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Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that 

result in genetic instability and potentially tumorigenesis or cell death. Radiation 

extends its effects on DNA by direct interaction or by radiolysis of H2O that generates 

free radicals or aqueous electrons capable of interacting with and causing indirect 

damage to DNA. While the various lesions arising in DNA after radiation exposure 

can contribute to the mutagenising effects of this agent, the potentially most damaging 

lesion is the DNA double strand break (DSB) that contributes to genome instability 

and/or cell death. Thus in many cases failure to recognise and/or repair this lesion 

determines the radiosensitivity status of the cell. DNA repair mechanisms including 

homologous recombination (HR) and non-homologous end-joining (NHEJ) have 

evolved to protect cells against DNA DSB. Mutations in proteins that constitute these 

repair pathways are characterised by radiosensitivity and genome instability. Defects 

in a number of these proteins also give rise to genetic disorders that feature  not only 

genetic instability but also immunodeficiency, cancer predisposition, 

neurodegeneration and other pathologies.  

Conclusions: In the past fifty years our understanding of the cellular response to 

radiation damage has advanced enormously with insight being gained from a wide 

range of approaches extending from more basic early studies to the sophisticated 

approaches used today. In this review we discuss our current understanding of the 

impact of radiation on the cell and the organism gained from the array of past and 

present studies and attempt to provide an explanation for what it is that determines the 

response to radiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A historical perspective. 
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The damaging effects of X-rays became quickly evident after the description of this 

form of radiation by Roentgen in 1895. A number of reports described the acute 

effects that included dry itchy skin, swollen limbs and fingers, peeling of the skin and 

severe dermatitis. This was followed by reports of delayed effects including 

carcinoma and birth defects (Goldstein and Murphy 1929, Brown et al. 1936). These 

delayed effects were confirmed on a much broader scale after exposure to the atomic 

bombs in Japan and a series of accidental exposures extending to the latter part of the 

20
th

 century (Awa et al. 1987, Neel et al. 1977, Miller 1995) Exposure to whole body 

radiation doses (>1Gy) leads to acute radiation syndrome that affects all organs with 

the gastrointestinal system (GI syndrome), the brain and the haematopoietic system 

being particularly vulnerable (Yoshimoto et al. 1981, Yoshimaru et al. 1995, Otake 

and Schull 1984). GI syndrome in manifested by dehydration, diarrhea, infection and 

in severe cases septic shock and death (Potten 1990) The susceptible cells are stem 

cells close to the base of the crypt (Booth and Potten 2000). It seems likely that the 

primary pathway causing dysfunction of these stem cells is microvascular endothelial 

cell apoptosis (Davis et al. 2001). The biological effects of radiation have been 

extensively studied throughout the 20
th

 century. 

 The nature of the lesions in DNA and other macromolecules are relatively well 

described; survival dose-response curves have been thoroughly analysed with 

different cell types; the relationship between DNA damage and mutation induction is 

well established and the carcinogenicity of radiation exposure is well accepted 

(Teoule 1987, Miller 1995, Wolf 1992). What remains controversial is the risk from 

exposure to low dose radiation and the shape of the kinetic curves below the range of 

accidental exposure where effects are more evident (Wall et al. 2006, Thierry-Chef et 

al. 2007, Strzelczyk et al. 2007). Board on Radiation Effects Research (BEIR) VII-

Phase 2 Health Risks from Exposure to Low Levels of Ionizing Radiation supports a 

linear no threshold model as the most practical approach to determining radiation risk. 

This relies on epidemiological data from atomic bomb survivors, occupational 

exposure, exposure after release of radioactive materials into the environment and 

population-based studies from diagnostic and therapeutic exposure (Royal 2008). The 

latter type of exposure represents a major ongoing investigation into risk from low 

dose exposure. 

Not surprisingly a greater appreciation of the teratogenic, mutagenic and 

carcinogenic effects of radiation brought with it the realisation that radiation might be 
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employed as a beneficial tool. The advent of the linear accelerator together with 

computer-assisted tomographic/magnetic resonance imaging-based computerised 

treatment planning increased the quality and precision for use of radiotherapy in the 

treatment of cancer (Goffman et al. 1990). Radiotherapy is an efficient and widely 

used modality for the treatment of cancer and relies on directing an optimal and 

effective radiation dose to the tumour while minimising the exposure to surrounding 

normal tissue. Greater benefit is derived if the tumour is more radiosensitive than the 

surrounding tissue but more often the emphasis is on protecting more sensitive normal 

tissue, for which the treatment for head and neck squamous cell carcinomas and 

glioblastomas provide good examples (Peters et al. 1988, Robins et al. 2007). More 

precise delivery of radiation to the tumour volume using 3-dimensional conformal 

radiation therapy has improved tumour control and decreased treatment-related 

toxicity (Purdy 2008). Intensity modulation of the radiation beam during therapy with 

the application of intensity modulated radiation therapy (IMRT) has further enhanced 

treatment (Woo et al. 1994).  

Away from the context of radiotherapeutic treatment of tumours, exposure to 

radiation, at low dose, has been argued to be beneficial  (Macklis and Beresford 

1991). Reports from the Soviet Union in the 1950s of a “stimulatory” effect of 

radiation gave way to a more precise definition as radiation hormesis which in effect 

points to a protective effect of low dose radiation (Wolf 1989a). Hormesis suggests a 

negative association between low dose exposure and health consequences. It supports 

non-linearity at low doses as opposed to the BEIR VII findings and an argument in 

favour of evolution to the “fittest state” in a background of low radiation (Parsons 

2006). Experiments with both bacteria and mammalian cells demonstrated that,  when 

exposed to low dose radiation, these cells become refractory to the killing by 

subsequent exposure to higher doses of radiation (Samson and Cairns 1977, Wolff et 

al. 1989b) This was subsequently called the adaptive response (Wolff 1992). How this 

adaptive response functions to protect cells remains unclear, but it seems likely that 

groups of genes are involved and that protein synthesis and degradation contribute to 

the process (Tapio and Jacob 2007). Whether this is related to the proposed hormesis 

effect is still unclear. (Radford 2002) suggests that the diminished fixation of DNA 

double strand breaks (DSB) in transcription factories may provide at least part of the 

explanation. Adaptation is not confined to the damaged cell but may also be extended 

to neighbouring cells. This is referred to as the “bystander” effect that operates by the 
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release of diffusible signalling molecules or through gap-junction intercellular 

communication (Morgan and Sowa 2007).  

From this brief introduction, it is evident that enormous insight has been gained 

into understanding how radiation damages cells and how it can be exploited as a 

therapeutic tool. In this review, we aim to overview the significant advances made in 

fifty years of studying radiosensitivity. We will highlight seminal findings, discuss 

how important observations made in the early days of radiation research can now be 

understood in molecular terms and finally consider the further important questions to 

be addressed. 

 

Radiation induced DNA damage and its impact within the cell. 

While population-based studies are of the foremost importance in understanding risk 

associated with radiation exposure, they do not provide quantitative data on 

radiosensitivity. This is addressed to some extent in animal studies where death is the 

endpoint (Goldman 1982). However, the majority of such experiments are designed to 

investigate tumorigenesis or induction of other disease states rather than 

radiosenstivity per se (Loken 1983). Notwithstanding the limitations imposed by in 

vitro cell culture studies, the great bulk of our knowledge on cellular radiosensitivity 

comes from such investigations. Exposure of cells to ionizing radiation (X-rays, -

rays, high linear energy transfer (LET) radiation) results in cell cycle arrest prior to 

DNA repair, mutation induction, transformation and cell death. The focus of this 

review will be on DNA damage, its  -repair and radiation-induced cell killing. DNA is 

the major target for cell killing by radiation (Ward 1981). However, ionization events 

are not confined to DNA and its immediate environment. Free radicals generated by 

radiation can also alter membrane proteins and lipids (Wallach 1972). The oxidation 

state of sulphydryl groups is also altered by radiation and the products of radiolysis 

lead to lipid hydroperoxides (Agrawal and Kale 2001, Zhao et al. 2001). Nevertheless, 

radiation doses that alter the permeability properties of membranes are significantly 

higher than those that damage DNA (Kankura et al. 1969). Hence, damage to DNA 

and processes responding to that damage that serve to maintain DNA integrity lie at 

the core of the cellular response to radiation. DNA integrity is affected by a variety of 

lesions induced by ionizing radiation arising as a consequence of “direct” and 

“indirect” damage. In the former case radiation interacts directly with DNA 

generating charged particles or electrons that carry the kinetic energy of photons (X-
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rays, γ-rays) causing breaks in the phosphodiester backbone (van der Schans et al. 

1973). This represents approximately 30% of the damage to DNA (Chapman et al. 

1973). The remainder arises from indirect effects due to ionization of H2O molecules 

that generate hydrated electrons, H atoms and hydroxyl radicals (.OH) (von Sonntag 

1987). Use of radical scavengers indicates that radicals of this type contribute as much 

as 70% of DNA damage induced by radiation (Chapman et al. 1973). These radicals 

damage DNA by both addition and abstraction reactions resulting in base and sugar-

derived products; single and double strand breaks as well as DNA-protein cross-links 

(Dizdaroglu et al. 1991, Teoule and Cadet 1978). Of these lesions it is now evident 

that the DNA DSB has the greatest potential for cell killing (Ward 1975). Indeed, 

exposure of murine cells to radiation under conditions that altered the relative 

amounts of different types of DNA damage showed that the extent of cell killing was 

directly related to the yield of DNA DSB (Radford 1985).  

Earlier models relied on “hits” and “targets” to explain the shapes of cell 

survival curves in response to radiation damage (Lockart et al. 1961). Without a clear 

knowledge of the actual target, it was suggested that the shoulder on the survival 

curve observed after Low-LET radiation could be explained either by the requirement 

for single hits on more than one target or by multiple hits on a single target. 

(Goodhead 1985) invoked “saturable repair” to explain the kinetics of cell killing with 

increasing radiation dose. This model did not require a sublethal damage event which 

was an inherent part of the Curtis et al. model that relied on irreparable (lethal) and 

repairable (potentially lethal) lesions (Curtis 1986). He identified these as being DNA 

DSB of different severity, which can now be explained by clustered or complex DNA 

damage (Georgakilas 2008). The frequency and complexity of clustered damage 

depends on the LET value of the radiation with as much as 70% of DNA DSB being 

of the complex type after high LET radiation exposure (Nikjoo et al. 1998). For low 

LET radiation, the shoulder on the survival curve can be explained by the action of 

DNA repair at lower doses, giving way to more lethal hits with increasing dose. The 

effect on survival does not appear to be explained by the repair mechanisms reaching 

saturation but rather because of a reduced capacity overall to cope with the damage. 

While the majority of DNA repair pathways are constitutively active, there are 

examples of inducibility. Such inducibility is manifested by increased resistance to 

radiation when a priming or conditioning dose is applied prior to a higher dose, and is 

known as the adaptive response. The adaptive response does not require direct 
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damage to the nucleus per se and is observed as a reduced damaging effect by a 

challenging dose of radiation subsequent to exposure of the same cells to a low 

priming dose (Tapio and Jacob 2007). The reduced damaging effect is determined by 

the extent of cell killing; induced chromosome aberrations; mutation induction, 

capacity for DNA repair or radiosensitivity (Wolff 1998). Non-targeted effects also 

apply to cells in the vicinity that are not directly traversed by the damaging agent 

(Preston 2005). This is referred to as the bystander response and can be mediated by 

cell-to-cell contact on or by transfer of soluble factors (Morgan 2003). In the case of 

radiation exposure where an α-particle traverses a single cell the effects can also be 

observed in non-exposed cells (Azzam and Little 2004). The bystander response is 

seen at the tissue level and is similar to a generalised stress response (Mothersill and 

Seymour 2004). These phenomena have important implications for cancer initiation 

and other pathologies arising from cell types only indirectly affected by the damaging 

agent. Inducibility is also associated with the low dose hyper-radiosensitivity effect 

(Joiner et al. 1996). This refers to the effect in which cells show elevated sensitivity to 

small single doses of radiation but become more resistant (per unit dose) to large 

single doses (Joiner et al 2001;Marples et al. 2004), which is manifested by a “dip” 

and recovery in the shoulder of a survival curve as the dose increases over a low dose 

range (20-30cGy). This hypersensitivity is a response specific to G2 phase cells and is 

directly linked to the failure to activate the (ataxia-telangiectasia mutated) ATM-

dependent early G2/M checkpoint at these low doses (Krueger et al 2007;Marples and 

Collis 2008)). The defect is at the level of cell cycle checkpoint activation rather than 

DSB recognition or repair (Wykes et al. 2006). As the dose increases, checkpoint 

arrest is activated, allowing more time for repair prior to progression into mitosis and 

hence increased survival.   

Cell cycle phase can also impact upon radiosensitivity in a manner distinct to 

the low dose hypersensitivity discussed above. Generally, increased resistance to 

radiation is observed in late S/G2 phase, which might correlate with the doubling in 

DNA content following replication (Terasimaand Tolmach 1961)..  It is also possible 

that the ability to exploit two distinct DSB repair mechanisms in late S/G2 phase (see 

below) enhances the radioresistance in these cell cycles phases. 
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Methods to monitor repair of radiation damage. 

As discussed above, studies undertaken from 1960 to 1980 exposed the concept that 

DNA damage lay at the root of radiation sensitivity. By the mid 1970s, it was 

appreciated that, although single strand binding protein (SSB) arise more frequently 

than DSB, the latter represent the most significant lethal lesion (Ho 1975). Central to 

these studies were emerging methods to monitor SSB and DSB induction and repair. 

An early technique was sucrose gradient sedimentation, which separated DNA 

fragments based on size. The analysis was carried out under alkaline or neutral 

conditions to detect SSB or DSB, respectively. Radiation was shown to reduce the 

sedimentation rate of DNA, which, following incubation, returned to that observed in 

unirradiated cells.  Strikingly, Rad52 yeast mutants, whilst exhibiting the same 

sedimentation profile as control yeast immediately following radiation, failed to 

recover (Ho 1975). Thus, it was appreciated that an unrepaired chromosome break 

could lead to reproductive cell death. The alkaline and neutral DNA elution technique 

and the DNA unwinding technique were additional approaches exploited to measure 

SSB and DSB induction and repair (Iliakis et al. 1991a).  Subsequently, pulsed field 

gel electrophoresis emerged as an even more sensitive methodology (Iliakis et al. 

1991b, Sutherland et al. 1987). 

These methods have limitations however. Firstly, they necessitate the use of non-

physiological radiation doses, usually > 10 Gy, precluding an examination of DNA 

repair following physiologically relevant doses. Secondly, the techniques are not 

readily able to detect subtle repair defects, which may arise if the defect lies in a 

subset of DSB or a specific cell cycle phase. Thirdly, apoptosis also causes DNA 

breakage and the techniques do not readily facilitate a distinction between breakage 

arising as a consequence of radiation-induced apoptosis versus directly induced DNA 

breaks. Although apoptotic-induced breaks in DNA usually arise at a later stage, they 

can be difficult to distinguish from a persistent subfraction of unrepaired DSB. 

Finally, all the techniques employ neutral conditions to monitor DSB repair.  Recent 

findings have suggested that even under these conditions, labile sites which might not 

generate DSB in vivo can be converted to DSB during analysis, resulting in an over-

estimation of directly induced DSB numbers (Ratnayake et al. 2005). Notwithstanding 

these limitations, the methods have yielded highly significant findings, which in 

general are consistent with more sensitive methods employed today.  
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The development of more sensitive methods for monitoring repair of DNA SSB 

has occurred as our understanding of the mechanisms involved has increased. While 

SSB arise as a consequence of different forms of damage to DNA there is 

considerable redundancy in the enzymes involved in their repair. Direct SSB such as 

those generated by radiation or oxidative stress can either be repaired by DNA ligase 

or after DNA end processing followed by gap-filling by DNA polymerase and then 

ligation (Lindahl et al. 1995). Breaks can also arise during base excision repair (BER) 

of apurinic/apyrimidinic sites by the AP endonuclease or a DNA glycosylase. The 

mechanism of repair of these breaks is outlined in Fig 1. Clearly the repair of these 

DNA SSB can be determined by the methods described above. A more recent assay of 

choice for SSB repair is the alkaline comet assay, a sensitive assay for use with single 

cells (Singh et al. 1989). Using the comet assay the bulk of DNA repair occurs in the 

first 15 min after DNA damage and is largely complete by 2h. Basic protocols for the 

use of this assay have been reported more recently (Breslin et al. 2006; Olive and 

Banath 2006). Breslin and his colleagues  also employed the assay to demonstrate that 

cells from patients with spinocerebellar ataxia with axonal neuropathy-1 (SCAN1), 

defective in tryosyl phosphodiesterase 1 (TDP1), have a defect in the repair of 

chromosomal SSB arising independently of DNA replication from abortive 

Topoisomerase I (Top1) activity or oxidative stress (El-Khamisy et al. 2005). It seems 

likely that this defect contributes to the neurodegeneration characteristic of SCAN1 

and stresses the importance of SSB repair in maintaining the integrity of DNA in post-

mitotic neurons. Poly (ADP-ribose) polymerase (PARP1) plays a key role in 

recognising DNA SSB where it is activated to poly (ADP-ribosylate) itself and other 

proteins (D‟Amours et al. 1999). During this process NAD(P)H and ATP are 

depleted. This depletion of NAD(P)H and subsequent recovery has been used as the 

basis for the detection of an imbalance of DNA repair in X-ray repair cross-

complementing group 1 (XRCC1) deficient cells (Nakamura et al. 2003). In this assay 

a water soluble tetrazolium salt is reduced to a yellow coloured water soluble 

formazan dye which is dependent on the amount of NAD(P)H present. While the 

assay does not directly measure DNA SSB it avoids extraction and alkaline conditions 

and is rapid. Host cell reactivation of plasmids containing oxidative damage to DNA 

has also been employed to measure DNA SSB repair (Spivak and Hanawald 2006). 

Cockayne syndrome patient cells showed defective recovery of expression of plasmid 

indicative of a defect in SSB repair. Use of cell-free extracts has had a major impact 
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in unravelling the mechanism for both nucleotide excision repair and base excision 

repair (Wood and Coverley 1991, Dianor et al. 2001). This approach has not only 

assisted in identifying the order of specific steps and the enzymes involved but has 

also provided a read-out for the efficiency of DNA repair in extracts from a variety of 

mammalian mutant cells.  

Strikingly, our current understanding of molecular steps involved in the detection 

and signalling ofDSB has provided the knowledge underlying the development of a 

recent, highly sensitive technique to monitor DSB formation and repair. It is now 

known that an early step in the DNA damage response is the phosphorylation of 

H2AX, a variant form of the histone H2A, generating -H2AX (Paull et al. 2000). 

H2AX phosphorylation extends several megabase pairs from the site of the DSB and 

can be visualised as discrete foci by indirect immunofluorescence using 

phosphopeptide-specific antibodies, ie --H2AX. The number of foci visualised 

closely correlates with current estimates of DSB formation and their rate of loss 

closely parallels the rate of DSB repair monitored by the methods described above 

(Rothkamm et al. 2003).  Thus, γ-H2AX foci analysis is an exquisitely sensitive 

technique to monitor DSB repair, amenable for use with very low doses (Rothkamm 

and Lobrich 2003). There are limitations to the technique, however. -H2AX 

phosphorylation can also arise from single stranded regions of DNA generated 

following replication fork stalling or during the processing of bulky lesions (Ward and 

Chen 2001); it is an indirect method that monitors the consequence of the lesion rather 

than the lesion itself; and finally, there may be a delay between DSB repair and loss 

of -H2AX phosphorylation or circumstances (eg when cells are in mitosis) when -

H2AX loss does not occur (Kato et al. 2008).  Nonetheless, the technique has allowed 

a dissection of events that was previously impossible, and facilitated the direct 

demonstration of a DSB repair defect in Ataxia-telangiectasia (A-T) cells (Riballo et 

al. 2004) (see further discussion below).The comet assay has also been carried out 

under neutral conditions to detect the presence of DNA DSB independent of the 

presence of DNA SSB (Olive et al 1991). The comets prepared under these conditions 

have a „halo‟ of DNA loops which distinguishes them from those prepared under 

alkaline conditions. 

It is also noteworthy that, whilst in yeast, the physical methods monitoring DSB 

repair measure the process of HR, since this represents the major DSB repair 
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mechanism, in mammalian cells, they primarily monitor NHEJ. Currently, HR is 

primarily assessed using constructs, either integrated in the host genome or as 

plasmids, carrying an I-Sce1 site (Moynahan et al. 2001). Whilst this is a useful assay, 

it does not allow an assessment of the repair of radiation induced DSB by HR.   

Finally, a further important aspect of DSB repair is an assessment of its fidelity. 

An extremely elegant modification of the pulsed-field gel electrophoresis (PFGE) 

technique was developed to assess the accuracy of repair (Rothkamm et al. 2001). 

Rare cutting restriction enzymes were employed together with defined probes to allow 

an assessment of whether repair within the defined fragment could result in the 

generation of larger sized fragments, which could only arise as a consequence of 

misrepair. Such an analysis suggested that misrepair occurred more frequently when 

multiple DSB where present. Further development of techniques to monitor the 

fidelity of repair is urgently needed. 

 

Radiation sensitive rodent mutants: their contribution to an understanding of 

radiation sensitivity. 

Following the realisation that cellular characteristics, including sensitivity to DNA 

damaging agents, could be inherited, the isolation and study of radiation sensitive cell 

lines followed (Timeline 1).   

The identification and characterisation of radiation sensitive E. coli and yeast 

mutants progressed from 1969/1970 with, most significantly, the isolation of 

Recombination Protein A (RecA) E.coli mutants and Rad52 yeast mutants (Game and 

Mortimer 1974, Ho and Mortimer 1975, Ho 1975, Resnick 1969,Willetts and Mount 

1969). Subsequently, during the 1980s, it was realised that cultured mammalian cells, 

like bacteria and yeast, could also be exploited for selection and screening of mutants 

(Jeggo 1990, Zdzienicka and Simons 1987). Since most mutations conferring 

radiation sensitivity are recessive, the diploid nature of mammalian cells severely 

decreases the frequency of mutation induction even following heavy mutagenesis due 

to the necessity to inactivate both alleles. However, in the late 1970s, it was realised 

that certain cultured cell lines, including the rodent CHO cell line, had significant 

regions of functional hemizygosity, allowing mutants to be isolated, at least in a 

subset of genes, at reasonable frequencies. Indeed, by exploiting different rodent cell 

lines such as V79, AA8 or CHO cells, which have different regions of hemizygosity, 

a considerable number of radiation sensitive mutants were identified (see for example 
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Stamato and Hohmann 1975). The screening and selection procedures that were 

successfully used to isolate mutants from lower organisms were applied to rodent cell 

lines and mutants covering a range of radiation sensitivity were obtained.  These 

mutants included XR-1 and xrs1-6, which proved to be mutated in XRCC4 and Ku80, 

respectively (see Thompson and Jeggo 1995, Zdzienicka 1995 for reviews). Further, 

the SCID mouse, which was identified via its defect in V(D)J recombination, proved 

to display radiosensitivity and was subsequently shown to be defective in DNA- 

dependent protein kinase catalytic subunit  (DNA-PKcs) ( Bosma et al. 1983, Blunt et 

al. 1995). An important approach that facilitated the exploitation of these cell lines 

was their classification into complementation groups. This was achieved by 

examining the radiation sensitivity in hybrids made by pairwise fusion of the cell 

lines. Hybrids which were complemented for radiosensitivity were considered to be 

derived from lines with distinct genetic defects whilst non-complementing hybrids 

were considered to be derived from lines mutated in the same gene. 

The cellular analysis of these cell lines consolidated the notion that DSB were the 

most significant lethal lesion induced by ionizing radiation (IR). Further, they 

revealed that whereas radiosensitive yeast mutants mainly showed dramatic defects in 

homologous recombination (HR), demonstrating the important role of HR in repairing 

radiation induced DSB, the mammalian mutants appeared to be defective in a distinct 

process.  Hence, the realisation that mammalian cells utilise a distinct DSB repair 

process, subsequently shown to be DNA non-homologous end-joining (NHEJ), 

emerged.  The rodent mutants together with the SCID mouse also facilitated the 

important discovery that V(D)J recombination, a critical step during development of 

the immune response, that exploits the process of NHEJ to rearrange and rejoin the V, 

D or J segments during immune development (Taccioli et al. 1993). 

Whilst the cellular characterisation of the rodent mutants provided important 

insight into DNA damage response processes, their major contribution has been as a 

tool to facilitate the identification of genes critical for radiation resistance. Initial 

approaches involved mapping a complementing region in hybrids followed by 

localisation of the correcting gene. Later, as molecular techniques to transfect 

exogenous cDNAs into cells improved, the cell lines were exploited for cloning 

studies by introducing cDNA libraries followed by selection for radioresistance. The 

introduction of yeast artificial chromosomes (YACs) was particularly important for 

the identification of DNA-PKcs, due to its large size (Blunt et al. 1995), (see (Jeggo 
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1998) for a review). Via these and additional approaches, Ku80, Ku70, DNA-PKcs, 

XRCC4 and subsequently Rad51 and its paralogues where identified.  

More recently, the ability to knock out these genes in mice and the use of 

increasingly efficient interference RNA (siRNA) approaches has diminished the 

benefits of the rodent cell lines. Nonetheless, a large body of literature on radiation 

sensitive yeast, rodent and human cell lines has proved to be highly informative and 

its value should not be forgotten, (Timelines 1 + 2). 

  

Radiation sensitive human patients.  

A seminal finding in 1975 was the discovery that A-T represents a radiation sensitive 

human disorder (Taylor et al. 1975, Timeline 2). 

Although clinical radiosensitivity following radiotherapy had been observed in a 

few A-T patients, and elevated induction of chromosome aberrations by IR was 

reported in A-T lymphocytes, the finding that fibroblast and lymphoblastoid cell lines 

derived from A-T patients displayed radiosensitivity was seminal (Taylor et al. 1975, 

Chen et al. 1978).  Strikingly, A-T cells appeared in these early studies to be largely 

proficient in both SSB and DSB repair, although the presence of a subtle DNA repair 

defect was described in A-T using cytogenetic approaches as early as 1985 (Cornforth 

and Bedford 1985). Viewed retrospectively, the complex phenotype of A-T was 

evident from an early stage. The inability of A-T cell lines to arrest DNA synthesis, 

conferring the radioresistant DNA synthesis (RDS) phenotype, which we now know 

to be a consequence of an S phase checkpoint defect, was characterised in 1980 

(Houldsworth and Lavin 1980, Painter and Young 1980) .  Some eight years later the 

gene defective in A-T was mapped to chromosome 11q22.23 (Gatti et al. 1988). Via 

an amazing tour de force in positional cloning, ATM was identified as the gene 

defective in A-T patients, a particularly difficult challenge due to the large size of the 

gene (Savitsky et al. 1995). A-T represents the paradigm for a series of syndromes 

defective in the recognition and/or repair of DNA damage (Table 1)  

Nijmegen Breakage Syndrome (NBS) and subsequently, A-T like disorder, 

(ATLD), were also recognised as A-T like, radiation sensitivity syndromes, which, in 

the case of NBS, was perhaps surprising considering the markedly distinct clinical 

features of NBS and A-T patients (Weemaes et al. 1981, Stewart et al. 1999). 

Nonetheless, cell lines from such patients display a surprising degree of overlapping 

features.  
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The relationship between NHEJ and V(D)J recombination deficiency raised the 

possibility that defects in NHEJ genes might contribute to human immunodeficiency. 

Subsequent screening for radiosensitivity in patients with compromised immune 

function has revealed ligase 4 (LIG4), Artemis deficient and XLF-Cernunnos (XLF) 

deficient syndromes proving that human “mutants” can also be identified by genetic 

screening (O'Driscoll and Jeggo 2006). The genetic defect in the latter two disorders 

emerged from mapping studies of immunodeficient, radiosensitive individuals 

Radiosensitive severe combined immunodeficiency (RS-SCID patients) (Nicolas et al. 

1998). These studies have provided insight into the role played by damage response 

genes during development. Strikingly, both LIG4 and XLF-deficient patients have 

developmental and growth delay, and characteristic facial features demonstrating a 

role for NHEJ proteins during neuronal development. 

In contrast to the observations made for disorders with defects in repair of DNA 

DSB there are no syndromes described with marked radiosensitivity as a consequence 

of defective SSB repair. Cells from patients with ataxia oculomotor apraxia type 1 

(AOA1) exhibit either mild sensitivity to radiation (Clements et al. 2004) or normal 

sensitivity (Gueven et al. 2004). AOA1 cells are also sensitive to a variety of other 

agents that cause SSB in DNA including H2O2 methylmethane sulfonate and 

camptothecin. While there is no evidence for a defect in repair of radiation-induced 

SSB in AOA1 cells there is evidence for a defect in SSB repair after exposure to H2O2 

and agents that cause oxidative stress (Hirano et al. 2007, Gueven et al. 2007). The 

protein defective in AOA1, aprataxin, resolves abortive DNA ligation intermediates 

(Ahel et al. 2006). This enzyme catalyses the removal of adenylate groups covalently 

attached to 5′-phosphate termini at single strand nicks or gaps. This then allows DNA 

ligation of adjacent 5′ phosphate and 3′ hydroxyl termini to proceed. Extracts from 

AOA1 patients are defective in this reaction. Cells from patients with spinocerebellar 

ataxia with axonal neuropathy 1 (SCAN1) are defective in TDP1, a DNA end-

processing protein that repairs Topoisomerase 1-induced SSB (Takashima et al. 

2002). Camptothecin, which increases the half-life of the Top1 cleavage complex 

increases the number of Top1-strand breaks (Pourquier et al. 1997). Top1 is also 

capable of forming complexes with damage arising from different agents including 

ionizing radiation (Pourquier et al. 2001). In human cells TDP1 is responsible for the 

repair of SSB arising independently of DNA replication from abortive Top1 activity 

or oxidative stress (El-Khamisy et al. 2005). This protein is part of a multi-protein 
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SSB repair complex, through its direct interaction with DNA ligase III, and the 

complex is catalytically inactive in SCAN1 cells. El-Khamisy et al. 2007 

subsequently showed that TDP1 facilitated the repair of ionizing radiation-induced 

DNA SSB. Notwithstanding these observations lymphoblastoid cells from SCAN1 

patients exhibit only a very small degree of radiosensitivity (Zhou et al. 2005). Thus 

the defect in SSB repair is not associated with radiosensitization.  

 

The contribution of cytogenetic techniques; past history and emerging 

technology.  

Cytogenetics has enormously contributed to our understanding of radiation sensitivity. 

Work by Sax in the late 1930s demonstrated that radiation induces chromosome 

breaks, which are subsequently rejoined, misrejoined or remain unrepaired and 

models based on the nature of the aberrant events are still valid today (eg (Sax, 1938). 

Several excellent reviews have discussed the contribution of cytogenetics to our 

current understanding of radiosensitivity and will not be considered in detail here 

(Bailey and Bedford 2006, Cornforth 2006). Instead, we will consider the seminal 

findings uneartherd by cytogenetic approaches. Cytogenetics remains a valuable 

technology and we will consider how its further exploitation can continue to 

contribute to radiation biology. 

A critical observation emerging from the early studies was that cells irradiated in 

G0/G1 phase predominantly form chromosome-type aberrations, characterised by 

breakage at the same point on both chromatids at the first mitosis (Bender et al, 1974). 

In contrast, chromatid-type aberrations, where the break or exchange is only observed 

on one chromatid, are the major aberration observed in irradiated S or G2 phase cells. 

Other DNA damaging agents that induce base damage or SSB rather than direct DSB 

do not show this phenotype, yielding chromatid type aberrations even when irradiated 

in G0/G1 phase, and then only following exposure to high doses.  In other words, a 

characteristic of radiation exposure is the formation of chromosome type aberrations 

following low dose irradiation of G0/G1 cells. The explanation for these findings is 

that replication past a direct (or prompt) DSB leads to DSB at the same site on both 

daughter chromosomes, which rejoin to generate chromosome-type aberrations, such 

as ring chromosomes or dicentrics (Bailey and Bedford 2006).  Although DSB repair 

defective cell lines showed elevated chromosome breakage and misrejoining events, 
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they do not adhere to these rules and form both chromosome and chromatid-type 

aberrations following irradiation in G0/G1 with both occurring in the same cell 

(Kemp and Jeggo 1986, Bailey and Bedford 2006). This demonstrates that cells with 

DSB generated in G0/G1 can traverse S phase and progress to the first mitosis. The 

explanation for why NHEJ mutants display their distinct phenotype is currently 

unclear but suggests that in the absence of NHEJ, events leading to chromatid type 

aberrations dominate.  Furthermore, this phenotype is also observed in A-T cells. 

Again, a defined explanation is unclear, although the checkpoint defect of A-T cells 

may function to diminish the opportunity for repair (Cornforth and Bedford 1987).  

These important findings should not be neglected since they have the potential to 

provide insight into events that occur following replication past a DSB. 

Another significant observation is that irradiation of G0/G1 cells causes prompt 

chromatin fragmentation visualised by premature chromosome condensation (PCC) 

(Cornforth and Bedford 1985). Few other agents except those that induce direct DSB 

generate PCC breaks in G0 cells.  Indeed, this observation provided the first 

demonstration that A-T cells harbour a DSB repair defect since, although A-T cells 

had the same level of initial breakage assessed by PCC fragments as control cells, the 

residual numbers of excess PCC fragments at 24 and 48 h post irradiation was much 

higher (Cornforth and Bedford 1985).  This is somewhat complicated by a more 

recent study that provided evidence that the initial amount of damage was greater in 

A-T cells after radiation exposure (Pandita and Hittelman 1992). They suggested that 

chromatin organisation may play a role in the observed radiosensitivity of A-T cells. 

Cytogenetic approaches have also been informative in considering the impact 

on nuclear organization and chromatin structure on DSB repair, a currently topical 

component influencing DSB repair.  It had been long known that more rapid repair of 

photoproducts occurs in transcriptionally active regions (Madhani et al. 1986).  

Prompted by these findings, cytogeneticists examined whether the breakpoints of 

translocations predominated in G-light band regions of chromosomes, which were 

considered to be regions of high transcriptional activity. One study found that a 

transcriptionally activate region of mosquito articifical chromosomes was 

hypersensitive for the induction of radiation-induced deletions compared to several 

other sites (Muhlmann-Diaz and Bedford 1994).  Further, the frequency of X-

chromosome deletions or tranlocations in patients with multiple X chromosomes, 

which are normally inactivated (Klinefelter syndrome), provided evidence for reduced 



 17 

radiation induced exchanges (Bailey and Bedford 2006).  Recent studies using 

molecular techniques have suggested that heterochromatin is a barrier to DSB repair 

and that DSB located within heterochromatin are repaired more slowly than 

euchromatic DSB and have a preferential requirement for ATM (Goodarzi et al. 

2008). The cytogenetic studies are perhaps not what might be expected from the more 

recent studies, but suggest that although being repaired more slowly than euchromatic 

DSB, they may have a diminished capacity to participate in exchange type 

aberrations. 

Biomonitoring of radiation exposure is of increasing importance and the 

assessment of chromatid aberrations has been the gold standard technique for multiple 

years. Although the analysis of -H2AX formation has the potential to be useful, the 

cytogenetic assays has proven efficacy and strengths. A further hallmark of radiation 

exposure is the formation of balanced translocations (Anderson et al. 2003). Although 

such aberrations are low in number, they are long lived. There are powerful 

techniques, such as Spectral karyotyping (SKY) and multi colour Fluorescent in situ 

hybridization (FISH), currently available that merge cytogenetics with molecular 

biology and it is crucial to further develop these techniques. It is noteworthy that these 

techniques also have the potential to monitor misrepair events in vivo and can 

potentially be exploited to address the issue of the fidelity of DSB repair. 

 

Assays to monitor radiosensitivity. 

Cells can die after radiation exposure by the induction of apoptosis, by loss of 

reproductive capacity, by the onset of permanent cell cycle checkpoint arrest or by the 

onset of premature senescence.  These end results may not be distinct or mutually 

exclusive; for example premature senescence may arise as a consequence of 

prolonged checkpoint arrest and loss of reproductive capacity may be a consequence 

of permanent cell cycle arrest.  A striking feature of radiation exposure is that cells 

can remain in a non-replicating but viable state for prolonged periods post-irradiation, 

a characteristic which is central to the use of irradiated cells as feeder layers to 

enhance cloning efficiency.  This feature, however, has limited the utility of methods 

that monitor viability markers (such as the 3-(4,5-dimethylthiazol-yl)-2,5-

diphenyltetrazolium bromide  (MTT) and Trypan blue assays) for assessment of 

radiation survival levels.  The most reliable assay for monitoring radiation survival is 
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clonogenic survival, most frequently carried out using skin fibroblasts, but these are 

time consuming and not useful for cell types that display low cloning efficiency.  

Using such assays, cell lines lacking NHEJ proteins show exquisite 

radiosensitivity attesting to the importance of NHEJ in repairing radiation induced 

DSB whilst homologous recombination (HR) deficient cell lines show less sensitivity, 

which differs in magnitude between cell types. Our current knowledge of DSB repair 

provides an explanation for this: primary fibroblasts, the cell type -used 

predominantly for clonogenic survival analysis, are predominantly in G0/G1 phase 

and traverse slowly to S phase. Hence, NHEJ, the major DSB repair process in G0/G1 

phase predominates. HR, in contrast, functions in late S/G2 phase since resection, a 

key step in HR, requires  Cyclin-dependent kinases (CDK) activation and is down 

regulated in G1 phase (Jazayeri et al. 2006).  Radiosensitivity is only observed in HR-

deficient cell types that are rapidly replicating (eg CHO cells) where there is a greater 

percentage of S/G2 phase cells.  Thus, HR does contribute to survival post-irradiation, 

the magnitude of which depends on cell cycle phase.  

 

Our current understanding of DNA damage response (DDR) pathways. 

Since DSB are the most significant lethal lesion following radiation exposure, we will 

first consider the DNA damage response mechanisms (DDRs) to DSB. DSB can 

undergo repair as well as activate a signal transduction process that leads to cell cycle 

checkpoint arrest, the onset of apoptosis and influences the repair process (Jackson 

2001). NHEJ, as discussed above, represents the major DSB repair pathway whilst 

HR also contributes in late S/G2 phase (Wyman and Kanaar 2006). ATM lies at the 

centre of the DSB signal transduction response (Kurz and Lees-Miller 2004). 

Strikingly, NHEJ and ATM-dependent signalling function largely independently and 

as an array of signalling proteins, accumulate non-competitively at DSB sites (Jeggo 

and Lobrich 2006).  

Six core proteins required for NHEJ have been identified, Ku70, Ku80, DNA-

PKcs, XRCC4, XLF and DNA ligase IV, which are assembled as two discrete 

complexes (Jeggo and Lobrich 2006, Fig 2). Firstly, the Ku heterodimer rapidly binds 

to double stranded DNA ends and recruits the DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs), causing assembly of the DNA-PK complex. This 

activates DNA-PK kinase activity, whose function appears to be predominantly to 

regulate NHEJ to co-ordinate end processing with rejoining. The assembled DNA-PK 
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complex recruits a ligation complex involving XRCC4, XLF- Cernunnos and DNA 

ligase IV. XRCC4 and DNA ligase IV (LX) are tightly co-associated and whether LX 

is recruited first to the DSB where it co-associates with XLF is currently unclear. 

However, optimal DSB repair requires all three proteins (Fig 2). Additional proteins 

are required for end-processing including polynucleotide kinase and fill-in 

polymerases, polμ and polε. Artemis, an endonuclease, is required for a subset of 

DSB repair (Riballo et al. 2004) (see below).  NHEJ represents the major DSB repair 

pathway in G0/G1 phase while HR functions in late S/G2 phase when a sister 

homologue is available. 

DSB also rapidly activate ATM-dependent signalling. Current evidence 

suggests that the Mre11/Rad50/NBS1 (MRN) complex represents the primary DSB 

sensor serving to recruit ATM (Lavin,2007, Uziel et al. 2003, Fig. 3). In addition, a 

number of BRCA1 C-Terminus (BRCT)-containing mediator proteins, including 

DNA damage checkpoint protein 1 MDC1, p53-binding protein 1 (53BP1), BRCA1 

and the MRN complex, function to retain ATM at the DSB site although being 

dispensable for initial ATM activation (Lavin 2007). While full details of the series of 

events occurring immediately after the appearance of DNA DSB have not been 

established, a clearer picture is now emerging. The MRN complex is rapidly localized 

to nuclear foci  at  sites of DNA damage in response to radiation (Maser et al. 1997, 

Nelms et al. 1998). Meiotic recombination 11 (Mre11) / Rad50 binds to DNA as a 

heterotetramer to tether free ends (de Jager et al. 2001). The complex is completed by 

the association of a molecule of Nbs1 (Riballo et al. 2004). Sensing DNA DSB by the  

MRN complex does not require ATM (Mirzoeva and Petrini 2003). Binding is 

achieved through DNA binding domains on Mre11 in association with the Walker A 

and B ATPase domains of Rad50 (van den Bosch et al. 2003, Hopfner et al. 2002). 

Williams et al (2008) have provided additional detail demonstrating that the Mre11 

dimer adopts a four-lobed, U-shaped structure critical for complex assembly and for 

binding and aligning DNA ends. Association with Rad50 stimulates both the 

exonuclease and endonuclease activities for Mre11 (Paull and Gellert 1998) and Nbs1 

stimulates endonuclease activity (Paull and Gellert 1999). Mutations causing loss of 

Mre11 nuclease activity impair DNA repair and survival. Other nucleases including 

Artemis also play a role in DNA DSB repair processing. Evidence for a role for MRN 

upstream of ATM is derived from studies with NBS and ATLD cells, during viral 

infection where the MRN complex is depleted  and with  in vitro Xenopus laevis 
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extracts reconstituted for DNA-damage signalling. ATM activation is defective in 

both NBS and ATLD cells in response to DNA DSB (Uziel et al. 2003). An NBS1 

construct, NbFR5, which retained the Mre11-binding site, stimulated ATM activation 

(Cerosaletti and Concannon 2004). On the other hand NBS cells that express Nb 

FR5∆ ATM, which lacks the ATM-binding site, had dramatically reduced levels of 

ATM activation (Cerosaletti et al. 2006). The accumulation of the MRN complex and 

its retention on chromatin is dependent on the mediator of DNA-damage checkpoint 

protein-1 (MDC1) adaptor protein (Fig. 3). This retention by MDC1 increases the 

local concentration of the MRN complex at the sites of DNA DSB. ATM also arrives 

early at the damaged site, initially associating with DNA regions that flank the break, 

before associating with the MRN complex at the break site through the C-terminus of 

NBS1 (Falck et al 2005, You et al. 2007). Interaction of MDC1 through its Forkhead 

associated (FHA) domain with ATM regulates the accumulation of ATM at damaged 

sites. MDC1 also mediates the interaction between ATM and γH2AX. ATM is at least 

partially activated adjacent to DNA DSB (Berkovich et al. 2007), probably due to the 

initial relaxation of chromatin structure by the break. The activation of ATM by 

chloroquine, histone deacetylase inhibitors or hypotonic buffer supports this 

hypothesis (Bakkenist and Kastan 2003). However, ATM that is activated by these 

factors does not localise to nuclear foci and fails to phosphorylate H2AX, but it is 

capable of phosphorylating p53, which suggests that ATM needs to be localized to the 

break for complete activation (Fig. 3). Full activation of ATM and localization to 

DNA DSB is facilitated by the MRN complex (Berkovich et al .2007).  

ATM undergoes autophosphorylation on at least 3 sites (ser 367; ser 1893 and 

ser 1981) at least one of which appears to be instrumental in the monomerization and 

activation of ATM (Bakkenist and Kastan 2003, Kozlov et al. 2006, Lavin 2008). The 

activity of 3 phosphatases protein phosphatase 2A (PP2A), Wild-type p53-induced 

phosphatase (WiP1) and Protein phosphatase 5 (PP5) are also implicated in ATM 

activation. The two former enzymes are thought to maintain low basal levels of ATM 

activity while PP5 appears to remove inhibitory phosphorylations (Goodarzi et al. 

2004, Shreeram et al. 2006, Ali et al 2004). Acetylation has also been shown to alter 

ATM activity. Sun et al. (2005) showed that DNA DSB induce the acetylation of 

ATM in parallel to Ser1981 autophosphorylation. Overexpression of a dominant-

negative form of HIV-1 TAT-interactive protein 60  (Tip60) acetyltransferase reduced 

levels of both acetylation and autophosphorylation of ATM, reduced ATM-kinase 
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activity and sensitized cells to radiation. A single acetylation site was identified as 

Lys3016, adjacent to the kinase domain of ATM (Sun et al. 2007). Mutation at this 

site prevented the upregulation of ATM activity of DNA damage, inhibited 

monomerization of the inactive ATM dimer and prevented ATM-dependent 

phosphorylation of p53 and checkpoint kinase-2 (CHK2).  

An early phosphorylation target of ATM is H2AX, the variant form of the 

histone H2 (Paull et al. 2000) which leads to the generation of -H2AX foci. H2AX is 

required for retention of the mediator proteins, and hence ATM, as well as additional 

damage response proteins at the DSB site (Paull et al. 2000). A further target of ATM 

is the checkpoint kinase, Chk2, which is important for the regulation of cell cycle 

checkpoint arrest via its subsequent phosphorylation of the Cdc25 phosphatases (Kurz 

and  Lees-Miller 2004). In addition to Chk2, Chk1 is indirectly activated in G2 phase 

following DSB resection and activation of ataxia-telangiectasia and Rad50-like 

protein  (ATR) (Jazayeri et al. 2006). ATM also phosphorylates p53, which acts 

primarily in G1 phase cells, regulating the transcription of p21, a Cdk inhibitor, and 

hence causing G1/S checkpoint arrest (Kurz and Lees-Miller 2004).  Collectively, 

ATM regulates checkpoint arrest at G1/S, intra-S and G2/M phase checkpoints. ATM 

can also regulate apoptosis via p53. Finally, but of important significance for 

radiosensitivity, ATM is required for the repair of approximately 15 % of the DSB 

induced by IR. ATM-dependent DSB repair requires Artemis as well as the mediator 

proteins and the MRN complex (Riballo et al. 2004). Current evidence suggests that 

these may represent DSB located within heterochromatin and that ATM signalling via 

phosphorylation of KRAB-associated protein 1 (Kap1) overcomes a barrier to DSB 

repair posed by heterochromatin (see below) (Ziv et al, 2006, Goodarzi et al. 2008). 

The impact of the DDR pathways on radiation sensitivity: repair versus 

signalling. 

Fibroblast cell lines lacking nonhomologous end-joining (NHEJ) proteins exhibit 

exquisite radiosensitivity demonstrating the important contribution of DSB repair by 

NHEJ to radiation survival. One patient harbouring a mutational change in DNA 

ligase IV who received radiotherapy died from radiation morbidity demonstrating that 

loss of NHEJ capacity confers clinical radiosensitivity. A-T patients and cell lines 

also show marked clinical and cellular radiosensitivity, respectively. In contrast, it has 

been argued that cell cycle checkpoint arrest, although important for maintaining 



 22 

genomic stability post- irradiation, makes a less significant contribution to survival. 

However, when cell cycle checkpoint defects are combined with defective DSB 

repair, as observed in A-T cells, the impact is more than additive, consistent with the 

notion that cell cycle checkpoint arrest enhances the opportunity for DSB repair 

(Lobrich and Jeggo 2007). Further, cell cycle checkpoint arrest may be particularly 

important for maintaining genomic stability in the face of DSB formation. 

Radiation sensitivity in an individual likely reflects the sensitivity of the most 

sensitive tissue, and whether or how the DDR pathways are altered in different tissues 

is currently unclear. There is evidence that some cell types, including certain stem 

cells and haematopoeitic cells, have a low threshold for activating apoptosis post- 

irradation and thus display marked radiosensitivity. Indeed, the low sensitivity for 

activation of apoptosis appears to be a major contributor to the high radiosensitivity of 

the haematopoietic system.  Additionally, the survival of non-replicating cells is 

normally markedly greater than that of replicating cells. Indeed, unrepaired DSB 

appear to be well tolerated in most non-replicating differentiated cells.  

 

What have we learnt during 50 years of radiobiology? The current 

interpretation of classical findings. 

The early studies on radiation biology were remarkably insightful and informative in 

identifying features that influence the survival response to radiation. Our current 

understanding of the pathways at the molecular level now allows some of these 

historical findings to be interpreted mechanistically. 

The careful, early studies on DSB repair exposed the existence of a fast and slow 

repair component. Recent studies have now provided evidence that the slow 

component of DSB repair represents the repair of those DSB located within 

heterochromatin (Goodarzi et al. 2008). Further, the early DSB repair studies also 

revealed that the complexity of the DNA damage influences the repair kinetics. 

Indeed, early studies on radiosensitivity were important in revealing that highly 

complex DSB induced by e.g. alpha particle irradiation, although undergoing DSB 

repair, fail to enhance survival, strongly suggesting that they are not repaired 

accurately. Our current understanding of how radiation impacts upon the complexity 

of DNA damage, which is not covered in detail in this article, provides an important 

explanation for many early studies addressing both radiosensitivity and the rate of 

DSB repair following irradiation of differing LET values (Bedford and Mitchell 
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1973). Our current knowledge of factors influencing the kinetics of DSB repair, 

including heterochromatic status, complexity and cell cycle phase, might allow a 

reinterpretation of previous data. 

Arguably the most striking aspect of the early studies relates to the basis 

underlying the marked radiosensitivity of A-T cells. As early as 1980, it was 

appreciated that A-T cells were capable of repairing DSB efficiently yet manifested a 

subtle DSB repair defect evident from cytogenetic analysis. Further, the fact that they 

fail to respond appropriately to radiation was evident from the characterisation of their 

RDS phenotype (Houldsworth and Lavin 1980, Painter and Young 1980, Falck et al. 

2002). Thus, these early studies recognised A-T as a complex signalling disorder 

conferring a subtle DSB repair defect. Later studies described A-T as a cell cycle 

checkpoint disorder but there was intense unease that this fully explained the 

magnitude of A-T radiosensitivity. Our current appreciation that ATM lies at the core 

of a signalling response provides insight into the complex A-T phenotype. 

Importantly, it is now understood that A-T‟s radiosensitivity can be largely attributed 

to a subtle DSB repair defect that, at least in part, is due to its inability to 

phosphorylate Kap1, a heterochromatic building factor, and hence repair DSB located 

within heterochromatin (Goodarzi et al. 2008). Further, ATM‟s ability to regulate a 

wide range of responses via phosphorylation, which impact upon transcriptional 

changes, chromatin structure and checkpoint responses, is becoming increasingly 

understood. NBS was another disorder subjected to intense early study. We now know 

that Nbs1, the gene defective in NBS, functions in the ATM pathway accounting for 

the strong overlapping cellular phenotype between A-T and NBS cell lines (Kitagawa 

et al. 2004). However, NBS patients display very distinct clinical features to A-T 

patients, and whilst our current understanding of the role of Nbs1 and the MRN 

complex in replication fork stability, provide some explanation, there is still much to 

be learnt.  

The repair of potentially lethal damage (RPLD or PLDR) represents another classical 

radiobiology phenomenon which can now be interpreted in the light of our current 

knowledge. PLDR  represents the elevated survival that is observed when cells are 

held in G0 phase post irradiation (Little 1969). NHEJ deficient mutants and A-T cell 

lines show little PLDR (Iliakis and Okayasu 1990, Thacker and Stretch 1985).  Our 

current understanding of the fast and slow component of DSB repair has suggested 

that a period of “holding” prior to triggering cell cycle progression enhances the time 
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allowed for repair of the slow DSB repair component. The fact that A-T cells were 

unable to carry out PLDR was a mystery since they appeared to-  be repair proficient. 

The explanation is now provided by the fact that A-T cells have a specific defect in 

repairing the slow component of DSB. However, it is still surprising that control cells, 

which manifest a sensitive G1/S checkpoint arrest, benefit from “holding” prior to 

plating.  Further insight into the sensitivity and regulation of the G1/S checkpoint may 

shed light on this enigma.  Another phenomenon is the “sparing effect”, which 

represents the enhanced survival of cells when they are exposed to a defined dose 

under chronic versus acute exposure conditions. Although all the parameters that 

impact upon this effect are still unclear, this phenomenon likely represents the fact 

that cells can efficiently repair DSB when only a few are present whilst misrejoining 

can occur when multiple DSB are present within a cells (see (Bedford 1991) for a 

discussion of these effects). This important phenomenon underlies the use of 

fractionation during radiotherapy. The efficacy of this is currently being re-evaluated 

and clinical trials are in progress to assess whether there any real benefit is derived.  

 

 

 

 

 

 

 

 

 

Future Questions. 

Given the dramatic strides we have taken in understanding the basis underlying 

radiosensitivity in the past fifty years, it is difficult to envisage how much we will 

learn in the next fifty years.  We can, however, consider the important questions to be 

addressed. Our studies to date have focused predominantly on cells in culture. 

Questions are now addressing how the microenvironment might influence the 

response to radiation, including such impacts as intercellular signalling and its 

influence on the bystander effect and genome instability. Whether stem cells have 

distinct damage responses also needs to be evaluated, including an understanding of 

the radiation response of the cancer stem cell. Although we have identified a number 

of highly radiation sensitive syndromes, we have little understanding of the genetic 

basis underlying the more subtle distinction in radiation sensitivity between 

individuals. These may, nonetheless, be highly important in response to radiotherapy 
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and potentially in responding to acute low dose radiation. Indeed, an urgent question 

to be addressed is how individuals respond to low doses of radiation and the threats 

imposed by, for example, CT scanning. 
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Fig 1. DNA Repair following ionizing radiation exposure. Exposure of cells to 

ionizing radiation gives rise to DNA DSB, SSB and base modification. DSB are 

repaired by NHEJ in G1 phase or HR in late S/G2 phases. Direct single strand breaks 

are repaired by DNA ligation if adjacent 3'0H and 5'phosphate groups are generated. 

Damage at either end of the break requires end processing and gap filling by DNA 

polymerase β prior to end joining by DNA ligase 3. Modified bases may give rise to 

apurinic / apyrmidinic sites which are cleared by anti-human apurinic/apyrimidinic 
endonuclease (Ape1/lyase). Using XRCC1 as a scaffold a series of SSB repair 

proteins are recruited for end processing, gap filling and DNA ligation.  
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Timeline 1 
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Timeline 2 
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Fig 2. Repair of DNA Double Strand Breaks by NHEJ. 

DNA double strand breaks (DSB) located within heterochromatin require additional 

factors for their repair prior to rejoining by DNA non-homologous end-joining 

(NHEJ). For heterochromatic DSB, ATM phosphorylation of Kap1 allows 

localisation chromatin relaxation facilitating repair by NHEJ. This process requires 

Artemis and the mediator proteins in addition to ATM. The first step of NHEJ is the 

recruitment of the heterodimeric Ku protein, which encircles the DNA. Ku-bound 

DNA promotes the recruitment of DNA-PKcs generating the DNA-PK complex. This 

activates DNA-PK activity. DNA-PK activity regulates the process and also likely 

promotes end-processing prior to rejoining. The DNA-PK complex may translocate 

inwards to allow the recruitment of a rejoining complex involving DNA ligase IV, 

Xrcc4 and Xlf. The stoichiometry of the rejoining is still unclear but one model is the 

one Ku heterodimer binds each end and recruits a single ligation complex which can 

undergo two ligation events following in situ readenylation. DNA-PK may also have 

a synapsis function helping to maintain the two ends in proximity. 
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Fig 3. Activation of ATM.  
Activation of ataxia-telangiectasia mutated (ATM) is a complex process that involves the 

relaxation of chromatin as a consequence of a DNA double-strand break (DSB), involves 

the recruitment of the Mre11-RAd50-Nbs1 (MRN) complex to the break and also the 

recruitment of ATM to regions that flank the break. In these flanking regions, ATM is 

partially activated and phosphorylates p53 and possibly other substrates. ATM is then 

recruited to the site of the break by the MRN complex and phosphorylates members of 

the complex and other downstream substrates. The MRN complex is not essential for this 

signalling, but in the presence of hypomorphic mutations in members of the complex, 

signalling is delayed and/or reduced. An inactive ATM dimer is monomerised in response 

to DNA DSB, and concomitantly transphosphorylation (autophosphorylation) occurs on 

at least three sites: Ser367, Ser1893 and Ser1981. Phosphatases also regulate ATM, 

presumably to ensure that it is not inappropriately activated by autophosphorylation. In 

the presence of DNA DSB, PP2A dissociates from ATM and loses its activity, therefore 

minimising the risk of competition between phosphorylation and phosphatise activities. 

The phosphatise WIP1 is also capable of removing phosphates from all three 

autophosphorylation sites. PP5 removes phosphates from ATM as part of the process of 

activation. Acetylation (Ac) also contributes to the process of activation. The 

acetyltransferase TIP60 is constitutively associated with ATM, and in the presence of a 

DNA DSB it becomes activated and acetylates ATM as Lys 3016 within the C-terminal 

FATC domain. Lys3016 mutants fail to upregulate ATM activity after DNA damage, 



 45 

prevent monomerization of ATM and inhibit downstream signalling through p53 and 

checkpoint kinase-2 (CHK2). XRCC4, the requisite cofactor of DNA ligase 4 and non-

homologous end joining (NHEJ) is detected at the break site after ATM recruitment. 

MDC1, mediator of DNA-damage checkpoint protein-1 plays a central role in protein 

assembly at the DSB. It binds γH2AXm, NbS1 and RNF8 a ubiquitin ligase that catalyzes 

ubiquitylation of γH2AXm and possibly other histone proteins. This helps to enhance the 

assembly of the DNA damage response proteins. 53BPI, p53 binding protein acts 

downstream of these events binding to modified histone proteins. Finally the newly 

described RNF168 also a ubiquitin ligase targets histone H2A and γH2AXm amplifies 

ubiquitylation to stabilize the DNA damage response protein complex (Doil et al 2009; 

Stewart et al 2009).   


