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The phytohormone auxin is a major regulator of plant growth and development. Many
aspects of these processes depend on the multiple controls exerted by auxin on cell division
and cell expansion. The detailed mechanisms by which auxin controls these essential cellu-
lar responses are still poorly understood, despite recent progress in the identification of auxin
receptors and components of auxin signaling pathways. The purpose of this review is to
provide an overview of the present knowledge of the molecular mechanisms involved in
the auxin control of cell division and cell expansion. In both cases, the involvement of at
least two signaling pathways and of multiple targets of auxin action reflects the complexity
of the subtle regulation of auxin-mediated cellular responses. In addition, it offers the neces-
sary flexibility for generating differential responses within a given cell depending on its
developmental context.

Plant growth and development are controlled
by the action of plant hormones among

which auxin has been implicated in virtually
every aspect. These two processes are sustained
by coordinated cellular behaviors, basically cell
division, cell expansion, and cell differentiation.
Plant growth corresponds to the increase in size
of pre-existing or newly formed organs and re-
sults largely from cell enlargement, also referred
as cell expansion or cell elongation (anisotropic
expansion). The first evidence of a “transported
messenger” promoting cell expansion has pre-
ceded the biochemical discovery of the auxin
molecule per se, through a series of historical
experiments on tropisms starting with the

observation of grass coleoptile bending in re-
sponse to light by Charles and Francis Darwin.
Plant development is a continuous process
beginning during embryogenesis with the for-
mation of the primary plant body (embryonic
root and embryonic shoot) and continuing
postembryonically with the regular production
of new organs (roots, leaves, branches, and flow-
ers) through de novo initiation from pools of
stem cells. Organogenesis requires the con-
trolled production of new cells within special-
ized zones named meristems. Auxin promotes
cell division and meristem maintenance and
also plays an important role in the establish-
ment of cellular patterning. Plant development
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thus integrates the regulation of cell prolifera-
tion and growth with further cell expansion and
differentiation. The distinction is made here
between cell growth and cell expansion as they
correspond to distinct processes. Cell growth
refers to the increase in size of proliferating cells,
is part of the cell cycle and coincides with
an increase in total nucleic acid and protein
content and no vacuolization. In contrast,
expansion of the cell is often associated with
endoreplication, is concomitant with vacuoliza-
tion, and leads to differentiation (Fig. 1).

Auxin is a major regulator of these cellular
and developmental processes according to spe-
cific threshold concentrations and cell- or
tissue-specific responses. For years the concept
of auxin concentration-dependent responses
and the one of auxin sensitivity of a defined
tissue were considered contradictory (Trewavas
and Cleland 1983). To date, recent progress in
our understanding of auxin biosynthesis, metab-
olism, and auxin transport established that the
concentration gradient of auxin is a driving force
for organogenesis and patterning, designating
auxin as a plant morphogen. Differences in
behavior of various plant cells to similar auxin

environments or stimuli however indicate that
they differ in their intrinsic capacity to respond,
likely via modulation of their auxin signaling
components and interaction with other plant
hormone pathways but we are far from having
an exhaustive understanding of these processes.
The present review focuses on the molecular
mechanisms of cell division and cell expansion
and their regulation by auxin.

AUXIN AND CELL DIVISION

Mitotic cell division encompasses the sequence
of events giving rise to the formation of two
daughter cells. The cell cycle is divided into
four phases: The replication of DNA character-
izes the S phase (synthesis) whereas segregation
of the duplicated chromosomes and physical
separation of the two daughter cells (cytokine-
sis) take place in mitosis or M phase. Two essen-
tial gap phases separate the S and M phases. The
G1 phase, between mitosis and the entry into S
phase, and the G2 phase, between replication and
mitosis, monitor whether the previous phase has
been fully and accurately achieved before execu-
tion of the next one. Cell growth occurs mainly
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Figure 1. From cell proliferation to differentiation. Within plant meristems and cambial zones, new cells are
formed by division. Between two successive rounds of division, the increase in size of these cells corresponds
to cell growth. The main enlargement occurs after cells have left the meristem and often relies on a
combination of two distinct processes: endoreplication and cell expansion. Cell expansion is an increase in
cell size through vacuolization and enlargement of the vacuole leading to differentiation.
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within these two gap phases. The G1/S and G2/
M transitions are two critical regulatory steps
of the cell cycle sometimes referred as cell-cycle
restriction—or checkpoints. The plant cell
cycle shares this highly ordered process with
all eukaryotes and basic molecular mechanisms
are mainly conserved (Fig. 2) (Inze and De
Veylder 2006).

Because the first attempts to culture plant
cells or tissues in vitro, the two phytohor-
mones auxin and cytokinin were shown to
play important roles in the induction of cell

division and control of cell-cycle progression.
Auxin starvation of suspension cells causes cell
division arrest after a lag period ranging from
a few hours to several days, depending on the
synthetic auxin supplied in the initial culture
medium (NAA or 2,4-D), the washing proce-
dure of the cells before auxin deprivation
(largely insufficient to remove pools of intra-
cellular free auxin and with no or little effects
on reversible conjugates that can be further con-
verted into active auxin) or the experimental
design (age of the subculture at deprivation,
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Figure 2. Auxin and the G1/S transition.The cell cycle is divided into four phases: DNA replication (S), mitosis (M),
and two Gap phases (G1 and G2, between M/S, and S/M, respectively). The cycle starts in G1. During this phase,
expression of D-type cyclins and cyclin-dependent kinase (CDKA) is induced by various signals including auxin.
The CDKA/CYCD complex is activated by phosphorylation but can still be blocked by CDK inhibitors (KRP).
Auxin was reported to reduce the expression of some KRPs. The active CDK/CYCD complex provokes phos-
phorylation of the transcriptional repressor retinoblastoma-related protein (RBR) thus promoting expression
of genes essential for the beginning of the S phase under the control of the E2FA/B and DPA complex. Auxin
was shown to stabilize these transcriptional regulators. Later in S phase, E2Fc and DPB repress expression of
S phase genes. Degradation of these proteins is under the control of the E3 ubiquitine ligase SCFSKP2 and auxin
was shown to increase the degradation of the F-box SKP2, thus indirectly stabilizing E2FC and DPB.
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measured parameters to evaluate division)
(reviewed by (Doerner and Celenza 2000). Con-
versely, addition of auxin to arrested cells after
deprivation of auxin leads to restoration of
cell division. Auxin is necessary but not suffi-
cient to stimulate cell division in cultured cells
or plant tissues (Trehin et al. 1998; Stals and
Inze 2001; Inze and De Veylder 2006) because
the presence of cytokinin is also required. Cells
cultured in the absence of exogenous cytokinin,
such as BY2 tobacco cells (Nagata et al. 1992),
produce it at least at critical phases of cell
division while they are strictly dependent on
exogenous auxin (Redig et al. 1996). All data
emerging from cell culture studies suggest that
auxin acts as a permissive signal for cell division
providing the necessary competence to enter
into the cell cycle (G1/S transition).

The role of auxin might, however, not end
with the regulation of entry into the cell cycle.
The specific roles of auxin at the various phases
of the cell cycle in dividing cell suspension
cultures has been hampered by the fact that
auxin is required at the initial step of cell-cycle
entry and thus its effects cannot easily be dis-
sociated from this initial and critical step. The
mechanisms by which auxin affects the cell-
cycle machinery are still far from being eluci-
dated but recent data suggest that auxin acts
on multiple targets and affects transcriptional
regulation as well as protein turnover of core
cell-cycle regulators.

Basic Molecular Mechanisms of the
Cell Cycle

The completion of the Arabidopsis and rice
genomes has permitted the identification of
the majority of the core cell-cycle genes in
plants. Recent advances have established that
plant cell-cycle progression is controlled by an
evolutionarily conserved molecular mechanism
involving distinct combinations of cyclin-
dependent kinase (CDK) and cyclin complexes
which phosphorylate a number of substrates at
the G1/S and/or G2/M transitions. Several
key features are, however, unique to plant cells.

Within a CDK-cyclin complex, the cyclin
plays a role in the selective interaction with

substrate proteins whereas the CDK is the cata-
lytic subunit responsible for the recognition of
the serine or the threonine target motif in the
substrate proteins (Dewitte and Murray 2003;
Inze and De Veylder 2006) (Figure 2).

Plants contain up to 6 CDK types, among
which CDKA, represented by a unique gene
in Arabidopsis (CDKA;1) plays a pivotal role in
both the G1/S and G2/M transitions. The plant
specific CDKBs that accumulate in G2- and M-
phases are essential for the G2/M transition and
cooperate with CDKA to regulate this transition
(Magyar et al. 1997; Porceddu et al. 2001; Sorrell
et al. 2001; Boudolf et al. 2004).

Plants contain more cyclins than described
for others organisms (Vandepoele et al. 2002;
Engler Jde et al. 2009). For instance, the Ara-
bidopsis genome encodes at least 49 distinct
cyclins belonging to seven classes. Cyclins
show distinct regulation through the cell cycle
and most of them contain a putative PEST
sequence which may confer protein instability.
D-type cyclins (CYCD) are often mentioned
as sensors of external conditions, integrating
hormonal or environmental signals and report-
ing to the cell on the favorable conditions for
cell-cycle entry (Nieuwland et al. 2007). They
associate with CDKA to regulate the G1/S tran-
sition. The resulting CDKA-CYCD is inactive
until both proteins are phosphorylated by the
CDK-activating kinase (CAK) pathway, which
involves other types of CDKs (-D and -F), an
H-type cyclin, and an unknown kinase phos-
phorylating the cyclin. Under developmental
constraint or stress, the active CDKA-CYCD
complex can still be inhibited by kip-related
proteins (KRPs or CKIs for CDK inhibitors),
which ensure a rapid exit from the cell cycle
in response to antimitogenic stimuli. CYCDs
contain a LxCxE amino-acid motif, which is
responsible for their interaction with retino-
blastoma-related protein (RBR), a negative
regulator of cell proliferation (Nieuwland
et al. 2007). Phosphorylation of RBR by the
active CDKA-CYCD complex derepresses
the transcriptional activity of E2FA/B (adeno-
virus E2 promoter binding Factor) and DP
(Dimerization Protein) complexes, which con-
trol the expression of genes required for entry
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into S-phase and further progression into the
cell cycle. The CDKA-CYCD complex may
also phosphorylate the transcriptional repressor
E2FC. E2FC and DPB form heterodimer and
were shown to restrict cell division. Assembly
of the complex is dependent on phosphoryla-
tion of E2FC and DPB proteins by CDK activity
and both proteins are targeted for proteolysis
by the 26S proteasome after polyubiquitination
by the SCFSKP2A complex (del Pozo et al. 2006).

A-type cyclins are important from S until M
phase, whereas B-type cyclins are critical for
the control of the G2-to-M transition. After
DNA replication, they associate with different
CDKA or CDKB proteins. In contrast to ani-
mals, experimental data points also to an addi-
tional function of plant D-type cyclins at
the G2-to-M transition (Schnittger et al. 2002;
Kono et al. 2003; Koroleva et al. 2004). Activa-
tion of CDKA/B-CYC complexes is mediated
by CAFs, which phosphorylate a critical CDK
threonine residue whereas the activity of
mitotic CDKs can be negatively regulated by
WEE1, a kinase targeting other CDK phosphor-
ylation residues (Thr14 and Tyr15). Active
CDKA/B-CYC complexes trigger the G2/M
transition by regulating the phosphorylation of
downstream targets. Mitosis and exit from mito-
sis require the degradation of involved cyclins
through ubiquitin-dependent proteolysis invol-
ving the anaphase-promoting complex (APC).

The specific and timely controlled degrada-
tion of cell-cycle regulatory proteins through
the ubiquitin-dependent pathways is one of the
critical mechanisms driving the unidirectional
progression of the cell cycle. Both SCF and
APC ubiquitin ligase E3 complexes are inti-
mately involved in the regulation of the proteol-
ysis of cell-cycle substrates. Phosphorylation of
these regulatory proteins is frequently required
before targeting to proteolysis (Genschik and
Criqui 2007).

Auxin Action on Cell Cycle

Our understanding of auxin action on the cell
cycle is still extremely fragmentary; primary
evidence indicates that auxin acts on multi-
ple targets, influencing directly or indirectly

both transcriptional and posttranscriptional
regulation.

Importantly, auxin was shown to induce the
expression of CDKA;1, encoding the CDKA
implicated throughout the cell cycle (Hemerly
et al. 1993; Ferreira et al. 1994; Doerner and Cel-
enza 2000). In tobacco cell suspension culture,
auxin was reported to play an important role
in the assembly of active CDKA-associated
complexes (Harashima et al. 2007). Activation
of the kinase activity may however require cyto-
kinin for promoting the phosphorylation of the
CDKA kinase as reported in Nicotiana plumba-
ginifolia cells (Zhang et al. 1996) (Fig. 2).

In Arabidopsis, CYCD3;1 was reported to
be a rate-limiting factor for G1/S transition
(Menges et al. 2006). Expression of CYCD3;1
is regulated by the availability of nutrients but
also by cytokinin, brassinosteroids, and auxin
(Dewitte and Murray 2003). Based on global
transcript profiling analysis in Arabidopsis, var-
ious cyclin genes are potentially regulated by
auxin but it is not clear whether they are early
responsive genes or if changes in their expres-
sion are indirect. Auxin responsive elements
(AuxREs) can be found in promoter regions
of various cyclins suggesting that they might
be primary auxin responsive genes. In many
cases, the functionality of these AuxREs has
however not been shown.

Expression of KRP1 and KRP2, encoding
two of the CDK inhibitors, was reported to be
down-regulated after auxin treatment at least
in specific root cells (Richard et al. 2001;
Himanen et al. 2002).

Auxin also affects posttranscriptional regu-
lation of cell-cycle components. Relative abun-
dance of E2FB is increased in Arabidopsis cell
suspension after auxin application and cotreat-
ment with cycloheximide and auxin revealed
that auxin increases E2FB protein stability
(Magyar et al. 2005). By manipulating E2FB
and DPA coexpression in tobacco BY2 cells,
the same authors showed that elevated E2FB/
DPA support cell proliferation in the absence
of auxin whereas control BY2 cells or cells
overexpressing E2FA/DPA stop dividing and
enlarge after starvation. The mechanisms by
which E2FB proteolysis is controlled are still
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unknown; it is likely to be mediated by an SCF
complex but the F-box has still to be identified.
It will be interesting to determine whether the
effect of auxin on E2FB stability is via a post-
translational modification of E2FB altering its
recruitment by the SCF or if the primary affect
of auxin is on the stability of another protein
such as the putative F-box targeting E2FB deg-
radation. Such a scenario has recently been
reported for E2FC and DPB, two substrates of
the SCFSKP2A E3 ligase (Jurado et al. 2008).
Auxin stimulates the degradation of the F-box
SKP2A through a not-yet-identified ubiquiti-
nation/26S proteasome dependent pathway
(APC as for SKP2 in mammals, SCFX or auto-
ubiquitination) (Fig. 2). E2FC and DPB sub-
strates were found to slightly accumulate in
the hours following the exogenous application
of auxin (Jurado et al. 2008) suggesting that
the net balance between neosynthesis and deg-
radation (potentially with the F-box) is posi-
tive. Interestingly, SKP2A is expressed from
late S-phase to M phase and is likely to mediate
degradation of its substrates for cell-cycle pro-
gression during these phases. The precise tim-
ing of auxin-mediated degradation of SKP2A
with respect to the phases of the cell cycle has
not been determined yet.

In addition to effecting core cell-cycle regu-
lators, auxin has been reported to regulate the
expression of other genes or the turnover of
proteins that are necessary for cell proliferation.
For example, auxin was reported to stabilize a
potato homolog of a human EBP1 (ErbB3 epi-
dermal growth factor receptor binding protein)
expressed transiently in Arabidopsis cells (Hor-
vath et al. 2006). In mammals, EBP1 belongs
to a family of DNA/RNA binding proteins
implicated in cell proliferation, apoptosis, and
differentiation; it inhibits transcription of
E2F1 regulated genes and was proposed to be
involved in protein translation (Monie et al.
2007). In plants, EBP1 seems to be required
for expression of cell-cycle genes belonging to
distinct phases such as CYCD3;1 (G1 and G1/
S), ribonucleotide reductase 2 (RNR2, S-phase)
or CDKB1;1 (G2 to M phase) in a dose-
and auxin-dependent manner. Modulation of
EBP1 expression in Arabidopsis supports a role

in cell proliferation of meristematic cells
whereas it promotes expansion in nondividing
cells (Horvath et al. 2006).

In synchronized BY2 cells, auxin was re-
ported to induce the expression of telomerase
at the S-phase, enhancing markedly the activity
of telomerase during replication (Tamura et al.
1999). Telomerase is a specialized RNA-directed
DNA polymerase that adds G-rich sequence
elements onto the ends of linear eukaryotic
chromosomes, and is essential for chromosome
integrity and protection from exonucleolytic
degradation. In mammals, telomerase activity
is tightly associated with cell proliferation or
immortalization. In plant cells, telomerase was
proposed to have similar roles and to contribute
to cell proliferation mechanisms. A zinc-finger
protein related to the transcription factor
family SUPERMAN, TAC1 (Telomerase Activa-
tor) and its potential target BT2, a BTB/POZ
protein, were shown to link auxin signaling
and telomerase expression (Ren et al. 2004;
Ren et al. 2007).

The variety of targets of auxin action re-
ported previously reflects the overall complexity
of the mechanisms involved. In addition, cell-
cycle-modulated expression of auxin-respon-
sive genes has been reported from large scale
expression analysis in synchronized BY2 cells
(Breyne et al. 2002) or Arabidopsis cells (Menges
and Murray 2002; Menges et al. 2005). In to-
bacco, transcripts of ARF1 and different mem-
bers of the Aux/IAA gene family were found
to accumulate during early M phase. Similarly
IAA17 transcripts increased during the M phase
in Arabidopsis cells, whereas IAA18 accumulated
transiently in S-phase and no significant change
was observed for ARF genes in these cells. These
data suggest that differential regulation of early
auxin response genes might be necessary for
cell-cycle progression but the cyclic nature of
the process makes it difficult to determine
what is the consequence of what.

Auxin Signaling Pathways Controlling
Cell Cycle

Very little is known about the auxin signaling
pathway(s) transducing the auxin signal to the
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cell-cycle machinery. Two auxin pathways with
different levels of importance seem to be
involved. One involves the auxin binding
protein, ABP1, and the other the already men-
tioned Aux/IAA/SCFTIR1/AFB pathway. ABP1
was isolated through its capacity to bind auxin
and, based on its involvement in the activation
of ion fluxes at the plasma membrane in
response to auxin, was characterized as an auxin
receptor (Timpte 2001; Napier et al. 2002;
Badescu and Napier 2006). Recent analysis of
the effects of ABP1 functional inactivation in
tobacco BY2 cells or in tobacco and Arabidopsis
plants showed that ABP1 is critical for auxin
regulation of the cell cycle. In BY2 cells the
inactivation of ABP1 causes cell-cycle arrest.
Cells accumulate in G1 and are unable to
re-enter into the cell cycle even in the presence
of auxin (David et al. 2007). Inactivation of the
protein in synchronized cells revealed that the
G2/M transition was also impaired. Local inac-
tivation of ABP1 at the I1 position of the shoot
apical meristem of tobacco plants results in
rapid arrest of cell division with changes in
the orientation of the cell division plate in cells
which were progressing into the cell cycle at the
time of inactivation. Similarly, aberrant cell
divisions are observed in the suspensor and at
the early stage of embryo development for the
null abp1 Arabidopsis mutant (Chen et al.
2001b). In Arabidopsis, inactivation of the pro-
tein at various stages of development showed
that ABP1 is essential to maintain division in
meristematic tissues and is critical for the main-
tenance of the root meristem (Braun et al. 2008;
Tromas et al. 2009). ABP1 acts on the CYCD/
RBR/E2F pathway regulating the G1/S transi-
tion (Tromas et al. 2009). The cell-cycle target
of ABP1 action is however not precisely identi-
fied and the signaling pathway downstream of
ABP1 has still to be resolved.

Characterization of Arabidopsis mutants
affected in auxin responses confirms that regula-
tion of gene expression in response to auxin via
the AUX/IAA/SCFTIR1AFB pathway is involved
in the auxin control of the cell cycle as some of
these mutants show moderate but significant
defects in cell division. The relation between
this pathway and regulation of core cell-cycle

regulators is poorly documented with the
notable exception of the initiation of lateral
root formation (reviewed by De Smet et al.
2006; Peret et al. 2009). As mentioned previ-
ously the regulatory untranslated 5’ sequence
of various core cell cycle genes contains putative
AuxREs and might be directly induced in
response to auxin. Gene expression usually
results from combinatorial regulation and the
relative importance of an AuxRE within a given
promoter has still to be determined gene by
gene. To date, there is no evidence indicating
that cell cycle proteins are substrates of the
SCFTIR1/AFB complex. Conversely for those
F-box proteins responsible for degradation of
cell cycle regulators, there is no evidence for a
direct role of auxin in promoting interaction
between the F-box and the substrate as for
TIR1/AFB and Aux/IAA substrates. The effect
of auxin on the degradation of cell-cycle
proteins is thus far from being understood.

AUXIN AND CELL EXPANSION/
ELONGATION

Cell expansion is an increase in cell size accom-
panying the process of plant growth. Cells
leaving meristematic zones often enlarge to
involved or thousands of times their original
size. This increase in size usually results from
the combination of two processes: The increase
in cell ploidy level by endoreplication (suc-
cessive rounds of DNA replication with no
mitosis), and the complex process of cell expan-
sion, which is driven by internal turgor pressure
and restricted by the ability of cell walls to
extend (Fig. 1).

Endoreplication occurs when the cell cycle
is truncated such that either mitosis or cytoki-
nesis is skipped between rounds of DNA repli-
cation. The result is the formation of cells with
increasing ploidy. In most Arabidopsis shoot
tissues, a positive correlation was reported
between the degree of ploidy and cell size. Con-
versely in roots, such correlation has not been
observed however the switch from mitotic
cycles to endocycles is coupled with the transi-
tion between the root meristem and cell differ-
entiation (Beemster et al. 2002; Ishida et al.
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2009). By modulating the levels of cell-cycle
regulators that are involved in both the mitotic
cycle and the endocycle, auxin is likely to play
a major role in the regulation of endoreplication
(see previous discussion). For example E2FC,
which acts as a negative regulator of cell divi-
sion, was shown to be necessary for endorepli-
cation. By modulating the stability of E2FC,
auxin is likely involved to maintain a balance
between proliferation and endoreplication (del
Pozo et al. 2006). In roots, the mitotic to endo-
cycle transition was recently proposed to be
regulated by auxin and cytokinin, the combi-
nation of low auxin and increased cytokinin
facilitating the switch from mitotic cells to
endocycle and differentiation (Ishida T. and
Sugimoto K., personal communication; Dello
Ioio et al. 2008). The use of specific inhibitor
of AUX/IAA/SCFTIR1AFB pathway suggests
that this auxin signaling pathway is involved
in the transition from mitotic cycle to the endo-
cycle (Ishida T. and Sugimoto K., personal
communication).

Plant cell expansion requires uptake of water,
which is then stored in vacuoles, and irreversible
extension of the cell wall, which includes wall
loosening (short time frame) and deposition
of new wall material (long time frame). Auxin
is one of the major stimuli affecting these mech-
anisms but it is essential to keep in mind that cell
expansion is also under the control of many
other stimuli, such as blue light and most of
the other phytohormones. Auxin-dependent
cell expansion follows a dose-response curve
in which high concentrations are inhibitory
(Barbier-Brygoo et al. 1991; Evans et al. 1994).
The apparent response-maxima varies accord-
ing to both the plant and the organ with shoots
and roots showing differences in sensitivity
of several orders of magnitude. Exogenous
application of micromolar auxin stimulates
cell expansion in stems and in almost all shoot
tissues, whereas application of over 1029 or
1028 M auxin inhibits cell elongation in roots
(cf inhibition of root growth assay). The molec-
ular mechanisms underlying these differences
in auxin sensitivity remain elusive. Cross-talk
with other signals is often evoked as well as
a differential or tissue specific expression of

AUX/IAA repressors or ARFs but experiments
to investigate these or other mechanisms re-
sponsible for cell sensitivity are needed.

From Cell Wall Loosening to Expansion

Focus is given here to the mechanisms that sus-
tain auxin-induced cell expansion. Plant cells
are surrounded by a complex and dynamic
wall, which plays a critical role during develop-
ment in establishing cell size and cell shape. The
structure of the primary cell wall is formed by
a network of crystalline cellulose microfibrils
interlinked with hemicelluloses (mainly xylo-
glucan or arabinoxylan in seed plants). This
network is embedded in a matrix of pectins
and also contains a small amount of cell-wall
proteins (reviewed by Darley et al. 2001; Cos-
grove 2005; Humphrey et al. 2007).

Rapid enlargement requires wall loosening,
that involves modification of the molecular
interactions within the cell-wall network (but
not of its composition), resulting in relaxation
of wall tension. Current models propose that
wall loosening results from breakage of cross-
links, cleavage of hemicellulose polymers, or
weakening of the noncovalent bonds facilitating
hemicellulose sliding along the cellulose scaf-
fold. Expansins have been identified as major
wall-loosening agents (Cosgrove 2000; Kende
et al. 2004; Sampedro and Cosgrove 2005).
These cell wall proteins are activated by acidifi-
cation and, in a range of pH between 4.5 and 6,
are thought to disrupt noncovalent binding
between cellulose and hemicelluloses. In addi-
tion to expansins, xyloglucan endotransglyco-
sylase/hydrolases (XTHs), which cut and paste
xyloglucans (Rose et al. 2002), or endogluca-
nases, which hydrolyse glucosidic bonds, may
also contribute to wall loosening by modifying
wall properties or to cell expansion by facili-
tating integration of new wall materials (Fig. 3).

Auxin was shown to induce rapid cell elon-
gation in stem, coleoptile, or hypocotyl seg-
ments within minutes after auxin treatment
(Rayle and Cleland 1992; Cleland 1995). This
rapid effect is believed to result from the
activation of a proton pump ATPase at the
plasma membrane, inducing extrusion of Hþ,
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extracellular acidification, activation of expan-
sins, and subsequent wall loosening. Activation
of the plasma membrane Hþ ATPase causes
hyperpolarization of the membrane potential
and activation of voltage-dependent Kþ inward
channels (Rück et al. 1993; Philippar et al. 1999;
Thiel and Weise 1999; Philippar et al. 2004).
Uptake of Kþ is likely to contribute to the water
uptake necessary to sustain expansion. In addi-
tion to the stimulation of their activity, auxin
also induces expression of both Hþ ATPase
and Kþ channels, for example ZmMK1 in

maize coleoptiles (Frias et al. 1996; Philippar
et al. 1999) (Fig. 3).

On a long term scale, new material is inte-
grated within the cell wall, thus preventing the
wall from becoming thinner and maintaining
integrity of the wall architecture on extension.
Nascent xyloglucan chains are exported to the
cell wall matrix and are incorporated into exist-
ing xyloglucans. XTHs were proposed to medi-
ate this process. Interestingly, some members of
the XTH gene family, as well as several expansins
or b-glucanases were shown to be up-regulated

RIC4

ROP2

?

H+

H+

K+

K+ Channel
K+

H+H+

H+
Expansin

H+

H+

ATPase

Inward

Hemicellulose

Cellulose
microfibril

Cell wall

Water
uptake

PM H+ ATPase
K+ channel

Plasma membrane

PM-

C
B

P
1

ABP1
? 

?

MT

Nucleus

SCFTIR1/AFB

Cell wall proteins

Cell wall polymers

R1/AFB

Aux/1AA

Gene regulation

F-actin

Pectin
Auxin 

XTH

RIC1

ARF

R1/AFA

Figure 3. Auxin-induced cell wall loosening and expansion. The scheme represents the cell wall/plasma mem-
brane/cytoskeleton continuum and the consequences of auxin action. Auxin is perceived by the auxin receptor
ABP1, which interacts with unknown membrane-associated proteins at the plasma membrane (such as the
putative candidate GPI-anchored protein CBP1) (Shimomura 2006). This activates the proton pump ATPase,
provoking the acidification (Hþ) of the extracellular space, the activation of cell wall proteins such as expansins
and xyloglucan endotransglycosylase/hydrolases (XTH), which mediate cell wall loosening by acting on the cell
wall polysaccharide network. Polysaccharides forming the cell wall are cellulose microfibrils, cross-linked
hemicelluloses, and pectins. Activation of the Hþ ATPase also induces hyperpolarization of the plasma mem-
brane and activation of Kþ inward rectifying channels, essential for the uptake of water sustaining cell expan-
sion. Auxin also enhances these effects by inducing the expression of genes encoding plasma membrane ATPase,
Kþ channels, expansins, and cell wall remodelling enzymes and promotes exportation of new cell wall material.
Auxin is likely to act on actin microfilaments and microtubules via the modulation of ROP GTPases.
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by auxin (Kotake et al. 2000; Yokoyama and
Nishitani 2001; Swarup et al. 2008). It is
however not always clear whether these genes
are early responsive genes, are secondary
responsive genes downstream of Aux/IAA-ARF
targets, or if their activation results from a
change in biosynthesis of another hormone
(Cho and Cosgrove 2000; Cho and Cosgrove
2002). Interestingly, two expansin genes,
EXPA1 and EXPA8, were shown to be rapidly
and locally up-regulated in hypocotyls sub-
jected to gravitropic or phototropic stimuli,
and only in the section of the hypocotyl des-
tined to elongate (Esmon et al. 2006). Increase
in EXPA1 and EXPA8 mRNAs was reported
before the macroscopic curvature was observed;
suggesting that cell expansion should be en-
hanced by increased expansin delivery at the
cell wall in response to auxin.

Many early auxin responsive genes have been
initially isolated from auxin-induced expanding
tissues, suggesting they are important for this
process. Various gain of function mutants of
the AUX/IAA repressor family (e.g., axr5/iaa1,
shy2/iaa3, axr2/iaa7, or axr3/iaa17) show short
hypocotyls, tropic alteration, or curled leaves,
all of which evoke defects in cell expansion
(Liscum and Reed 2002; Mockaitis and Estelle
2008), suggesting that auxin mediated degra-
dation of these repressors is required for cell
expansion. Thus, by controlling the half-life of
the AUX/IAA repressors, the SCFTIR1 pathway
is undoubtedly important for the activation
of gene expression involved in the control of
auxin-induced cell expansion (Mockaitis and
Estelle 2008).

ABP1 and Cell Expansion

Various lines of evidence, mainly relying on
electrophysiological experiments and use of
a whole series of ABP1 molecular tools (specific
monoclonal and polyclonal antibodies, car-
boxy-terminal synthetic peptides, recombinant
wild-type and mutated proteins) support the
hypothesis that ABP1 is involved in the initial
perception of auxin at the outer face of the
plasma membrane and induces the activation
of Hþ ATPase and Kþ inward channels (Rück

et al. 1993; Thiel et al. 1993; Barbier-Brygoo
et al. 1996; Fellner et al. 1996; Leblanc et al.
1999a; Leblanc et al. 1999b; David et al. 2001)
(Fig. 3). In addition ABP1 was shown to medi-
ate the auxin-induced enlargement (or swell-
ing) of protoplasts of maize coleoptiles and
Arabidopsis hypocotyls (Steffens et al. 2001).
Analysis of the swelling response of protoplasts
of pea stem epidermal cells revealed a biphasic
dose response curve to IAA, one phase being
dependent on ABP1 but not the other, suggest-
ing that at least in these epidermal cells another
pathway is involved (Yamagami et al. 2004). A
possible candidate for the second phase was a
soluble auxin binding protein, ABP57, initially
isolated from rice with anti-BSA antibodies
and reported to activate Hþ ATPase in the pres-
ence of auxin (Kim et al. 2001). The corre-
sponding gene was however cloned recently in
rice and found in the maize genome but intrigu-
ingly not in the Arabidopsis genome thus ques-
tioning its relative importance in basic auxin
mediated responses (Lee et al. 2009).

Additional lines of evidence coming from in
vivo modulation of ABP1 expression or activity
have shown the importance of ABP1 in auxin-
mediated cell expansion, at least in shoot tis-
sues. Overexpression of ABP1 in tobacco leaves
enhances the sensitivity of guard cell Kþ chan-
nels to auxin (Bauly et al. 2000) and shifts the
plasma membrane hyperpolarization of proto-
plasts to lower auxin concentrations (Barbier-
Brygoo H., personal communication). Induci-
ble overexpression of ABP1 leads to an increased
expansion of some leaf tissues in response to
auxin (Jones et al. 1998; Chen et al. 2001a).
The null abp1 mutant in Arabidopsis, in addi-
tion to cell division defects, shows altered cell
expansion (Chen et al. 2001b). Finally, functio-
nal inactivation of ABP1, by use of conditional
antisense or conditional immunorepression
strategies, confirmed the critical role of the pro-
tein in the control of cell expansion in leaf tis-
sues even in cells with increased ploidy (Braun
et al. 2008). Altogether, these data show that
ABP1 is essential for auxin-dependent cell
expansion during leaf growth. The involvement
of ABP1 begins with the activation of the trans-
duction chain at the plasma membrane thus
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resulting in wall loosening and cell enlargement.
ABP1 was also reported to modulate the expres-
sion of AUX/IAA genes suggesting that its role is
not restricted to the regulation of ion fluxes
at the plasma membrane and that it influences
the SCFTIR1 pathway (Braun et al. 2008).

As mentioned earlier, expanding root and
leaf cells differ considerably in their responsive-
ness to auxin. Interestingly, the inactivation of
ABP1 in roots prompts basal meristematic cells
to elongate and confers resistance to IAA (Tro-
mas et al. 2009), implicating ABP1 in the mod-
ulation of sensitivity to auxin and as a negative
regulator of cell expansion in roots. It is likely
that the peculiarity of cell expansion in roots
largely relies on the cross talk between auxin
and cytokinin (Moubayidin et al. 2009). Diver-
gence between shoot and root tissues illustrates
the importance of the developmental context
when investigating the mechanisms of hormone
regulation in relation with a defined cellular
response.

Auxin and the Cytoskeleton

An interesting concept has emerged from vari-
ous authors who proposed that there is a
continuum between the cell wall, the plasma
membrane, and the cytoskeleton, linking exter-
nal and internal compartments (Wyatt and
Carpita 1993; Baluska et al. 2003; Paradez
et al. 2006). Whereas plant turgor is supposed
to be isotropic, cell expansion is often direc-
tional. Within a tissue, initial patterning and
neighboring cells contribute to determine the
orientation of cell expansion. The orientation
of microtubules (MT) and organization of actin
microfilaments are important for directional
cell expansion (Wasteneys and Galway 2003).
Auxin has been shown to affect patterning and
organization of the cytoskeleton. Depending
on the experimental conditions, the plant
material and plant cell type, auxin was reported
to induce cortical MT reorientation (Blancaflor
and Hasenstein 1993; Blancaflor and Hasen-
stein 1995; Takesue and Shibaoka 1998; Takesue
and Shibaoka 1999) or disintegration of the MT
cytoskeleton (Baluska et al. 1996). In addition
auxin-induced cell expansion was also shown

to correlate with an auxin-dependent reorga-
nization of actin filaments into fine cortical
strands (Waller et al. 2002; Holweg et al.
2004). More recently, a complex regulatory
loop between actin and auxin, more specifically
auxin transport, was reported (Dhonukshe et al.
2008; Nick et al. 2009). Accumulating evidence
supports that the effects of auxin on cytoskele-
ton involve ROP GTPases and their effectors
RICs proteins (Fu et al. 2002; Gu et al. 2004;
Yang and Fu 2007) (Fig. 3). Because of space
limitations, the importance of ROPs in auxin-
dependent vesicle trafficking, auxin transport,
and auxin-induced cell expansion cannot be
discussed here but merits special mention (Xu
and Scheres 2005; Yang and Fu 2007).

CONCLUDING REMARKS

Much progress has been made in the identifica-
tion of components taking part in the control of
cell division and cell expansion. The final num-
ber, size, and shape of plant organs largely rely
on the coordination of these cellular responses
and auxin plays a central role in these processes.
Much has yet to be learned about the complex
network of regulation activated by auxin and
how the auxin signal is differentially transduced
in a variety of downstream responses depending
on the cell, the organ, or the environment. Elu-
cidating the auxin signaling pathways involved
and how the two types of auxin receptors,
TIR1/AFB and ABP1, cooperate to control cel-
lular responses to auxin are critical challenges
for the coming years.
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