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Abstract Interstrand crosslinks (ICLs) are a highly toxic

form of DNA damage. ICLs can interfere with vital bio-

logical processes requiring separation of the two DNA

strands, such as replication and transcription. If ICLs are

left unrepaired, it can lead to mutations, chromosome

breakage and mitotic catastrophe. The Fanconi anemia

(FA) pathway can repair this type of DNA lesion, ensuring

genomic stability. In this review, we will provide an

overview of the cellular response to ICLs. First, we will

discuss the origin of ICLs, comparing various endogenous

and exogenous sources. Second, we will describe FA pro-

teins as well as FA-related proteins involved in ICL repair,

and the post-translational modifications that regulate these

proteins. Finally, we will review the process of how ICLs

are repaired by both replication-dependent and replication-

independent mechanisms.
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Abbreviations

ATM Ataxia telangiectasia mutated

ATR ATM and Rad3-related

AML Acute myelogenous leukaemia

BCNU 1,3-Bis(2-chloroethyl)-1-nitrosourea

DDR DNA damage response

DEB 1,2,3,4-Diepoxybutane

DSB Double-strand break

FA Fanconi anemia

HR Homologous recombination

ICL Interstrand crosslink

IR Ionizing radiation

MDA Malondialdehyde

MMC Mitomycin C

NER Nucleotide excision repair

NHEJ Non-homologous end joining

NO Nitric oxide

PTM Post-translational modification

ROS Reactive oxygen species

RPA Replication protein A

SUMO Small ubiquitin-like modifier

TLS Translesion synthesis

TMP Trimethylpsoralen

TNF-a Tumour necrosis factor-a

UAF1 USP1 associated factor 1

UHRF1 Ubiquitin-like containing PHD and RING finger

domains 1

USP1 Ubiquitin-specific peptidase 1

Introduction

Our genome is constantly exposed to damage caused by

both endogenous and exogenous sources. ICLs (inter-

strand crosslinks) are one of the most cytotoxic lesions

because the two Watson and Crick strands of DNA are

covalently bound together, causing an obstacle to repli-

cation and transcription. ICLs left unrepaired can lead to

mutations, chromosome breakage, chromosome misseg-

regation and mitotic catastrophe. To protect the genome

from this type of lesion, the cells count on a highly

complex repair pathway to detect the lesion, activate the
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cell cycle checkpoint and repair the ICLs. ICLs can be

generated by naturally occurring compounds, such as

psoralen and mitomycin C, as well as by chemically

synthesized crosslinking agents, such as cisplatin. ICL-

forming drugs are widely used as chemotherapeutic drugs

against cancer. Reactive aldehydes have been shown to be

one of the endogenous sources causing crosslinks. The

chemical structure of the resulting ICL depends on the

crosslinking agent implicated, and these different struc-

tures will lead to different cellular responses. The

response to ICLs triggers a complex DDR (DNA damage

response) including the Fanconi anemia (FA) pathway as

well as the ATR (ATM and Rad3-related)/Chk1 pathway.

Therefore, along the FA pathway, several signal trans-

duction events take place mediated by multiple

modifications including phosphorylation, ubiquitination

and SUMOylation (small ubiquitin-like modifier) events.

In order to fully repair the ICL, the FA pathway coordi-

nates different processes including translesion synthesis

(TLS), homologous recombination (HR) and nucleotide

excision repair (NER). Therefore, there is extensive

crosstalk between different DNA repair pathways during

ICL repair.

Origin of ICLs

ICLs are formed when the two strands of DNA are

covalently bound together through a linker molecule

commonly known as a crosslinking agent. The first

crosslinking agents to be identified were the nitrogen

mustards developed during the warfare of the early

twentieth century. A better application for these com-

pounds was found as chemotherapeutic agents, though

their mechanism of action was still unknown. Later

other compounds such as mitomycin C and cisplatin

joined them as chemotherapeutic agents and they were

all found to be crosslinking agents [1]. They can react

with DNA and give rise to different kinds of products

including DNA monoadducts, intrastrand crosslinks and

ICLs with variable efficiencies. They also differ in their

base specificity for ICL formation and the degree of

distortion in the DNA double helix they generate. Some

of these compounds, such as psoralens, which are pro-

duced by certain plants, may play an important role as

environmental sources of ICLs. However, the search for

endogenous sources of ICLs has rendered very inter-

esting results in the past few years, suggesting that

reactive aldehydes are one of the endogenous

crosslinking agents [2]. Some candidates include prod-

ucts derived from lipid peroxidation such as

malondialdehyde and crotonaldehyde, but also nitric

oxide has been proposed [3].

Nitrogen mustards

The most simple nitrogen mustard and the first to be used

as a chemotherapeutic agent is mechlorethamine (bis(2-

chloroethyl)methylamine) (Fig. 1a). Nitrogen mustards are

bifunctional alkylating agents, thus their chloroethyl moi-

eties can bind two bases on opposite strands of DNA. They

bind guanine N7 forming a monoadduct leading then to

binding a second guanine on the opposite strand in the

sequence GpNpC (Fig. 1a). Other nitrogen mustards, such

as melphalan and chlorambucil, substitute the methyl group

with aromatic groups and they can also bind adenine N3

[4]. The generated ICLs, which only account to up to 5 %

of the products, cause a distortion of the double helix with

an unwinding of 2�–6� and a bend of around 10� per ICL

because of the shortening needed to accommodate the N7–

N7 bond [5, 6]. Recently, nitrogen mustards have been

engineered into activatable prodrugs. These new types of

aromatic nitrogen mustards generate ICLs only in the

presence of H2O2 providing a promising tool for the

treatment of tumours in a highly oxidative environment [7].

Mitomycin C

Mitomycin C (MMC) is a natural compound produced by

Streptomyces caespitosus. It is unable to bind DNA directly

but needs to be metabolically reduced beforehand. This

need for a reduction step for its activation makes MMC

especially fit as a chemotherapeutic agent since the tumour

micro-environment is generally hypoxic [8]. After reduc-

tion it specifically reacts with the N2 in guanine in the

sequence CpG and its complementary strand to form an

ICL (Fig. 1b) [8]. However, it can also form monoadducts

through the N7 of guanine [9]. ICLs constitute around

15 % of the products (the rest being 50 % monoadducts

and 35 % intrastrand crosslinks) [10]. MMC binds to the

N2 of guanines through the minor groove and it causes

only a minor distortion of the double helix [11].

Platinum compounds

Cisplatin [cis-diamminedichloroplatinum(II)] was first

described as a compound inhibiting bacteria growth in

1965 [12]. It reacts with purine residues to form intrastrand

and interstrand crosslinks. The intrastrand crosslinks are

formed at sequences GpG and ApG with a preference for

the former (65 and 25 % intrastrand crosslinks of total

adducts formed, respectively). ICLs are formed with a

lower frequency of around 5–8 %. ICLs are formed

specifically at GpC sites and bind N7 of guanine (Fig. 1c)

[13]. Both crystallographic and NMR structural models

have shown cisplatin ICLs to provoke a large distortion in

the DNA double helix. These ICLs induce the extrusion of
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two cytosines in the GC/CG sequence while the platinum

locates itself in the minor groove. The double helix suffers

an unwinding of 110� and a bent towards the minor groove

of 47� (Fig. 2b) [13, 14]. Other platinum compounds that

have also been studied and used as chemotherapeutic

agents include carboplatin and transplatin. Carboplatin

Fig. 1 Schematic

representation of the chemical

structure of the main

crosslinking agents and the

ICLs they form.

a Mechlorethamine (nitrogen

mustard), b mitomycin C,

c cisplatin, d psoralen, e BCNU

(nitrosourea), f diepoxybutane,

g aldehydes [acetaldehyde,

acrolein and crotonaldehyde

(R = CH3)] and h nitric oxide.

Crosslinking agents are shown

in red
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differs from cisplatin in the chloride groups, which are

substituted with cyclobutyldicarboxylate. Carboplatin has

less reactivity than cisplatin, but it behaves similarly

regarding generation of ICLs and their frequency [15].

Transplatin, however, has been shown to induce only minor

distortion of the double helix when forming ICLs [16].

Moreover, by substituting the ammine groups in transplatin

with the planar bases quinoline or thiazole the frequency of

ICLs among the platinated products greatly increased to

around 30 % [17].

Psoralens

Psoralens belong to a family of molecules called furo-

coumarins. These compounds are produced by at least eight

families of plants including Apiaceae and Fabaceae [18].

The planar and hydrophobic nature of these molecules

allows them to easily penetrate the cell and intercalate the

DNA bases. However, they are unable to form ICLs until

irradiated with UVA (ultraviolet light), which induces

covalent bonds to thymines on the sequence TpA on

opposite strands (Fig. 1d). Psoralens are very effective

inducers of ICLs with around 40 % of adducts generated

being ICLs. However, a derivative of psoralen,

trimethylpsoralen (TMP) can form up to 90 % ICLs [19].

This is due to the incapacity to form intrastrand crosslinks

since psoralen must first intercalate the bases on opposing

strands of DNA before being photo-activated [20]. The

ICLs generated do not bend the DNA double helix and only

provoke a minor unwinding of around 25� (Fig. 2c) [21].

Nitrosoureas

Nitrosoureas such as BCNU (1,3-bis(2-chloroethyl)-1-ni-

trosourea) are able to react with guanine and cytosine after

metabolic activation. Their preferred site for binding is the

N7 of guanine, although the O6 of guanine can also be

attacked. Through this interaction BCNU can form intras-

trand crosslinks between adjacent guanines. ICLs are

formed in vitro when BCNU attacks O6 of guanine and N3

of cytosine on opposing strands though these adducts are

minor products [22]. Other ICLs formed includes the

binding of N1 of guanine with N3 of cytosine, which has

been observed in vivo in the treatment of brain cancers

(Fig. 1e). The structure of this crosslink has been studied

through NMR and was found to be well accommodated in

the double helix with very minor alterations (Fig. 2d) [23].

Diepoxybutane

1,2,3,4-Diepoxybutane (DEB) is a product of the bio-

transformation of 1,3-butadiene, a contaminating gas

produced in the plastic and rubber industry. DEB is a

bifunctional alkylating agent and reacts with DNA to

produce monoadducts, ICLs, single-strand breaks and also

DNA–protein crosslinks. However, in vivo ICLs are the

main product responsible for its cytotoxicity [24]. DEB

preferentially reacts with N7 and N1 in guanine, although

Fig. 2 Structures of various ICLs. a B-DNA and the ICLs formed by

b cisplatin, c psoralen, d BCNU and e acetaldehyde and crotonalde-

hyde viewed from the major groove (left) or the minor groove (right).

The crosslinked bases and the crosslinking agents are shown in red.

Structures taken from PDB, accession numbers: B-DNA (1-BNA)

[140], cisplatin (1A2E) [13], psoralen (204D) [21], BCNU (2MH6)

[23], acetaldehyde (2HMD) [29]
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ICLs are formed through N7–N7 at the sequence GpCpC

similarly to the nitrogen mustard mechlorethamine

(Fig. 1f) [25]. The bridge formed only contains four carbon

atoms, which has been hypothesized to produce a major

distortion on DNA. Through gel retardation experiments, it

has been shown to lead to a bending of around 34� towards

the major groove [26].

Endogenous crosslinking agents

Endogenous ICLs are especially difficult to study. Most

evidence of endogenous crosslinking agents comes from

in vitro studies or assessment of their mutagenicity [3].

Reactive aldehyde has been thought to be the major

endogenous crosslinking agent. One such aldehyde is

acetaldehyde. It was shown that acetaldehyde poses similar

cellular toxicity to FA-deficient cells compared to other

crosslinking agents suggesting that the FA pathway is

required for the repair of acetaldehyde-derived damage [2].

Acetaldehyde can be derived from the metabolism of

ethanol. It is able to react with guanine on DNA and, after a

reduction step, form N2-ethyl-20-deoxyguanosine.

Although this compound is the major adduct formed by

acetaldehyde, it cannot form ICLs. Two acetaldehyde

molecules can also react with guanine to form 1-N2-pro-

pano-20-deoxyguanosine, though the presence of basic

molecules such as histones is needed. This compound is

also generated by crotonaldehyde and it can exist in a

cyclic or open chain configuration. In the open chain form

the free aldehyde group can induce ICLs and DNA–protein

crosslinks [27]. These ICLs are generally found in a CpG

sequence but DNA–protein crosslinks constitute the main

type of modification generated by acetaldehyde (Fig. 1g)

[28]. These ICLs induced at CpG sequences by either

crotonaldehyde or acetaldehyde are located in the minor

groove and do not disturb the Watson–Crick pairing of the

bases implicated (Fig. 2e) [29].

Another endogenous source of ICL formation is lipid

peroxidation from oxidative stress, a process which is

promoted by a fat-rich diet in mice and potentially in

humans [30]. Lipid peroxidation leads to the production of

malondialdehyde (MDA). MDA can react with guanine,

adenine and cytosine though the main ICL produced is

between the guanines in the sequence CpG [31]. Other

products of lipid peroxidation include unsaturated aldehy-

des such as acrolein and crotonaldehyde. These can also

come from exogenous sources such as cigarette smoke and

automobile exhaust [32]. These aldehydes can react with

nitrogen bases either through the carbonyl group or the

double bond. The conjugate addition is followed by

cyclization onto the base to generate a monoadduct. The

ICL formed is present in CpG sequences as well and does

not disturb the structure of the double helix [32, 33].

Nitric oxide (NO) has also been shown to induce ICLs.

It generates ICLs between two guanine residues in the CpG

sequence, which are bound by a common N2 amine group

(Fig. 1h). This reaction might be favoured by the presence

of methylated cytosines [34].

The Fanconi anemia pathway

Our knowledge of an ICL repair pathway originates from

studies of an autosomal recessive disease called Fanconi

anemia (FA). FA is a rare genetic disorder with an inci-

dence of 1/200,000–1/400,000 in the general population

[35]. FA is characterized by developmental abnormalities

and early bone marrow failure, which leads to aplastic

anaemia. FA patients are susceptible to various types of

cancer, most often acute myelogenous leukaemia (AML).

The mechanism behind bone marrow failure in FA is

thought to be related to an excessive inflammatory

response and apoptosis mediated by tumour necrosis factor

a (TNFa), IFNc and reactive oxygen species (ROS) [36].

To date, 19 FA genes have been identified. Mutation in

these genes accounts for 95 % of the FA patients. Patients

are sensitive to ICL-forming agents, such as mitomycin C,

due to the cellular failure to repair ICLs. There is growing

evidence that the symptoms observed in FA patients are

also related to this defect in DNA repair. For instance, the

bone marrow failure characteristic of FA patients could be

originated from a defect in ICL repair in hematopoietic

stem cells exposed to endogenous crosslinking agents such

as formaldehyde [37]. This defective hematopoiesis leads

to cell death, injury and generates an inflammatory

response as previously observed, which further enhances

bone marrow failure through apoptosis, production of ROS

and inhibition of stem cell function [37, 38].

These 19 genes encode proteins, which together with

non-FA proteins as well as proteins from other DNA repair

pathways, including homologous recombination (HR),

nucleotide excision repair (NER) and translesion synthesis

(TLS), coordinate the detection and repair of ICLs as well

as activation of the cell cycle checkpoint (Table 1) [35,

39]. The 19 FA proteins can be divided into three groups

according to their functions in the pathway: the FA core

complex, the FANCD2/FANCI complex and the effector

proteins (Table 1).

First, eight FANC proteins (FANCA, FANCB, FANCC,

FANCE, FANCF, FANCG, FANCL and FANCM) and

three associated proteins (FAAP20, FAAP24 and

FAAP100) form the FA core complex. Among other pro-

teins that bind to some components of the core complex as

part of the core complex or forming independent com-

plexes, we find BLM (Bloom syndrome helicase), Topo

IIIa (topoisomerase IIIa), RPA (replication protein A) and
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MHF1/2 (histone fold heterodimer) [40–42]. BLM, Topo

IIIa and RPA interact with FANCA, FANCC, FANCE,

FANCF and FANCG in a complex named BRAFT. This

complex potentially plays a role in the FA pathway since

BLM deficiency leads to sensitivity to MMC [41, 42]. On

the other hand, MHF1/2 bind to FANCM and are recruited

to replication forks stalled by ICLs. MHF1/2 are also

needed for resistance to ICLs and promote FANCD2

monoubiquitination [40]. However, there is some debate

regarding whether FANCM can be considered an FA pro-

tein. The controversy arises from the fact that the first FA

patient identified with biallelic mutations in FANCM also

had alterations on FANCA [43] and also the observation

that individuals with homozygous loss of function of

FANCM did not display FA symptoms [44]. Despite these

observations, FANCM is usually included as an FA protein

and a component of the core complex. The FA core com-

plex together with FANCT (UBE2T) [45–47], a ubiquitin-

conjugating enzyme, is responsible for monoubiquitination

of the FANCD2/FANCI complex. FANCL, an E3 ligase, is

the catalytic enzyme carrying out the ubiquitination. While

mutations in some of the FA core complex members, such

as FANCA, FANCC and FANCG, account for 85 % of the

FA patients worldwide, the exact function of these mem-

bers remains elusive. FANCL and UBE2T are sufficient to

monoubiquitinate FANCD2/FANCI complex in vitro [48–

50] and, for instance in silkworm; there is an active FA

pathway in the absence of the FA core complex [51]. Loss

of different FA core complex members causes variable

degrees of sensitivity towards crosslinking agents. Some of

the FA core complex members are predicted to be entirely

helical and have no known conventional domains [52],

which makes it difficult to speculate on their molecular

functions. Recently, it was shown that a minimal sub-

complex containing FANCB, FANCL and FAAP100 is

required for robust FANCD2 monoubiquitination in DT40

cells and in vitro [53]. The rest of the FA core complex can

be divided into two subcomplexes, FANCA-FANCG-

FAAP20 and FANCC-FANCE-FANCF. Their presence

facilitates the activity and the recruitment of the whole FA

core complex onto DNA [54]. Nonetheless, this function

would be redundant with that of the translocase FANCM

[55]. The integrity of the FA core complex is also modu-

lated by post-translational modifications, e.g.

phosphorylation by ATR/Chk1 and ubiquitination.

Second, the FANCD2/FANCI complex resides at the

heart of the FA pathway. It is monoubiquitinated by the FA

core complex and is recruited to the ICLs. This is a critical

step for the ICL repair. If there is no monoubiquitination,

there will be no subsequent repair of the ICL. The function

of monoubiquitinated FANCD2/FANCI complex is not

fully understood. It is thought to orchestrate the recruitment

of the downstream effector proteins to the ICL. In addition

to monoubiquitination, the FANCD2/FANCI complex is

Table 1 FA proteins identified to date, their synonyms, size and function

FA protein Synonym Size (aa) Function

FANCA – 1455 FA core complex

FANCB – 859 FA core complex

FANCC – 558 FA core complex

FANCD1 BRCA2 3418 Homologous recombination

FANCD2 – 1451 Essential for the recruitment of downstream effector proteins

FANCE – 536 FA core complex

FANCF – 374 FA core complex

FANCG XRCC9 622 FA core complex

FANCI – 1328 Essential for the recruitment of downstream effector proteins

FANCJ BRIP1, BACH1 1249 Homologous recombination, helicase

FANCL – 380 FA core complex, E3 ubiquitin ligase

FANCM – 2048 FA core complex, DNA translocase

FANCN PALB2 1186 Homologous recombination, BRCA2 partner

FANCO RAD51C 376 Homologous recombination

FANCP SLX4 1834 Scaffolding protein for nucleases

FANCQ ERCC4, XPF 916 ERCC1 partner, nuclease

FANCR RAD51 340 Homologous recombination

FANCS BRCA1 1863 Homologous recombination, removes CMG

FANCT UBE2T 197 FANCL partner, E2 conjugating enzyme

Information based on [35, 39]. Although FANCM classification as an FA protein is controversial, it is still traditionally included (please see text

and [43, 44])
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also regulated by other post-translational modifications that

we will discuss extensively in a later section.

Third, FANCD1 (BRCA2), FANCJ (BRIP1), FANCN

(PALB2), FANCO (RAD51C), FANCP (SLX4), FANCQ

(XPF), FANCR (RAD51) and FANCS (BRCA1) are the

effector proteins that contribute to the ICL repair at later

stages (Table 1). BRCA1, BRCA2, BRIP1, PALB2,

RAD51 and RAD51C have been known for their roles in

homologous recombination, which plays an important part

in the FA pathway. Mutations in either BRCA1 or BRCA2

lead to higher risk of breast and ovarian cancer [56].

Recently, mutations in other FA genes such as BRIP1,

PALB2 and RAD51C have been associated with an inter-

mediate risk of breast cancer [57, 58]. FANCJ was shown

to interact with BLM, promoting its stability. This inter-

action is probably distinct from the BRAFT complex and

plays a potential role in the response to replication stress

[59, 60]. SLX4 is a nuclease scaffold protein interacting

with several nucleases including XPF/ERCC1, MUS81/

EME1 and SLX1. However, XPF is thought to be espe-

cially important in ICL unhooking.

In addition to the 19 FA proteins and 3 FA associated

proteins, there are other non-FA proteins that have been

shown to participate in the ICL repair. For example,

UHRF1 has been proposed to recognize ICLs in vivo and

in vitro [61, 62]. FAN1 (Fanconi-associated nuclease 1) has

been shown to be one of the nucleases important for the

ICL repair [63–67]. SNM1A is another nuclease that has

been demonstrated to participate in the ICL repair [68, 69].

Although the focus of this review is the response to

ICLs, alternative roles for the FA proteins are emerging in

recent years. There is growing evidence for the role of FA

proteins in replication fork protection and recovery after

stalling, whether caused by ICLs or other genomic stresses.

Monoubiquitinated FANCD2 has been shown to recruit the

nuclease FAN1, as well as other FA mediators such as

BLM, FANCJ and BRCA2, independently of the core

complex, to promote fork recovery and genomic stability

[70–72]. Another source of genomic instability are the

ultra-fine DNA bridges or UFBs that interlink chromo-

somes during mitosis. These UFBs are thought to arise

from common fragile loci that associate with FANCD2 and

FANCI even through mitosis when BLM is also found at

the UFBs. These proteins are thought to contribute to the

resolution of the UFBs ensuring a correct chromosomal

segregation, but the exact mechanism remains unclear [73,

74]. FA proteins have also been associated with the pro-

cessing of transcription associated DNA: RNA hybrids,

also known as R-loops, and the stabilization of replication

forks stalled by these structures [75]. Mainly, FANCM was

found to resolve R-loops through its translocase activity

and, surprisingly, aldehydes were observed to induce

R-loops, adding another by-product of their activity to the

different adducts already discussed [75].

Post-translational modifications of the FA proteins

Repair of an ICL is a highly complex process involving the

FA pathway as well as other repair pathways. Post-trans-

lational modifications (PTMs) play an essential role in the

regulation of this process. Depending on the type of

modification, PTMs can cause protein conformation or

surface charge changes or could establish new protein–

protein interactions that trigger signal transduction or

degradation. There are many PTM events in the FA path-

way identified over the past decade (Table 2). One of the

keystones is the monoubiquitination of FANCD2 that is

required for its localization at the ICLs. However, this

modification is preceded by several phosphorylation events

on different proteins and mainly mediated through ATR/

ATM (ataxia telangiectasia mutated) kinases and down-

stream target kinases Chk1 and Chk2. Additionally,

recently light has been shed on the role of SUMOylation in

the FA pathway [76, 77] as well as on the termination

events that shut off the pathway in a timely manner once

the repair has been completed (Fig. 3). It should be noted

that many of the PTMs identified so far for the effector

proteins implicated in HR have been linked to DSB (double

strand break) repair and not to ICLs. However, these

mechanisms could play similar roles in response to

crosslinking agents as well.

Phosphorylation

The FA pathway relies on several phosphorylation events

of different proteins in the core complex and the FANCD2/

FANCI heterodimer leading to the monoubiquitination of

FANCD2 (Fig. 3). Two kinases are at the centre of the

DNA damage response: ATM and ATR that phosphorylate

several proteins involved in DNA repair, including other

kinases such as Chk1 and Chk2. Although ATM phos-

phorylates FANCD2 on its S222 in vitro and in human

cells, this event is not necessary for its monoubiquitination

or ICL repair. Rather, the phosphorylation event regulates

the S-phase checkpoint, which inhibits DNA replication

after IR treatment (Table 2) [78]. However, ATR was

found to be required for FANCD2 monoubiquitination

upon MMC or IR treatment. The absence of ATR also

abrogated FANCD2 foci formation and led to chromoso-

mal abnormalities in cells derived from a patient with

Seckel syndrome [79]. Two sites were identified on

FANCD2, T691 and S717, which can be phosphorylated by

ATR and ATM both in vitro and in human cells, but could
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not fully account for the phenotype observed in the absence

of ATR. These two sites were not essential for FANCD2

monoubiquitination, though if mutated led to an increase in

sensitivity to MMC pointing to a role in ICL repair and also

affected the intra-S-phase checkpoint (Table 2) [80]. Other

components of the ATR pathway can promote the efficient

monoubiquitination of FANCD2 and ICL resistance,

mainly RAD9 and RAD17 [81]. It was also found that

Chk1 and its partner CLASPIN are necessary for efficient

FANCD2 monoubiquitination in response to DNA damage

in human cells, but whether this happens downstream or

independently of the ATR/RAD17/RAD9 pathway remains

unknown [81]. The identification of a new phosphorylation

site on FANCD2, S331, shed more light on this problem.

The lack of phosphorylation on this site also led to sensi-

tivity to MMC and disrupted the interaction with BRCA2

(FANCD1) in human cells. This site is phosphorylated by

Chk1 both in vitro and in vivo, which could be a potential

explanation for the role of the ATR pathway through Chk1

in promoting FANCD2 monoubiquitination and ICL repair

(Table 2) [82].

Phosphorylation of FANCI was also found to be

important for FANCD2 monoubiquitination and foci for-

mation. Several conserved sites (at least six) on FANCI

with the motif Ser/Thr-Gln predicted to be phosphorylated

by ATM or ATR were responsible for the observations in

chicken DT40 cells. This phosphorylation event could be a

switch for the monoubiquitination and recruitment of

FANCD2 onto DNA. However, the monoubiquitination of

FANCI was dispensable for monoubiquitination and

recruitment of FANCD2 to ICLs [83]. Further evidence for

the role of ATR in the response to ICLs came from

Table 2 Summary of the main PTMs of FA proteins and their function in the response and repair of ICLs

FA

protein

Site Post-translational modification Function

FANCA S1449 Phosphorylated by ATR Promotes FANCD2 monoubiquitination specifically after DNA

damage [87]

– SUMO-mediated by UBC9 and

polyubiquitinated by RNF4

Proteasome degradation, pathway termination [77]

FANCE T346 and S374 Phosphorylated by Chk1 Proteasome degradation, pathway termination [88]

FANCG K182, K258 and K347 Polyubiquitinated Interaction with BRCA1 and HR [110]

S383 and S387 Phosphorylated by Cdc2 Dissociation from chromatin in mitosis, pathway termination [79]

FANCM S1045 Phosphorylated by ATR Enhances chromatin localization after DNA damage and S phase [89,

90]

– Phosphorylated by Plk1 Degradation of FANCM in M phase and core complex release [92]

FANCD2 S222 Phosphorylated by ATM Regulation of intra-S-phase checkpoint [78]

S331 Phosphorylated by Chk1 Interaction with BRCA2, MMC sensitivity [82]

K561 Monoubiquitinated by FANCL Enhances chromatin recruitment, interaction with effector proteins

[100, 101]

T691 and S717 Phosphorylated by ATR or ATM Regulation of intra-S-phase checkpoint, MMC sensitivity [80]

– SUMOylated by PIAS1/4 and

polyubiquitinated by RNF4

Chromatin dissociation [76]

FANCI S556, S559, S565,

S596 and S617

Phosphorylated by ATR Required for FANCD2 monoubiquitination [83]

K563 Monoubiquitinated by FANCL Maintenance of FANCD2 monoubiquitination [48, 105]

– SUMOylated by PIAS1/4 and

polyubiquitinated by RNF4

Chromatin dissociation [76]

FANCJ S990 Phosphorylated probably by Cdks Regulation of the DNA damage checkpoint [99]

PALB2 K25, K30 Ubiquitinated by KEAP1-CUL3-

RBX1

Inhibition of HR during G1 phase [109]

BRCA1 S1497, S1189 and

S1191

Phosphorylated by Cdk1 BRCA1 foci formation and DNA damage checkpoint signalling [96]

S1164 (others) Phosphorylated by Plk1 BRCA1 foci formation after DSB [95]

S988 Phosphorylated by Chk2 BRCA1 degradation and dissociation from DSB [97, 98]

K32 and K1690

(others)

SUMOylated BRCA1 accumulation on DSB and enhanced ubiquitin

ligase activity [111, 112]
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experiments with chicken DT40 cells lacking expression of

ATRIP, an ATR interacting partner needed for its activa-

tion. In this case, there was also a reduction in FANCD2

and FANCI monoubiquitination as well as in FANCI

phosphorylation after MMC treatment. FANCI was phos-

phorylated by ATR in vitro and the reaction was enhanced

by the presence of FANCD2 and the core complex [84].

Several components of the core complex also undergo

phosphorylation although with different effects on the FA

pathway. FANCG, for example, is phosphorylated during

mitosis in human cells and this was related to the disso-

ciation of the core complex from chromatin once the repair

is completed [85]. Later, two residues were identified as

responsible for this event, S383 and S387. S387 was

phosphorylated (in vitro and in human cells) by Cdc2,

which associates with the core complex in mitosis

(Table 2) [86].

A more critical role in the FA pathway and ICL repair

was found for the phosphorylation of FANCA on S1449.

Phosphorylation on this site occurred specifically after

DNA damage and not during unperturbed S-phase, unlike

FANCD2 monoubiquitination and FANCG phosphoryla-

tion, which happen also during S-phase. Lack of

phosphorylation on this site reduced FANCD2 monoubiq-

uitination and led to partial sensitivity to MMC. ATR

phosphorylated S1449 in vitro and was necessary for the

phosphorylation in human cells (Table 2) [87].

Another component of the core complex, FANCE, is

also phosphorylated after DNA damage. Chk1 phospho-

rylates FANCE on T346 and S374 both in vitro and in

human cell lines (Table 2) [88]. However, this event is

independent of FANCD2 phosphorylation and foci for-

mation. The fact that FANCE phosphorylation was

necessary to fully complement FANCE-deficient cells

suggests it is still an important event in the FA pathway and

ICL repair. FANCE phosphorylation promotes its degra-

dation, thus it was proposed to play a role in the

termination of the pathway to complete the repair [88].

Recruitment of the core complex to DNA is usually

attributed to FANCM and its phosphorylation could play a

critical role in the process. Studies in cell-free Xenopus egg

extracts showed that FANCM is hyperphosphorylated

during S-phase as well as after DNA damage and this

enhances its chromatin localization. ATR and ATM regu-

late this process. Surprisingly, these events were shown to

be favoured by the presence of FANCD2, pointing to a

positive feedback-loop taking place (Table 2) [89, 90].

Similar results were obtained in human cell lines where

S1045 on FANCM was found to be a target for ATR and

necessary for its localization on ICLs as well as the acti-

vation of the G2-M checkpoint [90]. There is evidence for a

role of ATR physically mediating the recruitment of

FANCM to the damaged DNA during replication in human

cells. ATR/ATRIP is recruited to stalled replication forks

through interaction with RPA, which then interacts with

HCLK2. HCLK2 can then recruit the heterodimer formed

by FANCM and FAAP24, providing a potential mechanism

for the recruitment of the core complex in an ATR-

checkpoint signalling dependent manner [91]. On the other

hand, when the cell enters M-phase FANCM is hyper-

phosphorylated and degraded, thus promoting the

dissociation of the core complex from chromatin. This

Fig. 3 Diagram of the main posttranslational modification events

involved in the activation of response to ICLs. Once the ICL is

detected it triggers the ATR/Chk1 pathway leading to the phospho-

rylation of several components of the FA core complex. ATR and

potentially other kinases phosphorylate FANCI and FANCD2 (1)

priming the complex for its monoubiquitination. These phosphory-

lation events lead then to the monoubiquitination of the FANCD2/

FANCI complex by FANCL/UBE2T (2), which promotes its

recruitment onto chromatin and the action of the effector proteins.

On the other hand, the dosage of the FANCD2/FANCI complex on

chromatin can be regulated through SUMOylation-dependent polyu-

biquitination mediated by PIAS1/4, UBC9 and RNF4 (3, 4). Finally,

these events can be reversed by the action of a hypothetical

deubiquitinase (5), SENP6 (6), the deubiquitinating enzyme USP1/

UAF1 complex (7) as well as putative phosphatases (8) still

unidentified
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phosphorylation-dependent degradation was mediated by

b-TRCP and Plk1 (Polo-like kinase 1) in human cells [92].

Among the effector proteins, phosphorylation of those

implicated in HR is well established in response to IR and

therefore, in DSB repair. However, given that these mod-

ifications may also play a role in ICL repair we will discuss

some of them (Table 2). Phosphorylation of BRCA1 by

ATM was one of the first modifications found that played a

role in DSB repair [93]. Later, BRCA1, BRCA2 and

PALB2 together with other proteins already discussed

(FANCD2, FANCI) were identified as substrates for ATR

and ATM in response to DSBs as part of a complex protein

network [94]. BRCA1 is a key regulator of HR and several

kinases have been linked to its function and regulation.

Cdk1 and Plk1 phosphorylate BRCA1, probably in a

sequential way, promoting BRCA1 foci formation follow-

ing DSB in human cells [95, 96]. On the other hand, Chk2

phosphorylation of BRCA1 leads to its degradation and

dissociation form DSB in human cells. This allows the

nuclease MRE11 to be recruited so that end resection and

HR can proceed during S/G2 phase [97, 98]. The BRCT

domain of BRCA1 has been characterized as a phospho-

protein-binding domain and one of its binding partners is

FANCJ. Phosphorylation of FANCJ on S990 during S/G2

phase was shown to be essential for the interaction with

BRCA1 in human cells, controlling the cell cycle as part of

the DNA damage checkpoint [99].

Ubiquitination

A central step in the FA pathway is the monoubiquitination

of FANCD2 on Lys561 (human) that ensures its recruit-

ment to damaged DNA as well as its interaction with other

effector proteins such as BRCA1 (FANCS) (Table 2)

[100]. The E3 ubiquitin ligase catalysing this step was

found to be FANCL, a member of the core complex [101].

FANCL works together with the E2 conjugating enzyme

UBE2T (FANCT) to monoubiquitinate FANCD2 (Fig. 3).

UBE2T can also monoubiquitinate itself on K91 decreas-

ing its own activity as a potential regulatory mechanism

[102]. FANCL contains three domains: an N-terminal E2-

like fold (ELF) domain, a central double RWD domain and

a C-terminal RING domain. The RING domain binds to

UBE2T while the RWD domain binds to FANCD2 [103].

The ELF domain interacts with ubiquitin and is important

for the monoubiquitination of FANCD2 upon DNA dam-

age in chicken DT40 cells (though not in vitro) [104]. The

binding partner of FANCD2, FANCI, is also monoubiq-

uitinated in vivo, and is required for the

monoubiquitination of FANCD2 and restricts it to K561

[48, 105]. Furthermore, the presence of DNA greatly

enhances FANCD2 monoubiquitination but only in the

presence of FANCI in vitro, suggesting that the

monoubiquitination in vivo occurs on the DNA and when

FANCD2 and FANCI are in complex [49]. Finally,

FANCD2 is deubiquitinated by the USP1/UAF1 deubiq-

uitinating enzyme complex (Fig. 3) [106, 107].

Ubiquitination also plays a critical role in an alternative

model for the recruitment of the core complex. In this study

in human cells, RNF8 together with UBC13 promotes K63

polyubiquitination of histone H2A in response to DNA

damage and this polyubiquitin is recognized by FAAP20

bringing the core complex onto damaged DNA [108]. In

fact, RNF8 and FAAP20 were needed for efficient

FANCD2 monoubiquitination after MMC treatment and,

thus, for efficient ICL repair [108].

Ubiquitination has also been linked to the regulation of

effector proteins implicated in HR. PALB2 and BRCA1

interaction is required for HR during G1 phase. However,

PALB2 ubiquitination on its BRCA1 binding motif abro-

gates this interaction in 293T cells after IR (Table 2) [109].

Recently, the polyubiquitination of FANCG via K63

linkage has been found to mediate its interaction with

BRCA1 and play an important role in HR in ICL repair in

human cells [110]. Three potential target lysines for this

process were identified: K182, K258 and K347 (Table 2)

[110].

SUMOylation

Alongside the ubiquitination and phosphorylation events in

the FA pathway, several SUMOylation events have started

to be discovered in recent years. SUMOylation, therefore,

provides a further step of regulation of the already complex

cellular response to ICLs. As discussed before, FANCD2

and FANCI form a heterodimer that is both phosphorylated

and monoubiquitinated in order to appear on ICLs. A

subpopulation of FANCD2 and FANCI is also SUMOy-

lated in response to DNA damage. This SUMOylation is

performed by PIAS1/4 and UBC9 on the chromatin-bound

complex in human cell lines while it can be reversed by

SENP6 (Table 2) [76]. SUMOylated FANCD2/FANCI can

then bind RNF4 which polyubiquitinates the complex. This

polyubiquitinated complex then interacts with DVC1-p97

promoting its dissociation from chromatin (Fig. 3).

Therefore, this mechanism could control the dosage of

FANCD2/FANCI on the chromatin avoiding further

recruitment of nucleases to DNA and allowing for a

dynamic regulation of the pathway [76].

The study of a patient-derived FANCA mutation iden-

tified in the clinic has led to the discovery of a regulatory

mechanism through its SUMOylation-dependent polyu-

biquitination and degradation. This mutant form, FANCA-

I939S, failed to interact with FAAP20 and this led to its

SUMOylation by UBC9, increased polyubiquitination by

RNF4 and degradation via the proteasome (Table 2) [77].
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SUMOylation of BRCA1 by SUMO2/3 in response to

DSB has also been described both in vitro and in vivo in

mammalian cell lines [111, 112]. SUMOylation of BRCA1

at its RING and BRCT domains (K32 and K1690,

respectively) promotes the binding to other proteins

through SIMs (SUMO-interacting motifs), which in this

case would enhance accumulation on DNA and its ubiq-

uitin ligase activity [111, 112].

These examples could illustrate a more general mecha-

nism for SUMO signalling as already shown for DNA

double-strand break repair [113]. In this case, SUMO

modifications target several proteins in a group, such as the

core complex or the FANCD2/FANCI complex, thereby

promoting interactions through the SUMO-SIMs of the

components synergistically. At a later stage, this leads to

their polyubiquitination and degradation to ensure the ter-

mination of the repair and the progression of the cell cycle.

Recognition of the ICL

When ICLs occur in the cells, the UHRF1 protein is

recruited to sites of damage within seconds [61, 62] (Fig. 4,

step 1). UHRF1 recognizes ICLs through its SET and

RING finger associated (SRA) domain, which was previ-

ously known for its role in recognizing hemi-methylated

DNA and subsequent recruitment of DNMT1 to maintain

the methylation signature in mammalian cells [114–117].

The affinities of UHRF1 to hemi-methylated DNA and to

ICLs are similar, suggesting that UHRF1 could interact

with hemi-methylated DNA and ICLs through related

mechanisms. The recruitment of UHRF1 precedes and is

required for proper recruitment of FANCD2 to ICLs [61].

There is about 10 min time lag between UHRF1 and

FANCD2 recruitment to ICLs, which leaves room for

speculation that recruitment of other proteins or PTM

events might take place within this time frame. The exact

mechanism of how UHRF1 facilitates FANCD2 recruit-

ment or subsequent repair is still unclear, but might entail a

direct protein–protein interaction. It has also been sug-

gested that UHRF1 plays a role as a nuclease scaffold [62].

It is possible that the rapid recruitment of UHRF1 to the

ICLs primes the lesion for FA mediated accurate repair

later. Due to the diversity in structures of different ICLs

(Figs. 1, 2), it is possible that other ICL sensor proteins

exist in addition to UHRF1.

Canonical FA pathway coordinated ICL repair

It is generally believed that the FA pathway is active solely

in the S-phase and that the majority of ICLs are repaired in

a replication-dependent manner [118]. The repair of ICLs

requires coordination of several different DNA damage

repair pathways including NER, HR and TLS. It is thought

that the FANCD2/FANCI complex and the FA pathway is

at the centre orchestrating the order of various events to

resolve ICLs. Notably, it has been suggested that the FA

pathway antagonizes the NHEJ pathway [119–121], which

further emphasizes the importance of the FANCD2/FANCI

complex.

There are several models of the replication-coupled ICL

repair (Fig. 4). One possibility is that the fork undergoes

FANCM/MHF complex-mediated traverse of the ICL,

which is independent of the rest of the FA core complex

and FANCD2/FANCI complex [19] (Fig. 4, step 3). The

ICL traverse mechanism leaves behind the ICL, which has

an X-shaped structure similar to that of a stalled replication

fork. Due to the structure similarity, it has been implied

that it is subsequently repaired by the canonical ICL repair

mechanism.

Alternatively, when the replication fork collides with an

ICL, the CMG helicase first undergoes BRCA1 (FANCS)-

mediated unloading to allow the replicative polymerase e

to approach the ICL [122] (Fig. 4, step 5). The FANCD2/

FANCI complex is then recruited to the arrested fork

(Fig. 4, step 8), and monoubiquitinated by the FA core

complex [123] (Fig. 4, step 9). Whether the FANCD2/

FANCI complex is monoubiquitinated prior to recruitment,

or on chromatin, remains elusive (Fig. 4, step 7). The

K561R mutation of FANCD2 abrogates monoubiquitina-

tion and chromatin recruitment of FANCD2/FANCI

complex and sensitizes cells to crosslinking agents, [78,

124]. However, it is also possible that the monoubiquiti-

nation of FANCD2/FANCI complex is critical for its

retention at the ICL rather than the actual recruitment to the

ICL. Recent studies show that DNA stimulates the ubiq-

uitination of FANCD2/FANCI in vitro [49, 53, 125], which

implies that the interaction between the FANCD2/FANCI

complex and DNA may contribute to the regulation of its

monoubiquitination in vivo. The monoubiquitinated

FANCD2/FANCI complex recruits the XPF/ERCC1/SLX4

nuclease complex (Fig. 4, step 10) and the nucleases carry

out incisions at the ICL to unhook the crosslinked bases

[126–128]. The TLS polymerase Rev1–polf complex,

which can accommodate bulky DNA substrates, is subse-

quently recruited to the lesion to carry out insertion through

the unhooked ICL base pair (Fig. 4, step 12) [129]. Inter-

estingly, the FA core complex, but not the FANCD2/

FANCI complex, regulates recruitment of the Rev1–polf

complex [129]. The double-strand break generated by the

incision is resected by CtIP, which is recruited through

monoubiquitinated FANCD2 [130, 131], potentially toge-

ther with the MRN (MRE11-RAD50-NBS1) complex and

the nucleases EXO1 and DNA2. MRE11 has been shown

to interact with FANCJ, which potentially regulates its
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nuclease activity ensuring a correct end resection [132].

The DSB is, then, repaired by RAD51-mediated homolo-

gous recombination (Fig. 4, step 13) [133]. To complete

the repair of the ICL, the unhooked lesion needs to be

removed. It is generally thought that the NER pathway is

involved in the process (Fig. 4, step 15) [134, 135], though

the precise molecular mechanism remains elusive.

Alternative ICL repair pathway in G1

In addition to replication-coupled ICL repair, there is

increasing evidence for the existence of a replication-in-

dependent ICL repair mechanism. Although it has been

understudied, replication-independent ICL repair may play

a significant role in maintaining genome integrity in non-

cycling cells, e.g. neurons.

It has been shown that ICLs can be removed via the

NER pathway independently of replication [136–139].

NER proteins XPA, XPB, XPC and XPF are recruited to

psoralen/UVA induced ICLs and monoadducts within

minutes in the G1-phase of the cell cycle and this ICL

repair process is dependent on Polf and XPC [137, 138]. It

has also been shown that transcription coupled-NER (TC-

NER) is crucial for cisplatin-induced ICL repair [136, 139].

The detailed molecular mechanism of the replication-

independent ICL repair is still unclear. It is likely that in

the absence of arrested replication forks, the activation of

ICL repair relies on the proteins recognizing the distorted

DNA helix and/or the collision of the RNA transcription

machinery with an ICL. There are some contradictions in

the literature whether XPC is involved in the replication-

independent repair. The ICL-forming agents used in the

studies mentioned above differ from study to study, but are

still generally considered to pose similar replicative stress.

As discussed previously, these crosslinking agents create

structurally distinct ICLs, which could give rise to the

discrepancies observed.

Conclusion

Genetic and biochemical studies carried out by various

groups have advanced our understanding of ICL repair for

the past decade and beyond. 19 FA genes have been

identified and the corresponding proteins cooperate with

other proteins in HR, NHEJ, TLS and NER to resolve

ICLs. However, the more we have learnt, the more ques-

tions have arisen. For instance, UHRF1 has been shown to

sense ICLs induced by TMP/UVA in vivo. Besides, the

recruitment of UHRF1 to ICLs precedes and is required for

FANCD2 recruitment. Nonetheless, it is unclear how

UHRF1 contributes to the regulation of FANCD2, whether

directly or indirectly. Also, it has been well accepted that

the FANCD2/FANCI complex is monoubiquitinated prior

to its recruitment to ICLs. However, in the crystal structure

of the mouse FANCD2/FANCI complex, the ubiquitination

sites are embedded in the heterodimer interface. Recent

studies show that DNA stimulates the in vitro ubiquitina-

tion of the FANCD2/FANCI complex [49, 125], suggesting

that the interaction of the complex with DNA might be

required for, and thus precede, the ubiquitination event.

Such a mechanism could potentially involve a conforma-

tional change of the complex upon interaction with DNA,

in turn stimulating the ubiquitination, perhaps by allowing

the FA core complex access to the target lysines. One of

the common features of the FA proteins is the lack of

predictable domains, which otherwise could help towards

deciphering their exact functions. More structural studies

of proteins involved in ICL repair will be required to

achieve a full mechanistic understanding of this compli-

cated process. Finally, different crosslinking agents have

been thought to cause similar cellular toxicities and the

resulting ICLs would be sensed and resolved through the

same pathway. However, the nature of the ICLs induced by

different crosslinking agents is different. We may need to

re-think how we depict the pathways resolving ICLs, which

could be more complicated than we currently imagine. For

instance, ICLs induced by MMC and TMP/UVA cause a

minor distortion of the DNA double helix and can be

recognized by XPC and UHRF1, respectively [61, 137]. On

the other hand, ICLs caused by cisplatin cause a major

distortion of DNA, which may require other sensor proteins

or collision of the replication and transcription machineries

with the ICL to activate the signal cascade. Thus, different

ICLs may lead to activation of different, though related,

repair mechanisms.

bFig. 4 Schematic of ICL repair. 1 UHRF1 is recruited to ICLs

through its SRA domain shortly after ICLs are formed in the cell. 2

Single replication fork arrives at the ICL. 3 FANCM/MHF complex

mediates the traverse of the replication machinery through the ICL,

which allows the replication fork to proceed, and leaves the ICL for

later repair. 4, 5 Alternatively, BRCA1 (FANCS) facilitates the

unloading of the CMG helicase complex when the second replication

fork arrives at the ICL. 6 The replicative polymerase proceeds to the

-1 position of the ICL, which leaves an X-shaped structure similar to

the traverse mechanism. 7 ATR phosphorylates FANCD2/FANCI

complex at multiple sites and FA core complex monoubiquitinates

FANCD2/FANCI complex at K561 and K523, respectively. 8

FANCD2/FANCI is recruited to the ICL at the replication fork. 9,

10 Ubiquitinated FANCD2/FANCI complex recruits SLX4/XPF to

ICL to unhook the ICL. 11 CtIP and the MRN complex resect the

double-strand break ends generated by the incision in the previous

step, and BRCA2 facilitates Rad51 filament formation on the ssDNA

generated by the resection. 12 Polf polymerizes new strand of DNA

through the unhooked ICL. 13 Rad51 facilitates the strand invasion,

which allows extension of the other strand. 14 SLX4 and nucleases

resolve the double Holliday junction. 15 NER repair proteins remove

the damaged nucleotide
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