcription of HSP60, ClpP, ATF5, and LonP1. Additionally,
misfolded proteins are ubiquitinated in the inner mitochondrial
space and degraded by the UPS in the cytosol in a process called
mitochondrial associated degradation (93).

Mitochondrial PQC is essential for cardiac structure and
function (94). In clinic, patients with ventricular pressure
overload due to aortic stenosis had elevated ATF5 and reduced
apoptosis (95), suggesting its protective role under cardiac
stress. Analogous to clinical observation, silencing ATF5 in
cardiomyocytes abated UPRmt and its protection against pressure
overload (96). Similarly, pharmacological stimulation of UPRmt

ameliorated cardiac dysfunction following ischemic injury via
ATF5 induction (97). Moreover, HSP70 overexpression increased
the import of antioxidant proteins, reduced cell death, and
improved cardiac function against ischemic stress (98). As
such, UPRmt is protective under cardiac stress; nonetheless, the
role of mitochondrial proteases is still unclear. For instance,
under hypoxia, mitochondrial protease LonP1 contributed to
ROS accumulation and cell death in cultured cardiomyocytes
(99). On the other hand, LonP1 overexpression was found to
be protective following ischemic/reperfusion injury in mouse
hearts (100) while reduced LonP1 activity in mitochondria
contributed to contractile dysfunction after pressure overload
(101). Interestingly, the same study demonstrated that LonP1
activation induces UPRER; however, UPRER is activated before
UPRmt, suggesting a fine-tuning role of LonP1 in the integrated
stress response. More importantly, LonP1 deficiency was
compensated via ATF4-dependent fibroblast growth factor
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(FGF21) activation (92, 101), a marker for mitochondrial
stress signaling involved in mediating metabolic changes and
ameliorating cardiac dysfunction under several cardiac etiologies,
including diabetes (21, 102). Also, the mitochondrial protease,
Oma1, is upregulated under cardiac ischemic stress; however, its
ablation is protective against heart failure in mice (103).

UPRmt chaperones are likely protective under diabetic stress
in the heart. There is reduced expression of the mitochondrial
chaperone, HSP70, in T2DM human hearts (104), indicating
decreased protein import and UPRmt induction. In the hearts of
pre-diabetic rats with hyperinsulinemia, there was an increase
in HSP60 expression; however, after prolonged diabetic stress
HSP60-mediated myocardial protection decreased due to abated
expression (105). Moreover, hyperglycemia reduced TRAP1
expression and activity, ultimately reducing cardiomyocyte
viability (106). Furthermore, in T2DM rodent hearts, UPRmt

is responsible for the dysregulation of the mitochondrial
permeability transition pore, associated with elevated cell death
and ischemic injury (107). Overall, adaptive UPRmt is critical
for cardiac structure and function under diabetic stress; however,
the detailed mechanistic role of the mitochondrial PQC and its
therapeutic applications is yet to be cemented in DCM.

UPS

The UPS is a major quality control pathway in eukaryotic
cells, which plays a fundamental role in maintaining cellular
proteostasis and, as such, ensures cell viability and function.
The UPS is the primary proteolytic path for ∼80% of
cellular proteins, most of which are short-lived, misfolded, or
damaged (108, 109). Mechanistically, the ubiquitin proteolytic
pathway involves two distinct steps: ubiquitylation of protein
substrates and degradation of the ubiquitylated proteins by the
proteasome (110).

UPS Process
Ubiquitylation
Ubiquitin is a 76-amino acid globular protein that is highly
conserved in eukaryotes, and its transfer to target proteins
is mediated by a carefully choreographed enzymatic cascade.
Initially, ubiquitin is activated to a high-energy thiol ester state
by the ubiquitin-activating enzyme E1 in an ATP-dependent
manner. Following activation, the ubiquitin moiety is transferred
to ubiquitin-conjugating proteins E2 by transesterification.
Finally, an E3 ubiquitin ligase catalyzes ubiquitin transfer from
the E2-ubiquitin thioester intermediate to a lysine residue on
the substrate protein (111–113) (Figure 4A). The human genome
encodes ∼1,000 E3 ubiquitin ligases, which are subdivided
into three major groups, depending on which of the following
three domains they possess, namely, really interesting new
gene (RING), RING-in-between-RING (RBR), and homologous
to the E6-AP carboxyl terminus (HECT). It has been widely
reported that the E3 ubiquitin ligases confer specificity to
the ubiquitylation process (116). The proteins are targeted
by either a single ubiquitin molecule (monoubiquitylation) or
ubiquitin chains (polyubiquitylation). To date, eight structurally
and functionally distinct ubiquitin linkages (Lys6, Lys11,

Lys27, Lys29, Lys33, Lys48, Lys63, and Met1) have been
identified, among of them, Lys48 and Lys63 are the most
prominent linkage types (117–119). Lys48-ubiquitylated proteins
are typically subjected to proteasomal degradation, while Lys63-
linked ubiquitin chains mediate autophagic protein quality
control (120, 121) (Figure 4B).

Akin to other posttranslational modifications, the
ubiquitylation process is reversible; removal of ubiquitin
molecules from substrate proteins is mediated by
deubiquitylating enzymes (DUBs) (122). DUBs perform
critical roles in the ubiquitylation pathway (123). First, de novo
ubiquitin is translated as either linear polyubiquitylated chains,
or ubiquitin fused to small ribosomal proteins, and DUBs are
required to free mono ubiquitin from these precursors. Second,
in consort with the E3 ligases, DUBs mediate ubiquitin chain
editing, which can alter the ubiquitin signal or protein stability.
Finally, DUBs maintain ubiquitin homeostasis by recycling
ubiquitin molecules (122, 123).

Proteasomal Degradation
The degradation of polyubiquitylated proteins is catalyzed
by the 26S proteasome, a large ATP-dependent multicatalytic
complex composed of a barrel-shaped 20S core protease (CP)
capped at one or both ends by the 19S regulatory particle
(RP) (124) (Figure 4C). The 20S CP is composed of 28
subunits that are arranged as a cylindrical stack containing
four hetroheptameric rings, two peripheral α-rings (α1−7), and
two inner β-rings (β1−7). The two β-rings form the central
proteolytic chamber, whereas the α subunits guard substrate
entry into the chamber, impeding access when the proteasome
is in an inactivated state (125, 126). The proteolytic activity of
the 20S CP is activated by binding to the 19S RP to establish
the proteasome holoenzyme (127). Protein components of the
19S RP recognize ubiquitylated substrates and transport them
to the proteolytic core in an ATP-dependent manner (128–
131). The peptidase activity of the 20 CP is also activated by
other regulatory particles such as the 11S RP, which mediates
protein degradation via a ubiquitin- and ATP-independent
manner (132). The output of proteasomal degradation is small
peptides, which, upon proteasomal exit, are further degraded
by a plethora of cytosolic peptidases to generate amino acids to
be recycled.

Chaperone-Assisted Proteasomal Degradation (CAP)
Molecular chaperones are essential for the folding fidelity and
conformational integrity of proteins (133, 134), by participating
in nascent polypeptide folding, protein transport, assembly of
oligomeric complexes, and repair of misfolded proteins (133).
In addition, chaperones can also facilitate the degradation
of folding-incompetent proteins, thereby preventing their
aggregation (133, 135). The C-terminus of Hsc70-interacting
protein (CHIP) is a central player in chaperone-mediated
degradation (136, 137). CHIP binds with the constitutively
expressed HSP70/HSC70 chaperones and members of the
ubiquitin conjugating enzyme, such as the Ubc4/5 family,
to initiate chaperone substrate sorting to the proteasome or
lysosome (135, 138). BAG family molecular chaperone regulator
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FIGURE 4 | The ubiquitin-proteasome system (UPS) working theory. (A) The UPS marks substrate proteins for degradation via a ubiquitylation system where internal

lysine residues of substrate proteins are tagged with ubiquitin (PDB ID: 1UBQ) (114). These ubiquitylated proteins are then degraded by the proteasome.

Deubiquitylating enzymes (DUBs) edit ubiquitin chains and mediate ubiquitin recycling. Adapted from Zheng et al. (115) and used under CC BY. (B) The different

ubiquitin linkages and their unique biological functions. (C) The proteosomal 20S core particle (CP) consists of four stacked rings, two outer rings composed of seven

α subunits, and two inner rings composed of seven β subunits. The proteolytically active sites are localized in the β1, β2, and β5 subunits. The majority of 20S

proteasomes are capped with 19S regulatory particles. The 20S can also be activated by PA28. Created with Biorender.com.

1 (BAG1) is a co-chaperone which functions as a nucleotide
exchange factor triggering ADP dissociation fromHSP70/HSC70
proteins and thereafter promoting chaperone substrate release
(139). Interestingly, BAG1 can also simultaneously bind
to the proteasome via its Ub-like (UBL) domain thereby
providing a functional link between chaperones and the
proteolytic machinery (140). Conversely, the co-chaperone
HSPBP1 attenuates CHIP ubiquitin ligase activity when it
is complexed with HSP70/HSC70 and thus inhibits CHIP-
mediated degradation (141). Notably, both CHIP and BAG1 exert

cytoprotective effects in the heart following ischemia-reperfusion
injury (142, 143).

In addition to CHIP and HSP70, chaperones such as
HSP20, HSP90, and αB-crystallin (CryAB) are also induced in
cardiomyocytes in an effort to buffer misfolded proteins during
cardiac stress (137). Numerous studies have highlighted the
protective role of these proteins in the heart (137). For instance,
HSP90 appears to be cardioprotective in both doxorubicin-
induced heart failure and high-glucose induced cell injury
(144, 145). Moreover, cardiac specific over-expression of HSP20
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attenuates apoptosis, reduces infarct size, and improves cardiac
function in mice following ischemia-reperfusion injury (146).
Mutations which impair the function of chaperones have been
implicated in numerous diseases including cardiomyopathies
(147). Pre-clinical studies have demonstrated that transgenic
mice expressing an R120G-missense mutation in CRYAB
develop restrictive cardiomyopathies and manifest pathological
characteristics similar to those observed in clinical desmin-
related myopathy (DRC); aberrant protein aggregation in
cardiomyocytes and cardiac dysfunction (148, 149).

ERAD
ERAD is an integral facet of the UPS pathway (150). It is
an evolutionarily conserved PQC mechanism in mammalian
cells that orchestrates the function of numerous proteins to
maintain ER homeostasis (151, 152). Through ERAD, aberrant
ER luminal and transmembrane proteins are recognized and
retrotranslocated to the cytosolic face where they are modified by
the ubiquitylationmachinery. The E3 ligases implicated in ERAD
include soluble proteins, such as PRKN, ubiquitin conjugation
factor E4A (UBE4A), and CHIP, and ER transmembrane
proteins, such as synoviolin (also known as HRD1), TEB4, GP78,
and RMA1 (150). ERAD substrates are commonly conjugated
to Lys48- and Lys11-linked polyubiquitin chains (153). Once
ERAD substrates are adequately ubiquitylated, they are extracted
from the ER membrane into the cytosol by the p97-UFD1-NPL4
complex to facilitate their proteasomal degradation (154). As
such, if this adaptive ERAD function is defective or insufficient,
the UPRER activates destructive cell pathways by transforming
into an alternative signaling platform known as the terminal
UPRER (155–158).

The UPS in Cardiac Physiopathology
UPS activity is imperative in the heart as cardiomyocytes are
highly susceptible to protein damage due to their constant
exposure to metabolic and mechanical stress (159). Additionally,
as terminally differentiated cells, cardiomyocytes possess
minimal replicative potential; thus, failure to eliminate damaged
proteins triggers excessive apoptosis, which is detrimental
to the heart. Over the past decade, numerous clinical and
experimental studies have documented impaired proteasome
function, accumulation of ubiquitylated proteins, and alterations
in the expression of UPS components in diseased hearts (159–
164). Highlighting the importance of proteasomal integrity,
cardiac proteasome inhibition induces heart dysfunction,
and pathological hypertrophy in a preclinical mouse model
(165). The pharmacological impediment of proteasome activity
also leads to maladaptive structural and functional changes
in pig hearts, which are consistent with a hypertrophic
cardiomyopathy phenotype (166). Similarly, genetic inhibition
of cardiac 20S proteasome promotes cardiac dysfunction
in mice during systolic overload (138). Moreover, use of
proteasome inhibitors (bortezomib, carfilzomib, and ixazomib),
as targeted chemotherapeutics, is related to cardiovascular
adverse events, including congestive heart failure (167). Of note,

perturbations in UPS function have also been documented in
doxorubicin-induced cardiotoxicity (168–170).

Inhibition of UBE2V1, a member of the E2 protein
family, reduces protein aggregation in a CryABR120G-desmin
related myopathy mouse model, improves cardiac function,
and enhances survival in vivo (171). Likewise, it has been
firmly established that E3 ligases play a significant role in
the pathogenesis of heart diseases (Table 1). In a preclinical
model of pressure-overload, MURF1 knockout mice displayed
exacerbated cardiac hypertrophy in response to mechanical
stress (176). Similarly, transgenic mice expressing mutations in
Trim63, the gene encodingMURF1, develop cardiac hypertrophy
(204). Moreover, Chip–/– mice challenged with ischemia-
reperfusion injury were more prone to arrhythmias and had
decreased survival rates (143). However, research on the
pathological implications of DUBs in the heart is limited
(Table 1). A recent study revealed that the expression of
ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) was
increased in the cardiomyocytes of hypertrophic and failing
hearts (199). Overexpression of UCHL1 exacerbates pressure-
overload induced cardiac hypertrophy and dysfunction, which
can be reversed by systemic administration of the UCHL1
inhibitor LDN-57444 in mice (199). These studies demonstrate
the detrimental effects of UPS malfunction in the myocardium.

Furthermore, Doroudgar et al. demonstrated that HRD1
plays an essential role in the adaptive ERSR in cardiomyocytes
and that cardiac-specific overexpression of HRD1 preserves
cardiac structure and function in a mouse model of pathological
cardiac hypertrophy (197). Moreover, overexpression of Derlin3,
a component of the ERAD retrotranslocation channel, enhances
ERAD-dependent disposal of misfolded proteins, attenuates
exorbitant ERSR, and reduces caspase activity in response to
ischemia/reperfusion injury (205). Conversely, knockdown of
Derlin3 impairs the clearance of misfolded ER proteins and
augments ischemia-mediated cell death in cardiomyocytes (205).
Collectively, these findings suggest that ERAD-associated UPS
plays a crucial role in myocardial viability and underscore the
importance of PQC mechanisms in the setting of cardiac injury.

The UPS in DCM
The E3 Ubiquitin Ligases in DCM
The E3 ubiquitin ligases participate in cardiac metabolic
regulation, by regulating numerous transcription factors
involved in DCM (206) (Figure 5). FOXO1 has emerged as
an influential player in the pathogenesis of DCM, which is
overactivated in the hearts of murine models of T2DM. This
aberrant activation is associated with the development of
cardiomyopathy, evidenced by the cardiac-specific deletion of
FOXO1 ameliorating high fat diet-induced cardiac dysfunction
and preserved insulin responsiveness (80). At themolecular level,
several E3 ubiquitin ligases, including CHIP, MDM, and COP1,
regulate FOXO (190, 207, 208), as a consequence, the functions
of FOXOs are subdued by virtue of their ubiquitin-mediated
proteasomal degradation.

In addition, GATA4, a member of the GATA zinc-finger
transcription factor family, is abundantly expressed in the heart.
GATA4 regulates the transcription of numerous cardiac genes,
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TABLE 1 | The role of the ubiquitylation pathway in cardiovascular disease.

Cardiac hypertrophy Ischemia-

reperfusion

injury

Diabetic

cardiomyopathy

Heart failure

Cardiac-specific E3

ligases

MURF1 Potentially

cardioprotective (172)

Cardioprotective

(173, 174)

Deleterious (175)

MURF2 Dispensable (176) Cardioprotective (177)

MURF3 Potentially

Cardioprotective (178)

Cardioprotective (179)

Atrogin1/MAFbox Cardioprotective (180) Deleterious (181) Potentially deleterious

(182)

Non-cardiac specific

E3 ligases

TTRIM72 (MG53) Cardioprotective (183) Cardioprotective

(184, 185)

Deleterious (186) Cardioprotective (187)

TRIM21 Deleterious (188)

MDM2 Cardioprotective (189) Cardioprotective (189) Potentially

cardioprotective

(80, 190)

c-CB1 Deleterious (191) Potentially deleterious

(191)

ERAD-associated

E3 ligases

CHIP Cardioprotective (192) Cardioprotective (143)

Parkin Cardioprotective

(193, 194)

Potentially

Cardioprotective

(195, 196)

HRD1 Cardioprotective (197)

GP78 Potentially deleterious

(198)

Deubiquitylating

enzymes

UCHL1 Deleterious (199)

CYLD Deleterious (200)

A20 Cardioprotective (201) Cardioprotective (202)

USP4 Cardioprotective (203)

including those involved in myocyte growth and survival (209).
In both STZ-induced type 1 diabetic mice and db/db type 2
diabetic mice, GATA4 protein levels are significantly diminished
in the heart (210), which is likely associated with the E3 ubiquitin
ligase, CHIP (210).

Furthermore, PPARα is a member of the PPAR subfamily
of nuclear receptors and acts as a prominent regulator of
myocardial fatty acid utilization (211). Transgenic mice with
cardiac-specific PPARα overexpression showed cardiac insulin
resistance, reduced glucose utilization, lipid accumulation, and
cardiomyopathy (212). MG53, an E3 ubiquitin ligase, and
MURF1 are both regulators of PPARα (186, 213). Increased
protein levels of MG53 results in a DCM-like phenotype
(186). Mechanistically, not only does MG53 deteriorate insulin
sensitivity, it also positively regulates PPARα, thereby inducing
an energy source shift of glucose to fatty acid oxidation (186).
Of interest, both MG53 and PPARα were also elevated in the
hearts of db/db mice, HFD-induced obese mice, and rhesus
monkeys with a spontaneous metabolic syndrome characterized
by obesity, hyperlipidemia, and hyperglycemia (186). Moreover,
MURF2 and MURF3 attenuate cardiac PPAR isoform activities
and protect against DCM in HFD-challenged mice (177, 179).

Finally, the nuclear factor erythroid 2-related factor 2 (NRF2)
is the master regulator of the cellular antioxidant response.
NRF2 exerts transcriptional action on antioxidant genes through
binding to the antioxidant response element (ARE), such as
quinone oxidoreductase 1 (NQO1) (214), heme oxygenase-
1 (HO1) (215), and superoxide dismutase 1 (SOD1). In
addition to its antioxidant capabilities, NRF2 also enhances
the clearance of toxic ubiquitylated proteins in the heart (216,
217). KEAP1, as an adaptor of the CUL3-RBX1 E3 ubiquitin
ligase, binds NRF2, leading to its ubiquitylation and subsequent
proteasomal degradation (218, 219). Human diabetic hearts
show a significant reduction in NRF2 protein expression (220),
associated with early-onset maladaptive cardiac remodeling and
heart failure (220, 221). Both oxidative stress and misfolded
proteins synergistically contribute to DCM; therefore, KEAP1
and the CUL3-RBX1 E3 ubiquitin ligase complex represent
promising therapeutic targets for diabetic heart disease.

The Cardiac Proteasome in DCM
Diabetes induces both structural and functional alterations
in the proteasome (Figure 5). In a recent study, Li et al.
reported that STZ-induced diabetic mice exhibit a severe and
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FIGURE 5 | Diabetes-induced cardiac UPS dysfunction. Diabetes induces metabolic alterations in the heart that cause proteasome dysfunction in cardiomyocytes.

Proteasome impairment may induce cardiomyopathy through multiple distinct mechanisms such as accumulation of misfolded proteins, enhanced apoptotic activity,

contractile dysfunction and activation of calcineurin-NFAT pathway (Left). The E3 ligases regulate key transcription factors involved in DCM (Right). Created with

Biorender.com.
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progressive decline in cardiac proteasome activity, evidenced
by a cumulative increase in GFPdgn (UPS function reporter)
and Lys48-linked ubiquitylated protein levels in the heart (222).
These alterations in proteasome activity precede the onset of
cardiac dysfunction and thus could potentially play a pathogenic
role in diabetic heart disease. In line with this, proteasome
functional insufficiency was also reported in the myocardium
of Sprague–Dawley rats subjected to T1DM, accompanied by
higher levels of ubiquitylated and oxidized proteins (223). Taken
together, these studies suggest that diabetes induces dissonance in
proteasome activity and thereby distorts myocardial proteostasis.

Although the regulatory events underpinning these
observations remain largely elusive, there are multiple
mechanisms by which diabetes could lead to proteasome
dysfunction, such as ATP depletion, oxidative stress, calcium
imbalance, and diabetes-induced posttranslationalmodifications.
ATP is required for both ubiquitin conjugation and the activation
of the proteasome (224). Cardiomyocytes subjected to severe
ATP depletion manifested profound proteotoxicity and stress-
induced cell death (225). As such, reduced ATP levels, as
observed in diabetic hearts (226–228), likely contribute to
proteasome dysfunction.

Likewise, oxidative damage to proteasome subunits affects
proteasome activity (229). Oxidation of the 19S regulatory
particles Rpt3 and Rpt5 impairs the degradative capacity of the
26S proteasome (230). Bulteua et al. demonstrated that oxidation
of the 20S proteasome also blocks proteasomal peptidase activity
(231). Consistently, treatment with the NSAID meclofenamate
sodium resulted in increased oxidative stress and concomitant
oxidation of proteasome subunits, reducing proteasome
activity (159, 232). Moreover, mitochondrial dysfunction-
associated accumulation of 4-HNE, a secondary product of lipid
peroxidation, directly inhibits the proteasome activity in failing
rat heart (233). On the other hand, hyperglycemia-induced
oxidative stress promotes aberrant cellular Ca2+ homeostasis
(234, 235), subsequently leading to the accumulation of
misfolded proteins and proteasomal overload. Altered cellular
Ca2+ concentrationsmay influence the activity of the proteasome
more directly by modulating the activity of Ca2+-binding
proteins that interact with the proteasome. For instance,
calmodulin binds to several non-ATPase subunits of the 26S
proteasome and could alter proteasome activity (236).

Cardiac proteasome activity is influenced by posttranslational
modifications, such as SUMOylation, glycosylation nitrosylation,
and phosphorylation (237), which could be modified by the
diabetic myocardial environment (222). Accordingly, protein
kinase CβII (PKCβII), a classical PKC isoform, phosphorylates,
and inhibits the proteasome activity in failing rat hearts (238).
Treatment with a PKCβII inhibitor improves cardiac PQC,
function, and survival (238). Abnormal proteasome activity
compromises cardiac function through numerous mechanisms
(239). Primarily, proteasomal derailment induces cardiac
contractile inefficiency by impairing sarcomeres (239). Two
parallel processes, assembly, and degradation, are necessary
to maintain sarcomere integrity (175). The degradation
of sarcomeric proteins is regulated almost exclusively by
the UPS (240). Also, proteasome inhibition activates the

calcineurin-NFAT pathway in the heart (241), which induces
pathological hypertrophic growth (242). Finally, proteasome
inhibition has been shown to induce apoptosis in cultured
cardiac myocytes (243, 244).

AUTOPHAGY

Autophagy is the homeostatic process through which cellular
components are delivered to the lysosomes for degradation into
their basic units. The cargo managed by the autophagic process
includes insoluble and large misfolded proteins that cannot be
degraded by the UPS (245), protein aggregates (246), and the
proteasome itself (247). Autophagy can be triggered in the heart
by various stress signals, such as nutrient deprivation, the absence
of growth factors, and UPS malfunction (248).

Autophagy Process
Autophagy comprises three types of processes (249).
Macroautophagy (hereafter referred to as autophagy)
requires the formation of double-membrane vesicles, named
autophagosomes, to sequester cytoplasmic components and
organelles. Fully developed autophagosomes are fused with
the lysosomes, where lysosomal hydrolases break down all the
elements contained, including the inner membrane. The second
type, microautophagy, is when cytoplasmic components are
engulfed and degraded through the invagination of the lysosomal
membrane. The third type, chaperone-mediated autophagy
(CMA), is the process through which proteins exposing a KFERQ
motif are translocated into the lysosomes. Approximately 75%
of the human proteome has potential KFERQ motifs (250).
Even though autophagy and microautophagy are bulk processes
engulfing everything in a section of the cytoplasm, they also
function selectively. Organelle (251) and protein aggregate (252)
labeling consists of ubiquitination, a process shared with the UPS
(253). This label is recognized by autophagy receptors such as
p62/sequestosome 1 (SQSTM1), BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3 (BNIP3), and BNIP3-like (NIX)
(254). Selective autophagy is vital to prevent proteotoxicity and
promote cellular survival.

The autophagic molecular machinery consists of numerous
autophagy-related proteins (ATG), directing all the stages of
autophagy: initiation, elongation, maturation, and degradation
(Figure 6A). Initiation begins with ATG1, also known as
ULK1, forming the serine/threonine-kinase ULK complex.
This complex phosphorylates the class III phosphatidylinositol
3-kinase complex I (PI3KC3-C1) containing beclin 1 (BECN1).
The latter complex produces phosphatidylinositol 3,4,5-
trisphosphate (PIP3), initiating the formation of the phagophore.
Elongation is driven by the lipidation of microtubule-associated
proteins 1A/1B light chain 3 (LC3) by ATG7 and the
ATG5/ATG12 complex, during which LC3-I is conjugated
with phosphatidylethanolamine to form LC3-II. This process
allows the incorporation of LC3-II into the membrane and
stabilization of the phagophore. At this stage, the autophagy
receptors recognize labeled components and bind to LC3-II.
When the autophagosome is closed, small GTPases of the Ras-
related protein in brain (RAB) family recruit tethering proteins
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FIGURE 6 | Summary of the autophagic processes. (A) A series of protein complexes drive autophagosome formation and fusion with the lysosome. The

autolysosome breaks down misfolded proteins, protein aggregates, and organelles using a variety of hydrolases. Misfolded proteins are directed to selective

autophagy through ubiquitination and detection by SQSTM1/p62. Adapted from Ciechanover et al. (10) and used under CC BY 3.0. (B) During CMA, proteins

containing the KFERQ motif are recognized by the chaperone HSC70 and translocated directly into the lysosome by a complex of LAMP2A proteins stabilized with

HSP90 chaperones. (C) Mitophagy is the selective degradation of nonfunctional mitochondria that have been labeled by the PINK1/PRKN system. Adaptor proteins

such as SQSTM1 recognize the ubiquitinated proteins and linking it to the growing autophagosome. The receptor-mediated mitophagy is independent of

PINK1/PRKN labeling, but directed by receptors, such as BNIP3 and NIX, which also contain LC3-binding domains.

to anchor the autophagosome and the lysosome together, while
snap receptor (SNARE) proteins and lysosome-associated
membrane glycoprotein 2 (LAMP2) regulate their fusion (255),
this is the maturation to autolysosome. A variety of enzymes
in the autolysosome carry out the degradation process, after
which the macromolecules are released into the cytosol for
anabolic reactions.

Molecular chaperones also have a significant role in all three
types of autophagy mediating selectivity and stability of the
processes. If protein refolding fails, they can also direct cargo
for degradation. The function of chaperone heat shock cognate
71kDa protein (HSC70) was first described in CMA. HSC70
recognizes the KFERQ motif in proteins and facilitates their
translocation into the lysosome through LAMP2A (249). A
second chaperone, heat shock protein (HSP90) enhances binding
of the substrates and LAMP2A stability (256) (Figure 6B).
Furthermore, HSC70 was later associated with the targeting
of cytosolic proteins toward endosomal microautophagy (257)

and chaperone-assisted selective autophagy (CASA), both of
which can manage the degradation of protein aggregates
(258). The substrate and process specificity of chaperones
participating in different types of degradation is believed to come
from the formation of complexes with co-chaperones, whose
availability depends on cell type and stress or stimulus conditions.
For example, BAG3 is a co-chaperone that interacts with
HSP70 and HSPB8 to trigger selective autophagy of aggregated
proteins (259). Its counterpart, BAG1, guides proteins toward
proteasomal degradation. Several other co-chaperones have been
described (260); however, their specific part in cardiac function is
still being explored.

Physiopathological Role of Autophagy in
the Heart
Basal autophagic activity in the myocardium is required to
prevent the accumulation of misfolded proteins and the recycling
of essential components from defective organelles to sustain
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cardiac function. Mutations in autophagy-related genes are the
cause of dilated cardiomyopathies. The most common is Danon
disease (261), a mutation of the LAMP2 gene, characterized by
the weakening of the heart, protein aggregation, accumulation of
autophagic vesicles in the muscle, and cardiac hypertrophy. The
multisystemic disorders rising from loss-of-function mutations
in the EPG5(262), PLEKHM2 (263), and BAG3 (264–266) genes
have significant cardiovascular manifestations and are the result
of defective autophagy. On the contrary, inducing autophagy
ameliorates desmin-related cardiomyopathy by clearing the
protein aggregates that originate from the mutation of the
CRYAB gene (267). Additionally, cardiomyocyte-specific ATG5
deletion in mice, since birth (268) and in the adult stage
(269), caused systolic dysfunction and sarcomeric structure
disarray without any further stress. Conversely, augmenting
basal autophagy by ATG5 overexpression (270) or BECN1
mutation to prevent its association with BCL2 (271) increased
longevity in mice. A certain capacity for autophagic processing
is elementary for normal cardiac function, and its sustenance
counteracts proteotoxicity.

Cardiac autophagic flux is strongly induced by fasting
(272), caloric restriction (273), exercise (274), and in neonatal
mouse hearts after the placental supply is interrupted at
birth (275), which is pivotal for cardiac contractility and
survival (276, 277). Fasting and caloric restriction stimulate
autophagy in the heart through 5

′
-AMP-activated protein kinase

(AMPK) phosphorylation (272, 273) and increased SIRT1-
mediated FOXO1 activity (278). Upon nutrient restoration after
birth, insulin and amino acids moderate autophagy. Insulin
signaling inhibits autophagy through AKT serine/threonine
kinase 1 (AKT)-mediated activation of the mechanistic target
of rapamycin kinase complex 1 (MTORC1), an autophagy
inhibitor. When postnatal autophagy inhibition was disrupted by
genetic deletion of the insulin receptors, cardiomyocyte death,
and heart failure occurred due to excessive autophagy (279).
Unrestrained autophagy was diminished by the supplementation
of amino acids, which suppressed autophagy (279) through
RAG protein family regulation of MTORC1 (280). On the other
hand, in exercised mouse hearts, AMPK activation promoted
the expression of autophagic genes (274) and dissociated
the BCL2/BECN1 complex to increase autophagy level (281).
However, in the long-term, exercise increased the autophagic
capacity by augmenting LC3 expression in cardiac muscle
without boosting autophagic flux (282). Nevertheless, this
increased capacity limited cardiac injury and improved function
after myocardial infarction (283, 284). These observations
suggest that the regulation of autophagy by exercise is
multifaceted and adaptive.

The role of autophagy in cardiac disease has been more
challenging to determine, since it can be adaptive or maladaptive
depending on the specific pathology and pathogenesis stage. The
presence of abnormal protein aggregation in the myocardium of
dilated cardiomyopathy patients was associated with impaired
cardiac autophagy (12), while the detection of autophagic
vacuoles was associated with improved heart failure prognosis
(285). In preclinical studies, myocardial ischemia-induced
autophagy in mouse (286) and swine models (287), moderating

apoptosis, and autophagy induction, in turn, limited myocardial
injury (272, 288, 289). Autophagy was reduced after prolonged
pressure overload in mouse hearts, and ATG5 deletion
aggravated cardiac remodeling and performance (269). These
results indicate that autophagy is required to preserve cardiac
function in response to pathological stresses. However, excessive
BECN1 expression and autophagosome formation were found to
be detrimental during reperfusion (290) and pressure overload
(291), also in mouse studies. The seemingly confusing outcomes
could be explained by the discovery that BECN1 association
to the Rubicon protein was able to inhibit autophagic flux
by interfering with autophagosome maturation (292), which
has been recently termed autosis (293), a form of cell death.
In addition, substantial evidence indicate that maladaptive
autophagy was observed in atrial fibrillation by the degradation
of cardiac troponin I/T (294) and calcium channel CAV1.2 (295),
resulting in contractility and electrical alterations. Collectively,
adaptive autophagy is essential to cardiac health, whereas either
insufficient or excessive autophagy is detrimental.

Autophagy in DCM
The elucidation of the role of autophagy in DCM has been
intricate due to the complexities of the disease and the duality
of the nature of autophagy. In T2DM, autophagic flux is
increased in the early stages of disease (296) and later reduced,
with cardiac function improvement mostly being associated
with therapeutic restoration of the autophagic flux (297–305).
Increased expression of autophagy proteins was observed in
human atrial samples and obese mouse myocardium, while
fractional shortening was maintained (306). However, impaired
autophagy by long-term chloroquine administration (300) or
cardiac ULK1 deficiency was detrimental for cardiac function
in obesity, resulting from fibrosis and apoptosis (297). On the
contrary, boosting autophagic flux in a later stage by rapamycin
administration improved systolic performance in high-fat diet
(HFD)-induced diabetes (302). It has been suggested that
autophagy contributes to high fructose-induced cardiomyopathy
(307); nonetheless, these samples also displayed signs indicating
that autophagic flux might have been blunted. In myocardial
samples of obese and T2DM patients, amylin aggregates were
detected and found to induce cardiac dysfunction (308). These
aggregates, also known as islet amyloid polypeptide (IAPP)
oligomers, disrupted autophagy-associated disposal, increasing
their toxicity (309, 310). All together, autophagy is stimulated
in T2DM stages with preserved cardiac function, while its
abnormalities likely cause the onset and development of DCM
and heart failure.

In T1DM models, the regulation and function of autophagy
in the heart are elusive. Cardiac autophagy could be enhanced at
an early time point (311); nonetheless, most evidence indicates
it is suppressed. More importantly, preclinical experiments
suggest that autophagy inhibition could be therapeutic in this
case. Cardiac BECN1 overexpression in streptozotocin (STZ)-
induced diabetes aggravated cardiac function (312). Conversely,
autophagy reduction by BECN1 insufficiency and hypomorphic
ATG16 improved echocardiographic measurements and
hemodynamic analysis in the same model and in OVE26
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mice, which develop severe early-onset T1DM due to deficient
insulin production. Of note, even though autophagic flux was
diminished, the functional improvements were accompanied
by increased expression of RAB9 (312), which directed a non-
canonical form of autophagy (313); therefore, it is speculated
that non-canonical autophagy fulfills beneficial effects in T1DM.
Akin to observations in T2DM patients (308), STZ-injected
mice displayed toxic cardiac protein aggregation that can
be improved by boosting autophagy (314). Interestingly, in
T1DM and T2DM, CMA was found to be promoted even after
autophagy was suppressed; however, evidence showed it could be
contributing to metabolic inflexibility (7). As such, the molecular
mechanisms underlying cardiac autophagy in DCM require
further investigation.

Despite the distinct etiologies and biochemical stresses present
in T1DM and T2DM, a few regulatory pathways have been
demonstrated to be involved in autophagy suppression and
the development of cardiac dysfunction (Figure 7). AMPK
phosphorylation is reduced in the hearts of a number of
DCM mouse models, including OVE26 (315), STZ-induced
(316), diet-induced (302), and genetically obese mice. In
OVE26 mice, the stimulation of AMPK phosphorylation by
metformin restored autophagy and cardiac dysfunction (315).
AMPK-mediated autophagy regulation is attained through
numerous molecular mechanisms (316, 317), but mainly through
repression of MTORC1 activity (302, 304, 318). MTORC1
suppresses autophagy by phosphorylating ULK1 (319, 320) and
transcription factor EB (TFEB) (321), a master regulator of
autophagy gene expression. Cardiac TFEB is suppressed in
both T1DM and T2DM (322). AKT, mitogen-activated protein
kinases 1 and 3 (ERK1/2), and the SIRT family are additional
nodal points for autophagy regulation in DCM. AKT (57)
and ERK1/2 (323) inhibited autophagic flux in the hearts of
obese mice through MTORC1 activation. Strikingly, cardiac

Akt2 knockout preserved cardiac function in high-fat diet-
induced obesity by rescuing cardiac autophagosome maturation
(301). In contrast, SIRT3 and SIRT1 were downregulated in
both STZ-induced (324) and HFD-induced diabetic hearts
(325). Consistently, SIRT3 (326) and SIRT1 (327) mediated
the cardioprotective effects of resveratrol observed in T1DM
by enhancing autophagic flux via activation of FOXO3A (324)
and FOXO1 (327). As such, MTORC1, AKT, and ERK1/2 act
as negative regulators of autophagy during the development
of DCM, while AMPK and the SIRT family are considered as
the enhancers.

More recently, non-coding RNAs have been found to be
involved in numerous mechanisms underlying the development
of DCM, with some of them regulating autophagy. Dysregulation
of miRNAs was analyzed in the left ventricle of diabetic mice
after STZ-injection, revealing that mir30a, mir133a, mir212, and
mir221 are particularly associated with autophagy regulation.
Among them, mir212 and mir221 were significantly upregulated
in diabetic ventricles and even remained increased after insulin
treatment (328), suggesting that they are likely involved
in cardiac deterioration even with proper glycemic control.
Mir212 targets Foxo3a (329), while mir221 targets p27 mRNA,
modulating MTORC1 activity (330), both of which inhibit
autophagy. Additionally, mir30d also targets Foxo3a to suppress
autophagy in DCM (331). On the other hand, mir30c targets
Becn1, and cardiac overexpression of this miRNA improved
cardiac function in genetically obese mice (332), possibly by
decreasing BECN1-Rubicon association (292) and improving
autophagosome clearance. Lastly, the long non-coding RNA
H19 is downregulated in the heart of STZ-induced diabetic
rats, allowing for increased MTORC1 signaling and suppressed
autophagy (333). Therefore, emerging evidence demonstrates
that non-coding RNA regulation of autophagy also acts as
potential therapeutic targets for treating DCM.

FIGURE 7 | Dysregulation of autophagy in the diabetic heart. AMPK and SIRT1/3 inhibition, in addition to AKT and ERK1/2 stimulation, impair autophagy gene

transcription, and autophagosome initiation via MTORC1, TFEB, and FOXO1/3 regulation. Decreased dissociation of the BECN1/BCL2 complex augments apoptosis,

while increased association of BECN1 with Rubicon blunts autophagosome maturation. MiRNAs altered in diabetes interfere with autophagy by acting on players

such as MTORC1, FOXO1/3, and BECN1.
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Mitophagy in DCM
Even though mitochondria possess their own UPR, proteotoxic
stress or damage can surpass their capacity, requiring a more
robust response. Mitochondria can be selectively targeted
for autophagy. Without adequate mitochondrial clearance,
remaining damaged mitochondria are unable to meet ATP
demand, produce excessive ROS, and promote cell death
and inflammation (195). Mitochondrial autophagy, termed
mitophagy, is directed by the serine/threonine-protein kinase
PINK1 (PINK1) phosphorylating the E3 ubiquitin-protein
ligase PRKN (PRKN) and fostering mitochondrial protein
ubiquitination. The adaptor proteins SQSTM1, neighbor of
BRCA1 (NBR1), nuclear dot protein 52 (NDP52), optineurin
(OPTN), TAX1BP1 (TBK1), BNIP3, and NIX link damaged
mitochondria to autophagosomes for their degradation (334)
and can sometimes induce PINK1-independent mitophagy
(Figure 6C). PINK1 deletion results in mitochondrial
dysfunction, oxidative stress, and cardiomyopathy (335).
Similarly, knocking out cardiac PRKN in mice accelerated
the development of systolic dysfunction after HFD-feeding,
accompanied by the accumulation of dysfunctional mitochondria
and lipids (296). ULK1 (336) and RAB9-dependent (312)
mitophagy has also been observed in the hearts of diabetic mice,
and its impairment aggravated cardiac function. However, the
levels of these proteins continued to increase when diastolic (336)
and systolic dysfunction (312) were detected; therefore, there is
doubt on whether alternative mitophagy could be sufficient to
sustain cardiac function during metabolic stress.

Impaired mitophagy is a major contributor to the
pathogenesis of DCM. In a compensated stage of HDF
feeding, mitophagy is upregulated by the general autophagy
ATG7-dependent mechanism, and disrupting mitophagy by
deleting cardiac PRKN expression accelerates the appearance
of cardiac dysfunction (296). Consistently, PINK1 and PRKN
levels were found to be downregulated in the myocardium of
STZ-induced and OVE26 diabetic mice with systolic dysfunction
(312). Different mechanisms have been proposed to contribute
to the loss of mitophagy after metabolic stress. MST1 was found
to inhibit cardiac mitophagy in the hearts of diabetic mice via
SIRT3- mediated PRKN suppression (196). SIRT3 and PRKN
activities were ameliorated by melatonin (337) and icariin
administration (338), resulting in improved mitochondrial
function. In pancreatic islets and hepatocytes from obese
mice, an increase in P53 protein suppressed mitophagy by
direct interaction of P53 and PRKN, blunting mitochondrial
uptake by autophagosomes (339, 340). Lipid metabolism
was associated to HFD-induced PRKN reduction, given that
stimulation of lipid catabolism by overexpressing acetyl-coA 2
(ACC2) restored mitophagy and cardiac function in mice (341).
Adequate mitochondrial morphology and dynamics are also
vital to facilitate mitophagy during DCM. HFD feeding induced
dynamin-related protein 1 (DRP1) activity in the hearts of mice
and monkeys. DRP1 is the primary regulator of mitochondrial
fission, and its increased activity suppressed mitophagy and
resulted in cardiac inflammation and heart failure (342, 343).
On the contrary, myocardial samples of ob/ob mice showed
reduced levels of mitofusin 2 (MFN2), the lead regulator of

mitochondrial fusion. Restoration of MFN2 expression in
cardiomyocytes exposed to high-glucose and high-fat treatment
recovered mitochondrial membrane potential and function
(344). MFN2 also promotes PRKN translocation and mitophagy
in cardiomyocytes (345). Albeit the need to continue exploring
the mechanisms governing mitophagy during DCM, its role in
maintaining mitochondrial quality has been acknowledged.

CROSSTALK BETWEEN PQC SYSTEMS

The different PQC systems act as an integrated stress response.
They are interconnected and regulate each other at the
transcriptional and protein level, and this interdependence
is relevant for health and disease. For instance, the UPS
downregulates autophagy by processing transcription factors,
such as P53, NFkB, HIF, and FOXO (346), and autophagy
components, such as BECN1 (347, 348), LC3, p62, and
ULK1(346). In cancer cells, chemotherapy resistance to
bortezomib, a proteasomal inhibitor, arises from the induction
of autophagy as a compensatory mechanism (349). The
combination of bortezomib with hydroxychloroquine improved
the treatment outcome (350). In turn, proteasomes can be
degraded by autophagy. Amino acid starvation-induced
autophagic activity also enhances polyubiquitination of 19S
regulatory particle, targeting it for autophagic uptake and
decreasing proteasomal activity level (351, 352).

Similarly, the UPRER components, ATF6, CHOP and IRE1 are
degraded by the UPS, while two UPRER branches, PERK-ATF4
and IRE1-XBP1 regulate the expression of UPS components
(346). IRE1 is handled through direct interaction with the ERAD
complex SEL1-HRD1 and during ER stress, this interaction is
broken for UPRER initiation (353). At the same time, IRE1-
XBP1 pathways stimulate the transcription of SEL1L and HRD1
for further UPS function of misfolded proteins (354). This
self-modulating feedback loop prevents overactivation and ER-
mediated cell death. In db/db mice, cardiac expression of HRD1
is reduced, suggesting blunted ERAD activity contributes to
prolonged ERSR (355). On the contrary, in doxorubicin-induced
cardiomyopathy, UPS activity was observed to be increased
(168, 169), perhaps furthering the impairment of UPRER function
(356). Even though the goal of all PQC system is the restoration of
protein homeostasis, the impact of each one in cellular function
under stress conditions differs.

Clear links between the UPRER, UPS, and autophagy have
been acknowledged; however, few of them have been explored
in the diabetic heart. Both IRE1 and PERK branches of
the UPRER induce autophagy by promoting BECN1/BCL2
dissociation and upregulating autophagy genes, such as ATG12,
BECN1, and LC3. In addition, ER calcium release can
stimulate the Ca2+/calmodulin-dependent kinase kinase β

(CaCMKKβ) that phosphorylates and activates AMPK, resulting
in autophagy stimulation (357). UPS malfunction has also been
found to provoke autophagy through NRF2-mediated SQSTM1
upregulation (358) and calcineurin-TFEB activation (165),
suggesting that autophagy acts as a compensatory mechanism
upon proteasomal insufficiency. Proteasomal insufficiency was
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detected in diabetic hearts previous to cardiac dysfunction
(UPS section); therefore, it is possible that these mechanisms
contribute to autophagy induction in early stage of DCM. On
the other hand, autophagy suppression inhibits UPS function
due to the accumulation of SQSTM1 that drives the excessive
sequestration of ubiquitinated proteins in protein aggregates,
preventing proteasomal degradation (359). Autophagy inhibition
in late DCM could be aggravating UPS malfunction and further
damaging cardiac function. The exploration of these crosstalks in
the heart of diabetes patients and animal models could clarify the
status of PQC components and regulatory mechanisms.

THERAPEUTICS

Proper regulation of the PQC system in the myocardium is vital
to maintain cardiac physiology and preserve heart performance
in response to pathological stresses. Studies on the alterations and
regulation of PQC in the heart in the fact of diabetes mellitus
have provided new insights into the molecular pathogenesis of
DCM, as well as delivered proof-of-concept evidence that the
fine-tuned modulation of the UPRER, UPS, and autophagic event
is a potential therapeutic strategy to treat DCM and prevent heart
failure in the diabetic populations.

Targeting the UPRER

As a metabolic disorder, DCM embodies subsequent UPRER

events, where protective ER response is dominant in early
stages, followed by decreased UPRER signaling, and ultimately,
irreversible ERSR associated with structural abnormalities in
the myocardium (360). Therefore, potentiating initial UPRER

activation to restore protein homeostasis and impeding ER
apoptotic response to prevent cell death qualifies as a therapeutic
strategy for managing ER stress in DCM (17, 51). Interestingly,
exercise, a known physiological UPRER inducer, mitigated
apoptotic ERSR by reducing CHOP and caspase 12 expression,
and augmented cardiac function in STZ induced type 1 diabetes
(361). This suggests that exercise is beneficial by restoring
protein homeostasis.

Modulation of the UPRER sensors and GRP78 restores
cellular homeostasis and improve heart function in multiple
cardiovascular disorders. Although GRP78 overexpression is
cardioprotective in hypoxia-induced injury (362), normalizing
GRP78 is shown to be beneficial for disorders with overactivated
UPRER such as DCM. Moreover, chemically enhancing IRE1-
XBP1 (363) and ATF6 activity (364) reduced ER-associated
apoptosis following myocardial infarction. Contrastingly, IRE1
and PERK inhibition alleviated atherosclerosis development and
decreased cell death in cardiac arrhythmias, respectively. As
stated above, PERK and ATF6 hyperactivation are deleterious
in the diabetic heart, indicating that our UPRER knowledge
is incomplete in the context of different cardiac etiologies.
Nonetheless, the pharmacological modulation of UPRER

signaling following numerous diabetic stresses has dramatically
increased in the past few years (Table 2).

Poor glycemic control is associated with increased ER stress
and decreased function in the diabetic heart. Sodium-glucose
cotransporter 2 (SGLT2) inhibitors as an effective-glucose

lowering therapy showed robust cardioprotective outcomes in
clinical trials (371) and pre-clinical studies (372) by reduced
ER-mediated apoptosis following oxidative stress. However,
glucagon-like peptide 1 (GLP-1) agonists are shown to exacerbate
heart failure or have no significant cardiovascular outcome in
T2DM patients (371). GLP-1 agonists are cardioprotective in
DCM rodent models by inhibiting UPRER signaling and ER-
mediated apoptosis (368–370, 381). Therefore, these drugs fall
short of mitigating heart failure in diabetes patients, possibly
due to inhibition of adaptive ERSR. Also, metformin (382)
and thiazolidinediones (TZD) (367) lower cardiovascular events
in T2DM patients by its antihyperglycemic effects. Meanwhile,
in pre-clinical studies, metformin also induced the protective
UPRER function (365, 366), and TZDs improved insulin
sensitivity by upstream mediated attenuation of inflammation
and ER-associated apoptosis (69), thereby ameliorating cardiac
function in diabetes. Taken together, clinically antihyperglycemic
drugs fulfil cardioprotective role inDCM, although their function
on UPRER needs to be further confirmed.

Multiple approaches are being employed to improve cardiac
function by the administration of anti-ER stress chemicals,
which may facilitate UPRER action (60). Chemical chaperones
restored the UPRER, which attenuates maladaptive ERSR
under pathological stresses (383), including diabetes (71, 384).
4-phenyl butyric acid (4-PBA) and tauroursdoeoxycholic
(TUDCA) improved heart function in doxorubicin-induced
cardiomyopathy (356), emphasizing their potential as
cardioprotective drugs. Moreover, these chaperones can
reduce ER protein load in cardiomyocytes by reducing fatty acid
uptake (380) and normalizing GRP78 expression (64) in T2DM
rat models. Additionally, TUDCA is currently employed in three
clinical trials in amyloid cardiomyopathy associated with the
onset of type 1 diabetes (385). Of note, given the ubiquitous
nature of UPRER signaling, these multi-organ targeting drugs
may have off-target effects. Therefore, further clarification of
specific drug targets is of considerable significance to improve
the efficacy of these drugs as DCM therapy.

Other strategies to target ER stress as DCM therapy
include antihypertensives, antioxidants, and antiinflammatory
compounds. Besides the metabolic alterations, increased
angiotensin II signaling in diabetes also induces ER stress in
the heart (60). The antihypertensive drugs, such as valsartan,
are shown to downregulate CHOP expression and reduce
cardiac remodeling in DCM (373, 374). On the other hand,
phytochemicals, such as matrine, have attracted attention in
attenuating maladaptive ERSR (376) and preserving UPRER

signaling (61, 377), subsequently improving cardiac function in
STZ-induced DCM. Moreover, vanadium derivative (55) and
endogenous hormones, such as melatonin (379) and FGF21
(386, 387), have been investigated for their cardioprotective
role by suppressing oxidative stress-mediated ERSR and cell
death in T2DM. Furthermore, targeting upstream regulators of
UPRER signaling, such as SIRT1 (76, 375), might be beneficial
as DCM therapy. Therefore, these molecules may be further
developed as novel therapeutic agents with clinical efficacy to
target UPRER signaling in DCM. In conclusion, since targeting
UPRER signaling is a two-edged sword, proper UPRER regulation
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TABLE 2 | UPR-targeting drugs.

Therapeutic

application

Mechanism/Target Effect on cardiac ER

and UPR

Type of DM References

Metformin Antihyperglycemic AMPK activation ↑GRP78 ↑PERK/eIF2α

↓ CHOP

T2DM (365, 366)

Thiazolidinediones Antihyperglycemic PPAR activation ↑IRE/XBP1 ↓ IRE/JNK

↓ CHOP

T2DM (69, 366, 367)

DPP4 inhibitors Antihyperglycemic DPP4 inhibition ↓ IRE/JNK ↓ CHOP T2DM (366)

GLP1-agonists Antihyperglycemic GLP1 receptor

activation

↓ CHOP ↓ JNK T2DM

High glucose

cardiomyocytes

(368–370)

SGLT2 inhibitors Antihyperglycemic SGLT2 inhibition ↓ CHOP ↓ Caspase 12 T2DM (371, 372)

Adiponectin Appetite and metabolic

regulators

Adiponectin receptor

activation

↓ IRE/JNK T2DM (58)

Angiotensin-II receptor

type 1 blockers

Antihypertensive Angiotensin receptor

inhibition

↓ CHOP ↓ GRP78 T1DM

T2DM

(373, 374)

Resvertrol Antioxidant SIRT activation ↓ PERK/CHOP ↓

ATF6/CHOP ↓

IRE1/JNK

T2DM (76, 375)

Rapamycin Antihyperglycemic UPR inhibition ↓ IRE1/JNK T2DM (366)

Tanshinone II Antioxidant Superoxide mutase

activation

↓ CHOP ↓ GRP78 T1DM (376)

Matrine Antioxidant

Antiinflammatory

N/A ↓ ATF6 ↓ calreticulin ↓

PERK ↓ GRP78

T1DM

T1DM

(61, 377)

Anthocyanins Antioxidant Inhibition of oxidation

promoting enzymes

and ROS scavenging

↓ CHOP ↓ GRP78 ↓

XBP1

T2DM (378)

Apocyanin Antioxidant NAPDH oxidase

inhibitor

↓ PERK ↓ GRP78 ↓

ATF6

T1DM (66)

Melatonin Antioxidant Melatonin receptor

activator

↓ PERK/CHOP T2DM (379)

IL-1 receptor anagonist Antiinflammatory IL-1 ↓ CHOP T1DM (73)

Vanadium deravative Antihyperglycemic PPARγ activation ↓ CHOP ↓ GRP78 ↓

XBP1

T2DM (55)

EGFR inhibitor Antioxidant Tyrosine kinase

receptor inhibition

↓ CHOP T1DM/T2DM (78, 79)

TUDCA Chemical ER

chaperone

GRP78 Binds to misfolded

proteins

T2DM/T1DM (41, 64)

4-PBA Chemical ER

chaperone

N/A Binds to misfolded

proteins

T2DM (356, 380)

List of drugs proven to alter cardiac UPR during DCM treatment.

is essential to restore protein homeostasis in the cardiomyocytes,
while inappropriate suppression of ERSRmay have unpredictable
effects on cardiac function in DM populations.

Targeting the UPS
Targeting the Proteasome
Given its indispensable role in maintaining cellular proteostasis,
the proteasome is a potent therapeutic target to treat proteotoxic
stress in the heart. Benign enhancement of proteasomal function
by overexpression of the 11S proteasomal subunit PA28α
markedly reduced aberrant protein aggregation and cardiac
hypertrophy in a mouse model of CryABR120G proteinopathy
(388). Likewise, cardiac-specific proteasome enhancement
partially improved right ventricular dysfunction and survival
in mice subjected to pressure overload (389). More recently, Li

et al. reported that restoration of proteasome function facilitated
by PA28α overexpression preserves cardiac hemodynamics and
ameliorates diabetes-induced pathological cardiac remodeling
in STZ-induced diabetic mice (222). These salient findings
suggest that genetic proteasome enhancement restores PQC and
improves cardiac function in response to various pathological
conditions, including metabolic stress.

Pharmacological stimulation of cAMP-PKA and cGMP-PKG
signaling by phosphodiesterase (PDE) inhibitors can also activate
cardiac proteasome activity. The synthesis of cAMP and cGMP is
mediated by adenylyl cyclases or guanylyl cyclases, respectively,
whereas their degradation is mediated by PDEs (149). Thus,
inhibiting PDEs increases cellular levels of cAMP and cGMP.
Eleven PDE families have been identified; among them, PDE1,
PDE2, PDE3, PDE4, PDE5, and PDE8 are expressed in the
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heart (390). Ranek et al. (391) demonstrated that sildenafil,
an FDA approved PDE5 inhibitor functioning on activation
of PKG, stimulates proteasome peptidase activity, enhances
the clearance of misfolded proteins, and decreases aberrant
protein aggregation, thereby improving cardiac proteostasis.
More recently, it has been reported that pharmacological
inhibition of PDE1 (IC86430) increases cardiac proteasome
function and accelerates proteasomal degradation of aberrant
myocardial proteins in a PKA- and PKG-mediatedmanner (392).
Strikingly, the administration of IC86430 at an overt disease stage
markedly improved diastolic function and delayed premature
death in CryABR120G mice (392). Conclusively, pharmacological
enhancement of proteasome activity by stimulating PKA or PKG
is likely a novel strategy to treat DCM by eliminating aggregation
of damaged proteins and alleviating cellular proteotoxicity.

Targeting the E3 Ubiquitin Ligases
Due to their ability to regulate UPS, the E3 ubiquitin ligases
represent promising drug targets for patients with diabetic
heart disease. Hydrogen sulfide (H2S) is a gastotransmitter
to maintain cardiovascular homeostasis, which is blunted in
various cardiovascular diseases, including DCM (355). H2S
primarily signals through a specific protein modification termed
sulfhydration, whereby the thiol group of a reactive cysteine is
converted to an hydropersulfide (–SSH) group (393, 394). Recent
work by Yu et al. (355) has shown that exogenous H2S reduces
translocation of the free fatty acid (FFA) transporter CD36
from intracellular stores to the plasma membrane by promoting
sulfhydration of the ER-resident ubiquitin ligase, HRD1; thereby
attenuating myocardial fatty acid uptake and lipotoxicity in
db/db mice. More specifically, HRD1 S-sulfhydration regulates
the ubiquitylation of VAMP3 (involved in CD36 trafficking)
and promotes its degradation. Interestingly, H2S-generating
compounds have been tested in various preclinical models of
heart disease (395). For instance, SG-1002, an orally active H2S
prodrug, attenuates cardiac dysfunction in HFD-induced type
II diabetic mice (394). Of note, SG-1002 has been clinically
investigated in patients with cardiovascular disease (396). Thus,
H2S may hold therapeutic potential for the treatment of DCM.

Additionally, AMPK has been shown to regulate the
transcription of two ubiquitin ligases in the heart; Atrogin-1 and
MURF1 (397). AMPK activation leads to increased rates of UPS-
mediated protein degradation, thereafter increasing amino acid
availability for protein synthesis or ATP production as the heart
adapts to a deteriorating metabolic milieu (397). In the diabetic
heart, AMPK-mediated protein lysis is cardioprotective due to
preserved PQC (22, 397). Numerous studies have reported that
metformin improves clinical outcomes in patients with diabetic
heart failure by activating AMPK (398–400); however, whether
and how metformin regulates cardiac UPS in the progression of
DCM requires further investigation.

Targeting Autophagy
Autophagy has been targeted for the treatment of cardiovascular
disease; however, in DCM, it is not yet determined whether
the induction or inhibition of autophagy has potential

treatment effects. Preventive and therapeutic advice in
diabetes includes lifestyle modifications, such as exercise
and caloric restriction, which have been shown to induce
cardiac autophagy and diminish the risk of cardiac events
(401). Caloric restriction is sometimes supported by the
prescription of appetite suppressors, among which adiponectin
(302, 402), leptin (403), and GLP1 receptor agonists (404, 405)
have also been proved to induce cardiac autophagy in
diabetic models.

Pharmacological treatment for DCM relies mostly on
the attenuation of the systemic derangements that lead to
cardiac stress; nevertheless, several of these treatments are
also able to activate autophagy in cardiac cells (Table 3). As
mentioned above, one of the most widely prescribed insulin
sensitizers is metformin. This AMPK activator improved
cardiac function in animal DCM (315) and human heart
failure (400). Similarly, improving glycemic control by other
insulin sensitizers (302, 408–412), stimulating insulin secretion
(413, 414, 416–418), or reducing glucose uptake in the renal
tube (419–421) has cardioprotective effects, also restoring
myocardial autophagy in DCM models. Lipid-lowering
treatments (422, 423) and antihypertensives (424, 428, 452)
enhanced myocardial autophagy in preclinical models of T1DM
and T2DM through different molecular mechanims, such
as calcium-mediated autophagosome-lysosome fusion and
receptors modulation. Despite some conflicting results (453), the
antioxidant supplements, resveratrol (327, 432, 433, 454, 455),
spermidine (437–440), and epigallocatechin gallate (EGCG)
(441–444) protected the heart in clinical and preclinical
studies in both types of diabetes, also by regulating myocardial
autophagy. While the systemic effects of these treatments
are essential, the cardiac-specific regulation of autophagy is
necessary for the maintenance of cardiac function in diabetes.
Further research is required to delineate which drugs in each
class are the most beneficial.

Some nondiabetic treatments also display benefits in
cardiovascular health in diabetes through autophagy regulation.
Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase
inhibitor, restored cardiomyocyte contractility in STZ-injected
rats (445) and can promote cardiac autophagy (446). On
the other hand, the granulocyte-colony stimulating factor
(GCSF) stimulates bone marrow function and ameliorated
diastolic dysfunction in rodent T2DM models (447, 456, 457)
by downregulating autophagy (448). The antimalarial
drug and lupus treatment hydroxychloroquine is mostly
associated with high risks of cardiotoxicity and heart failure
(458); nevertheless, it improved β-cell function in obese
nondiabetic patients (449) and reduced glycemic levels
in T2DM patients (450). Hydroxychloroquine represses
autophagy by accumulating in lysosomes and inhibiting
autophagosome fusion (459). Considering this, it remains to
be explored whether reduced autophagy might be a therapeutic
strategy in early stages of disease and whether targeting
cardiac autophagy is an adjuvant strategy for the current
metabolic treatments to prevent DCM and heart failure in the
diabetic populations.
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TABLE 3 | Autophagy-targeting drugs.

Drug Therapeutic

application

Mechanism/Target Effect on cardiac

autophagy

Type of DM References

Adiponectin Appetite and metabolic

regulators

Adiponectin receptor

activation

Induction T2DM (302, 402)

Leptin Appetite and metabolic

regulators

Leptin receptor

activation

Induction T2DM (403, 406)

Metformin Antihyperglycemic AMPK activation Induction T1DM/T2DM (315, 316,

400, 407)

Rapamycin and

analogs

Antihyperglycemic MTORC1 inhibition Induction T2DM (302, 408,

409)

Thiazolidinediones Antihyperglycemic PPAR activation Induction T2DM/T1DM (410–412)

DPP4 inhibitors Antihyperglycemic DPP4 inhibition Induction T2DM (413–415)

GLP1-agonists Antihyperglycemic GLP1 receptor

activation

Induction T2DM (404, 416–

418)

SGLT2 inhibitors Antihyperglycemic SGLT2 inhibition Induction T2DM (419–421)

Fenofibrate Lipid-lowering PPARα activation Induction T1DM (422)

Statins Lipid-lowering HMG-CoA reductase

inhibition

Induction T2DM (423)

Verapamil Antihypertensive Calcium channel

inhibition

Induction T1DM/T2DM (424, 425)

Nifedipine Antihypertensive Calcium channel

inhibition

Induction T1DM (426, 427)

Valsartan Antihypertensive Angiotensin receptor

inhibition

Induction T1DM/T2DM (428–431)

Resveratrol Antioxidants SIRT activation Induction T1DM/T2DM (327, 432–

436)

Spermidine Dietary supplement Acetylase inhibitor Induction T1DM (437–440)

EGCG Antioxidant and

antiinflammatory

SIRT1 activation Inhibition T1DM/T2DM (441–444)

Suberoylanilide

hydroxamic acid

(SAHA)

Antineoplastic HDAC inhibition Induction T1DM (445)

Granulocyte-colony

stimulating factor

(GCSF)

Hematopoietic cytokine GCSF receptor

activation

Inhibition T2DM (446, 447)

Hydroxychloroquine Antimalarial and

immunosuppressive

Lysosomal inhibition Inhibition T2DM (448–451)

List of drugs proven to affect cardiac autophagy during DCM treatment.

CONCLUSIONS

Accumulating evidence on the molecular pathogenesis of DCM
has revealed the essential roles of proper cellular protein quality
control in diabetes-associated heart disease. Upon diabetic
stress, the PQC machinery senses, detects, and disposes of the
damaged proteins by multiple processes, including the UPR,
the UPS, and autophagy. Concerted action of the three cellular
systems can tackle proteotoxicity, subsequently improving the
cardiac outcome in diabetes; accordingly, compromised PQC
mechanisms appear to contribute to heart disease as a result
of impaired cellular homeostasis. Dysregulation of the UPR
results in the accumulation of misfolded proteins, while
malfunction of the UPS and autophagy lead to aggregation
of toxic proteins in the cytosol, all of which triggers cell
death and provokes the onset and development of heart failure

in diabetes. Therefore, it is suggested that the maintenance
of protein homeostasis may be a valuable and promising
therapeutic strategy to treat cardiac complications in diabetes
patients. Of note, either insufficient or exaggerated action of
the principal mechanisms exacerbates cytotoxicity in the face
of pathological stresses, including diabetic stress (Figure 8).
Given this dual role in the heart, finely tuned manipulation
of the UPR, the UPS, and autophagy in the myocardium is
mandatory to maintain cellular equilibrium in response to the
diabetic condition with increased demand of protein turnover.
As such, despite the growing knowledge of the mechanisms
underlying cardiac proteostasis networks, further research is
indispensable to investigate the therapeutic potential for heart
disease by targeting PQC molecules in diabetes mellitus. As
the understanding of molecular regulation of PQC function
develops, so will our capability to exploit pharmacological
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FIGURE 8 | Role of PQC systems in cardiac function under pathological stress. Either insufficient or excessive activity of the main PQC systems is maladaptive. By

inducing protein or cellular toxicity, they contribute to cardiac dysfunction. Appropriate level of PQC maintains cardiac protein homeostasis and sustains cardiac

function.

interventions to prevent proteotoxicity and cardiac dysfunction
in diabetic populations.
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