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Abstract. Radiotherapy (RT) is one of most common treat-
ments for cancer. However, overcoming the failure and side 
effects of RT as well as radioresistance, recurrence and 
metastasis remains challenging in cancer treatment. Cellular 
senescence (CS) is permanent arrested state of cell division 
induced by various factors, including exposure to ionizing 
radiation (IR). CS induced by IR contributes to tumour cell 
control and often even causes side effects in normal cells. 
Improvement of the therapeutic RT ratio is dependent on more 
cancer cell death and less normal cell damage. In addition, the 
biological behaviour of tumour cells after IR has also been 
linked to CS. This review summarizes our understanding of 
CS in IR, which may be beneficial for providing new insight 
for improving the therapeutic outcomes of RT.
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1. Introduction

Senescence has been identified for decades (1), and cellular 
senescence (CS) represents a relatively stable state of proliferative 
arrest accompanied by failure to re-enter the cell division cycle. 
Generally, CS is divided into replicative CS resulting from telo-
mere shortening and premature CS that is induced by various 
types of stress. Due to the increasing evidence of linkages 
between senescent cells (SNCs) and many age-related diseases, 
including cancer, atherosclerosis, osteoarthritis, and neurodegen-
erative diseases (2-5), methods for eradicating SNCs are a hot 
topic in research on these diseases (6). However, CS appears to 
play dual roles in cancer radiotherapy (RT). On the one hand, CS 
induced by ionizing radiation (IR), a major type of RT, can inhibit 
the proliferation of tumour cells and activate cancer immune 
surveillance. Many radiosensitizers are aimed at increasing CS 
when combined with IR (7,8). On the other hand, IR can induce 
senescence in surrounding and normal cells as well as in cancer 
cells, which leads to normal tissue fibrosis and organ dysfunc-
tion (9). Moreover, IR-induced CS (IRIS) may emerge as a method 
for helping cancer cells overcome RT and worsen the biological 
behaviour of tumour cells following IR treatment (10,11).

The aim of this review was to focus on CS in IR by 
evaluating radiosensitivity, IR-induced side effects, tumour 
cell biological behavioural changes after IRIS and under-
lying mechanisms. It was hypothesized that a comprehensive 
understanding may provide new insights into novel therapeutic 
modalities in RT to improve the outcomes of cancer patients.

2. IR‑induced CS

IR kills tumour cells by causing lethal DNA damage, which can 
ignite the DNA damage response (DDR), and non-homologous 
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end joining (NHEJ) and homologous recombination (HR) are 
the two main pathways for repairing double-strand breaks 
(DSBs) induced by DNA damage. The accuracy of DNA 
damage repair by related downstream signalling pathways 
determines cell fate, including senescence and apoptosis (12). 
Generally, DNA DSBs are an especially potent stimulus 
for inducing CS (13). IRIS, is also a form of stress-induced 
premature senescence (SIPS) (14) and can occur in many types 
of cells, including cancer cells, fibroblasts, epithelial cells, 
endothelial cells (ECs), immune cells, and stem cells. Senescent 
cells (SCNs) always exhibit apoptosis resistance, metabolic 
activity, proinflammatory and profibrotic molecule secretion 
and neighbouring microenvironment alteration despite that 
they have no cell division capacity and permanently arrested 
proliferation (15) (Fig. 1).

Cell division cycle arrest. In the senescence process induced 
by IR, the cell cycle is interrupted by G2 arrest after inevi-
table DNA damage, accompanied by mitotic bypass into the 
G1 phase (16). Ataxia telangiectasia-mutated protein (ATM), 
p53, p21, p16-Rb, p38-mitogen-activated protein kinase 
(p38-MAPK), NF-κB signalling pathway factors, reactive 
oxygen species (ROS), senescence-associated secretory 
phenotype (SASP) factors and cyclin-CDK complexes are 
involved in this process (9,16,17). Different doses of IR and 
DNA damage can lead to various types of cells with mitotic 
cell cycle delays, including arrests in the G1, G2 or S phase. 
G2 arrest and G2 slippage has been linked to IRIS in most 
previous studies and reviews (18‑21). SNCs can be identified 
by prominent β-galactosidase activity, increased p53, p21 and 
p16 expression, and decreased levels of Cdc2 and survivin. 
Notably, some features of IRIS in normal cells and cancer 
cells are summarized in Table I.

p53. The function of the tumour suppressor protein p53 is 
related to cell cycle control, DNA repair and apoptosis (40). 
p53 and phosphorylated retinoblastoma protein (pRB) are the 
main proteins involved in establishing and maintaining the 
state of irreversible growth arrest in replicative senescence in 
normal human cells, and p53 inactivation could reverse CS in 
BJ cells with a low level of p16 (41). Many studies (42‑45) have 
been carried out to explore the influence of p53 on IR‑induced 
effects. For example, HCT116 p53+/+ cells were found to be 
much more susceptible to IRIS than p53‑/‑ cells (43). IR-induced 
mitotic skipping during senescence-like growth arrest is 
associated with p53 function (24). Therefore, the mechanisms 
of p53, the guardian of the genome, and its related signalling 
pathways are well characterized in IRIS.

Other proteins/factors related to p53. Increasing evidence 
supports that insulin-like growth factor-binding protein 5 
(IGFBP-5) plays a crucial role in CS via a p53-dependent 
pathway and especially functions in the coagulation factor 
Xa- or interleukin-6 (IL-6)-induced premature senescence 
of ECs, smooth muscle cells (SMCs), and fibroblasts (46‑48). 
Exogenous IGFBP-5 or IGFBP-5 overexpression induces 
premature senescence in human umbilical vein endothelial 
cells (HUVECs) in vitro, and knocking down IGFBP-5 can 
partially alter the senescence process in vitro (48). Notably, 
IGFBP‑5 is upregulated in the IRIS of HUVECs after chronic 

low‑dose IR (49) and may therefore be a significant target 
to reduce IRIS in normal cells. In addition, the BRE gene 
(BRCC45) is also associated with the DNA damage-induced 
premature senescence of fibroblasts resulting from γ-IR (50). 
Downregulation of the lamin-B receptor (LBR) and LB1 is a 
primary response of cells to various stresses leading to senes-
cence, and the loss of LB1 can even serve as a biomarker of 
senescence (51,52). Naturally, other factors involved in IRIS 
are independent of p53. For instance, oestrogen E2 suppressed 
IRIS by inhibiting the binding of cyclin E with p21 and the 
functional inactivation of p21, followed by permanent Rb 
hyperphosphorylation, but it did not affect p53 activation in 
MCF-7 breast cancer cells (53).

lncRNAs and miRNAs. Long non-coding RNAs and 
microRNAs also contribute to CS induced by IR (23,54). 
IRIS is modulated by miR-155 via the p53 and p38-MAPK 
pathways and partially regulates tumour protein 53-induced 
nuclear protein 1 (TP53INP1) expression in human WI-38 
lung fibroblasts (23). The overexpression of miR-30e in 
HCT116 cells was revealed to markedly accelerate and 
augment the γ‑IR‑induced caspase‑3‑like DEVDase senescent 
phenotype because miR-30e upregulates p21 expression (55). 
However, miR-30e could not induce senescence in the poorly 
differentiated RKO colon carcinoma cells (55). This finding 
demonstrated that miR-30e controls IRIS and may be affected 
by the differentiation degree of the cell lines.

IR dose and fraction regimen. Other factors also affect the 
process of IRIS. For example, the IR dose plays a crucial role 
in inducing senescence or apoptosis upon cell exposure; a low 
dose (0.5-10 Gy) of IR induces senescence, while a very high 
dose (>10 Gy) induces apoptosis (30), and this phenomenon is 
related to the level of DNA damage and function of the DDR 
network. Recently, Velegzhaninov et al (56) reported that 
a single low dose (30-50 mGy) of gamma irradiation could 
suppress CS in normal human fibroblasts. Similarly, a single 
low-dose X-ray could promote the proliferation of normal cells 
but not of cancer cells (29). However, low-dose fractionated 
IR (5x1 Gy) induced temporal patterns of p53/p21 expression 
in MRC5 fibroblasts, resulting in more significant CS than 
that generated by a single 5 Gy pulse of IR, as indicated by 
an integrated stochastic model of DNA damage repair (57). 
Therefore, the fraction regimen also appears to affect IRIS 
and may respond differently in different cells. For example, 
lymphocytic leukaemia cells with exponential growth similar 
to that of rapidly proliferating tumour cells are not very 
sensitive to fraction size, while slow-growing fibroblasts 
and most late-responding cells show high sensitivity (31). 
Therefore, haematological toxicity occurs early during the RT 
process, and monitoring and preventing the development of 
leukopenia is of great importance. Other side effects of IRIS 
are discussed more specifically in section four.

CSCs. Surviving non-tumourigenic cells were revealed to be 
more prone to CS, while breast cancer initiating cells (CICs) 
could be mobilized from the quiescent/G0 phase of the cell 
cycle to actively cycling cells after sublethal doses of radia-
tion (33). CICs, also called cancer stem cells (CSCs), derived 
from many types of human cancers and cancer cell lines 
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demonstrate increased therapeutic resistance, partly because 
they can evade differentiation and senescence induced by the 
immune-suppression cytokine interferon (IFN) signalling 
pathway (58-60).

Studenckan et al (27) coined the term ‘senoptosis’, which 
refers to the phenomenon of γ-IR inducing deep senescence in 
human diploid fibroblasts (HDFs) with features of both senes-
cence and apoptosis. Senescence-associated CD4+ T (SA-T) 
cells, PD-1+ and CD153+ CD44high cells could serve as suitable 
biomarkers of immune ageing, as well as potential targets for 
controlling cancer (61). These observations could lead to new 
theories for predicting the prognosis of patients after treatment 
with a combination of immune therapy and RT.

The mechanisms underlying IRIS are becoming increas-
ingly abundant and clear, ranging from the classical cell 
cycle regulation, DDR and DNA damage repair processes 
to related miRNAs, lncRNAs, IR factors and cell hetero-
geneity. Moreover, numerous unelucidated and unsolved 
problems related to the induction of CS by IR remain, and IRIS 
appear to be more complex in cancer cells than in normal cells 
partly because of the intricate biological features of tumour 
cells.

3. CS and radiosensitivity

IRIS is the result of the inaccurate repair of damaged DNA 
after IR. Targeting accelerated and increased IRIS has been 
an important method for increasing the effectiveness of RT.

Poly (ADP-ribose) polymerase (PARP) is known to func-
tion in various DNA repair mechanisms, such as base excision 
repair, HR and NHEJ. PARP inhibitor (PARPi) has been used 
to treat tumours with BRCA1 or BRCA2 mutations (62) and 
can be used in combination with other treatment measures. 
Many studies have indicated that PARPis can sensitize most 
cancer cells to IR by prolonging growth arrest and CS (63-65). 
Concurrent therapy with blockade of DNA-dependent protein 
kinase (DNA-PK) and PARP-1 can accelerate the senescence 
of irradiated non-small cell lung cancer (NSCLC) cells and 
irradiated H460 xenografts further than that achieved with IR 
alone (66) (Table II).

Other evidence has also demonstrated that CS and irra-
diation have a synergistic effect when applied in combination 
with irradiation. Phosphorothioate‑modified antisense oligo-
nucleotide (PS62ASODN), which inhibits human telomerase 
reverse transcriptase (hTERT) to stimulate senescence, 

Figure 1. Cellular senescence is induced by IR. The exposure of both tumour cells and normal cells to IR can lead to DNA damage. NHEJ and HR are two 
main pathways for repairing DSBs, which are especially potent stimuli for inducing CS. Inevitable DNA damage triggers cell cycle arrest accompanied by 
mitotic bypass. ATM, p53, p21, p16-Rb, p38-MAPK, factors in the NF-κB signalling pathway, ROS and cyclin-CDK complexes are involved in this process. 
SNCs demonstrate senescence-associated heterochromatin foci, activated metabolism, the SASP and SA-β-Gal-positive staining. The SASP contributes to 
profibrotic and proinflammatory factors and plays a role in active immune surveillance. The SASP also alters tissues and the surrounding microenviron-
ment through paracrine, autocrine, or endocrine methods. Finally, tumour SNCs may be cleared or regrown, and normal SNCs may be obliterated, induce 
fibrosis or promote tumourgenisis. Furthermore, non‑senescent cells may become senescent or resistant to IR. ATM, ataxia telangiectasia mutated protein; 
CDK, cyclin‑dependent kinase; DDR, DNA damage response; DSBs, DNA double‑strand breaks; HR, homologous recombination; IR, ionizing radiation; 
IRIS, IR‑induced cellular senescence; NF‑κB, nuclear factor κ‑B; NHEJ, non‑homologous end joining; p38MAPK, p38 mitogen‑activated protein kinase; 
pRb, retinoblastoma protein; ROS, reactive oxygen species; SA‑β-Gal, senescence-associated β‑galactosidase; SAHF, senescence‑associated heterochromatin 
foci; SASP, senescence‑associated secretory phenotype; SNCs, senescent cells; tumor‑SNCs, tumour senescent cells; normal‑SNCs, normal senescent cells.
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enhanced the inhibition of tumour characteristics in liver 
cancer cells (67). Telomeric repeat-binding factor 2 (TRF2), 
a member of the shelterin complex that plays a key role in 
protecting and stabilizing chromosomal ends, markedly 
increased the radiosensitivity of human mesenchymal stem 
cells (hMSCs) compared to that of controls in both prolif-
eration and senescence assays (68). Similarly, inhibition of 
the mammalian target of rapamycin (MTOR) pathway can 
augment the radiosensitivity of cancer cells by promoting 
CS (69). In glioblastoma (GBM) cells, silencing both histone 
deacetylase 4 (HDAC4) and erythropoietin receptor (EPOR) 
promoted IR-induced senescence and reversed radioresis-
tance (70-71). Moreover, GBM cells treated with verapamil 
in combination with carmustine and irradiation were more 
vulnerable to IRIS than those subjected to individual or 
dual-combination treatment (72).

Irradiated non-small cell lung cancer (NSCLC) cells 
can be rendered more radiosensitive by inhibiting epidermal 
growth factor receptor (EGFR) in a p53-dependent senescence 
pathway (73). However, other evidence has revealed that 
senescence is a prominent mechanism of radiosensitization 
in 45% of NSCLC cell lines and occurs independent of the 
p53 status but is linked to p16 induction. Senescence and 
radiosensitization have also been linked to an increase in 

residual radiation-induced DNA damage, especially DSBs, 
regardless of the p53/p16 status (73). Notably, irrespective 
of the cell-based assay employed, caution should be paid to 
avoid misinterpreting radiosensitivity data in terms of reduced 
viability (74). Furthermore, similar to receptor tyrosine kinase 
(RTK) targeting strategies in cancer, IRIS could represent a 
potential alternative treatment outcome, both allowing tumour 
growth control and enabling patients to have a better quality 
of life (75). However, as the SASP incidence increases, IRIS 
appears to be a candidate mechanism contributing to Fanconi 
anaemia complementation group A (FancA)-mediated radio-
resistance in head and neck squamous cell carcinoma (11).

Collectively, these findings indicate that many radiosensi-
tizers function based on CS. Limited benefits suggest that more 
complicated mechanisms should be considered and explored 
because CS may facilitate radioresistance in tumour cells and 
increase the radiosensitivity of surrounding normal cells.

4. CS and IR side effects

CS induced by IR in normal cells leads to tissue fibrosis 
and organ dysfunction and increases the risk of secondary 
neoplasms in almost all bodily systems (42,64). As a result, 
decreasing these side effects induced by IRIS has been a 

Table I. Features of IRIS in normal cells and cancer cells.

Features  Normal senescent cells Neoplastic senescent cells (Refs.)

Morphological Larger, flattened, increased granularity, and (22,23)
transformation increased cytoplasmic vacuolar content
Cell cycle arrest a. S and G2/M‑phase arrest, mitotic skipping,  (24‑26)
 overexpression of cyclin D1, tetraploid cells
 b. Related to the DDR-network
Special description Senoptosisa; Senescence‑like growth arrest (SLGA) (27,28)
IR dose dependent Low dose resistant to CS, even promote  From low to high dose can lead to CS (29,30)
 proliferation
Fraction size Slow‑growing fibroblasts and most a. Rapidly proliferating tumour cells  (31,32)
 late-responding cells exhibit high sensitivity are not very sensitive
  b. Similar: single dose or fractioned
  irradiation
Cell type Almost all normal cells can develop IRIS a. non-tumorigenic cells more prone (33-35)
  than CSCs
  b. degree of differentiation
SASP A range of pro‑ inflammatory and pro‑fibrotic  Differ among different cells, high (34,36)
 chemokines, cytokines, growth factors and heterogeneity
 proteases, such as IL‑1, IL‑6/8, CXCL1,
 CCL2, MMPs, TGF-β, HGF, GM-CSF
Bystander effect Especially in senescent fibroblasts and Breast cancer cells, CRC cells,  (37‑39)
 senescent ECs NSCLC cells

aPhenomenon of γ-IR-induced deep senescence in HDFs with features of both senescence and apoptosis. CCL2, CC chemokine monocyte 
chemoattractant protein (MCP)‑1; CRC, colorectal cancer; CS, cellular senescence; CSCs, cancer stem cells; CXCL1, chemokine (C‑X‑C 
motif) ligand 1; DDR, DNA damage response; SLGA, senescence‑like growth arrest; ECs, endothelial cells; GM‑CSF, granulocyte‑macrophage 
colony‑stimulating factor; HGF, hepatocyte growth factor; MMPs, matrix metalloproteinase; NSCLC, non‑small cell lung cancer; IL‑1α, inter-
leukin 1α; IL‑6/8, interleukin‑6/8; IR, ionizing radiation; IRIS, IR‑induced cellular senescence; Ref., reference; SASP, senescence‑associated 
secretory phenotype; TGF‑β, transforming growth factor-β; HDFs, human diploid fibroblasts.
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direction for improving the therapeutic radiation ratio with 
the exception of radiosensitizers. An increasing number of 
researchers are exploring the deeper mechanisms underlying 
this process, and some interference targets have exhibited 
potential to suppress CS in normal cells (Table III).

Telomeres. The length of telomeres in somatic cells shortens 
over time due to increasing age or pathogenic factors, resulting 
in CS. Both chemotherapy and RT significantly impair 
telomere maintenance and function in normal human cells, 
which may lead to CS and ultimately result in tissue/organ 
damage and secondary malignancies in long-term survivors 
of cancer (78). However, the telomere length and the telomere 
length distribution in peripheral leukocytes was revealed 
to remain unchanged after RT (79). Residual NP-2 cells 
(human glioma-derived cells) exhibited CS without changes in 
telomere length after 6 Gy of C-ion irradiation (80).

Pulmonary fibrosis. IR‑induced pulmonary fibrosis (PF) is a 
severe late side effect of thoracic RT. Irradiated mice admin-
istered with an inhibitor of B‑cell lymphoma‑2 (Bcl‑2)/B‑cell 
lymphoma-extra large (BCL-xL) via gavage after persistent 
PF developed reduced type II pneumocyte senescence, and PF 
was reversed (81). Both recombinant truncated plasminogen 
activator inhibitor-1 (PAI-1) protein (rPAI-1) and rapamycin, 
were revealed to prevent radiation-induced fibrosis in 
the lungs of mice (82,83). In terms of CS, these data indicate 
that PF is less challenging to treat and more preventable than 
ever.

Myelosuppression. Total body irradiation (TBI) induces 
long-term bone marrow (BM) suppression via the induction 
of premature senescence in haematopoietic stem cells (HSCs) 
in a p16-independent manner (84). The selective clearance of 

SCNs, including senescent BM-derived HSCs and senescent 
muscle stem cells, by a pharmacological agent or small-mole-
cule inhibitor of p38 MAPK was beneficial in part through its 
rejuvenation of aged tissue stem cells and rescue of long-term 
myelosuppression (85,86). 

Childhood cancer survivors. Childhood cancer survivors are at 
an increased risk of frailty, which is partly a result of RT (87); 
however, IR‑reduced CS in children has more profound influ-
ences. The leukocyte telomere length (LTL) was shorter in 
childhood acute lymphocytic leukaemia (ALL) survivors who 
underwent treatment with cranial IR than in survivors in the 
control group, which may lead to the premature development 
of age-related chronic conditions in survivors (88). Notably, 
a regeneration defect in ageing germline stem cells after IR 
could be treated by the loss of FOXO in an adult model of stem 
cell injury induced by low-dose IR (89).

RB gene and other key genes. These researchers also justi-
fied that MSCs in which members of the RB gene family 
were silenced did not exhibit increased apoptosis, necrosis 
or senescence compared with untreated cells after exposure 
to X-rays at 40 and 2,000 mGy. These surviving MSCs 
exhibited accumulated DNA damage and may have undergone 
neoplastic transformation (90). Therefore, attention should be 
paid to cancer patients with RB gene mutations in terms of 
evaluating the onset of secondary neoplasms following RT. 
Another research group used weighted gene co-expression 
network analysis (WGCNA) to screen for differentially 
expressed genes between the senescence and non-senescence 
groups following RT and identified six hub genes: BANK1, 
Tomm70a, AFAP1, Cd84, Nuf2 and NFE2 (91). The authors 
provided an alternate method to search for key genes linked 
to IRIS and built a foundation for exploring these genes (91).

Table II. CS and radiosensitivity in typical types of cancer cells.

   Role of CS
Type of cancer (cells) Gene/medicine Mechanisms/Targets (Se‑ or Re‑) (Refs.)

HNSCC FancA SASP Re- (11)
NSCLC (H460 and A549) PAPRi+ inhibitors of DNA-PK Promoting G2-M cell cycle arrest Se (66)
Liver cancer (Walker 256) PS62ASODN Against hTERT Se- (67)
hMSC TRF2 Protecting and stabilizing Se- (68)
  chromosomal ends
GBM (U251MG, U87MG) HDAC4 silencing Sustain Double strand break repair Se- (70)
GBM (U87MG) Verapamil+carmustine Reducing intra‑cellular ROS Se‑ (72)
  and calcium ion levels
GBM cells EPOR silencing Inducing G2/M cell cycle arrest Se‑ (71)
Breast cancer cells Telomere-mitochondrion link Telomere dysfunction hTERT Se- (76)
(MCF-7 cells)  suppression
Sarcoma cells HSP90 Inducing CS Se- (77)

CS, cellular senescence; DNA‑PK, DNA‑dependent protein kinase; EPOR, erythropoietin receptor; GBM, glioblastoma; HDAC4, histone 
deacetylase 4; hMSC, human mesenchymal stem cells; HNSCC, human neck squamous cell carcinoma; HSP90, heat shock protein 90; 
FancA, Fanconi anaemia complementation group A, hTERT, human telomerase reverse transcriptase; TRF2, telomeric repeat‑binding factor 2; 
NSCLC, non‑small cell lung cancer; PAPRi, poly(ADP‑ribose) polymerase inhibitor; PS62ASODN, phosphorothioate‑modified antisense 
oligonucleotide; SASP, senescence‑associated secretory phenotype; Se, radiosensitive; Re, radioresistant; Ref., reference.
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Radiation sources. Different radiation sources used in IR have 
different effects on normal cells. Alessio et al (92) revealed 
that IR with α particles created less apoptosis and senescence 
in BM‑MSCs; that is, α particles may spare healthy stem cells 
more efficaciously than X‑rays. Low‑level laser therapy (LLLT) 
enhanced viability and proliferation and reduced senescence 
of fibroblasts following γ-IR exposure, while LLLT resulted 
in decreased proliferation and increased senescence in breast 
cancer cells (MDA-MB-231 cells) (93). It is worth mentioning 
that the greater biological efficacy of C ions compared to that 
of low linear energy transfer (LET) radiation (X-rays) may 
be misevaluated in 2D culture experiments (94). Relevant 
models and beams are necessary to promote the use of charged 
particles with increased patient safety.

The application of senolytic agents that selectively kill 
senescent cells may improve organ function, including SNCs 
induced by IR (81,95). Other therapeutic methods, including 
antioxidants, free radical scavengers, mTOR inhibitors, 

anti-inflammatory agents, stem cell therapy and senomor-
phics, also have the potential to reduce side effects induced by 
IRIS (9). MnTnBuOE-2-PyP could inhibit radiation-induced 
collagen contraction and CS in fibroblasts but could not 
protect colorectal cancer cells from IR damage (93,96), 
potentially providing new options for reducing IR-induced 
damage. However, further investigations need to be performed 
in humans to evaluate their safety and efficacy.

5. IRIS and tumour cell biological behaviour

In fact, the SLGA response to IR may reflect a key mechanism 
of residual-cell survival, ultimately resulting in radioresis-
tance, tumour regrowth and dormant tumour recurrence (102). 
Recently, the phenomenon that SCNs can regrow after expo-
sure to IR has attracted increasing attention, which reflects 
that CS plays ‘opposing roles’ in RT and other genotoxic 
therapies (23,103,104). SNCs appearing in the context of 

Table III. Cellular senescence and IR side effects.

Side effect Irradiation Experimental cell/animal Targets Method (Refs.)

Premature Single 20 Gy Brain microvascular A Disintegrin And Downregulation (4)
neurodegenerative  endothelial cells Metalloprotease 10 of ADAM 10
diseases  (bEnd.3 cells) (ADAM10)
Hippocampus 5 Gy of cranial Whole-brain irradiation p53, p21, and IL-6 Knockout of the (42)
damage IR mouse were increased TRP53 or p21 gene
Neuropsychological X‑rays Νeural stem and Caspase‑1 activation ‑ (65)
deficits  progenitor cells (NSPCs)
PF 17 Gy X‑ray C57BL/6J mice, MMP‑3, IL‑1, TGF‑β Inhibitor of Bcl‑2/ (81‑83)
  type2 pneumocytes  BCL‑xL; rPAI‑1;
    Rapamycin
Adult stem cell 50 Gy Drosophila melanogaster FOXO and mTOR FOXO RNAi (89)
injury  (GSCs) homologue
IR-induced DNA 2.5 Gy and Human breast cancer Different responses to LLLT (93)
damage 10 Gy γ‑IR and fibroblasts LLLT following
   exposure to IR
Radiation‑induced 2 Gy fibroblasts, Fibroblasts and CRC Manganese  (96)
collagen contraction  CRC cells cells present different porphyrins
   responses to medicine -MnTnBuOE-2-PyP
PF 12.5 Gy thorax C57BL/6J mice  Pathogenesis (model) RNA sequencing (97)
 irradiation   of lung tissue
IR-induced 10 Gy X-rays Human coronary artery  SASP, STAT3, BSE Proteomics analysis (98)
cardiovascular  endothelial cells
disease
IR‑Induced damage 2 Gy X‑rays Mouse prostate fibroblast TGF‑β1signaling ROS scavenger (99)
in the prostate  cells pathway (MnTE-2-PyP)
BM suppression,  6.5 Gy of-IR Mouse model ROS-p16 pathway MnTE (100)
HSC
BM injury 4 Gy γ-TBI Ly5.2 mice Inhibit HSC senescence Metformin (101)

Bcl‑2/BCL‑xL, B‑cell lymphoma 2/B‑cell lymphoma‑extra large; BM, bow marrow; BSE, bystander effect; FOXO, Forkhead box O; 
CRC, colorectal cancer; GSCs, germline stem cells; mTOR, mammalian target of rapamycin; HSC, hematopoietic stem cell; MMP‑3, matrix 
metalloproteinase‑3; MnTE, Mn(III) meso‑tetrakis‑(N‑ethylpyridinium‑2‑yl) porphyrin; IR, ionizing radiation; LLLT, low‑level laser therapy; 
PAI‑1, plasminogen activator inhibitor‑1; PF, pulmonary fibrosis; Ref. reference; RNAi, RNA interference; ROS, reactive oxygen species; 
TBI, total body irradiation; TGF‑β, transforming growth factor-β; SASP, senescence‑associated secretory phenotype; STAT3, signal transducer 
and activator of transcription 3.



ONCOLOGY REPORTS  42:  883-894,  2019 889

neoadjuvant chemoradiotherapy for rectal cancer can promote 
epithelial-mesenchymal transition (EMT) and further affect 
the residual tumour microenvironment (105).

Some DNA damage foci induced by IR may persist for 
a long time. However, the repair of DSBs in SCNs may 
ultimately result in recovery and regrowth after combina-
tion IR/PARPi treatment (106,107). Furthermore, the cells 
regrown after IRIS may exhibit more aggressive biological 
behaviours, such as enhanced proliferative ability and 
increased invasion and migration capacities, than those 
existing before IR. SCNs also acquired the ability to secrete 
many types of factors to facilitate growth and invasion 
in vitro and in vivo (5) (Fig. 2).

Normal cells are more sensitive to the IR dose regarding 
the changes in proliferative ability induced by IRIS, while 
tumour cells seem to dull to the IR dose and segmentation 
mode. Fractionated radiation and single IR (e.g., 6 or 3x2, 
12 or 6x2 Gy) exposures have equivalent abilities to inhibit 
tumour growth via IRIS in vitro and in vivo (32). Ablative 
doses (18 Gy) of radiation exhibit more inhibitory effects on 
the proliferative, migratory and invasive capacities of lung 
cancer-associated fibroblasts (CAFs) because CAFs play 
significant roles in cancer cell invasion and metastasis (108). 
A low dose of 30 mGy γ-IR was revealed to increase the 
overall proliferative potential of normal human fibroblasts 
(HELF-104) (56), while γ-IR could inhibit the growth of 

primary prostate epithelial cells by inducing senescence, not 
apoptosis (109).

Apart from proliferative arrest, the SASP is another 
prominent feature of senescent cells (110). The SASP includes 
cytokines, chemokines, growth factors and proteases and can 
trigger the activation of a complex signalling network (111). 
Irradiated ECs may adversely affect non-irradiated 
surrounding cells via the SASP, which has been linked to 
radiation-induced cardiovascular disease (98). The cytokine 
IL-6, an SASP component, is highly upregulated in many 
cancers and is considered one of the most important cyto-
kines involved in pro- and anti-tumourigenic effects (112). 
Senescence-associated IL-6 and IL-8 cytokines can be 
triggered by paracrines, autocrines, and endocrines, which 
reinforce the senescent milieu and inflammatory microenvi-
ronment in breast cancer cells (36).

Furthermore, the IR-induced bystander effect (BSE) may 
have important implications in RT (113). The IR-induced BSE 
describes how cells not exposed to IR show biological changes 
under the influence of molecular signals secreted by irradiated 
neighbouring cells (113,114). Several pathways are involved in 
the paracrine circuit that induces senescence in neighbouring 
cells, such as the matrix metalloproteinase‑2 (MMP‑2)/tissue 
inhibitor of metalloproteinase‑2 (TIMP‑2), IGFBP3/PAI‑1, 
and peroxiredoxin 6/endoplasmic reticulum protein 46 
(ERP46)/Parkinsonism‑associated deglycase (PARK7)/cathepsin 

Figure 2. IRIS and biological characteristics of tumour cells. On the one hand, SCNs, including tumor-SNCs and normal-SNCs acquire the ability to secrete 
many types of factors (e.g., SASP factors: IL-1α/β, IL‑6/8, MMPs, VEGF, TGF‑β, CXCL1/2/3 and HGF) and facilitate tumour cell growth and invasion in vitro 
and in vivo. On the other hand, the cells regrown after IRIS may also develop EMT and stem-like features with enhanced proliferation, invasion and migration 
capacities, than those existing before IR. Upregulation of survivin, Cdc2, and Cdk1 may help senescent tumour cell regrowth. In addition, the IR-induced 
BSE may have important implications in this progression, and MMPs, TIMP‑2, PAI‑1, ERP46, PARK7, may participate in this process. BSE, bystander effect; 
Cdc2, cell division cycle 2; Cdk1, cyclin‑dependent kinases; CXCL1/2/3, the chemokine (C‑X‑C motif) ligand 1/2/3; EMT, epithelial‑mesenchymal transition; 
ERP46, endoplasmic reticulum protein 46; HGF, hepatocyte growth factor; IL‑1α/β/6/8, interleukin‑1α/β/6/8; IR, ionizing radiation; IGFBP‑3/5, insulin‑like 
growth factor‑binding protein‑3/5; IRIS, IR‑induced cellular senescence; MMPs, matrix metalloproteinases; PAI‑1, plasminogen activator inhibitor 1; 
PARK7, Parkinsonism‑associated deglycase; SASP, senescence‑associated secretory phenotype; SNCs, senescent cells; TIMP‑2, tissue inhibitor of metal-
loproteinase 2; VEGF, vascular endothelial growth factor; tumor‑SNCs, tumour senescent cells; normal‑SNCs, normal senescent cells.
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D/major vault protein pathways (115). Moreover, lung fibro-
blasts with premature senescence resulting from IR may 
strongly enhance the growth of malignant human lung cancer 
cells (A549 and H1299) in vitro and in immunocompromised 
mice through increasing the expression of matrix MMPs (38).

In other words, it is common that various tumour cells can 
undergo SLGA after different types of IR. However, these 
tumour SNCs may recover their proliferative ability and exhibit 
more aggressive biological behaviour when the environment 
is suitable. While the SASP exhibited by tumour SCNs and 
normal SCNs is mostly responsible for this process, the BSE 
induced by IR also plays a crucial role via various pathways. 
However, the complexity of the SASP and various mecha-
nisms of action still restrict our understanding of IRIS (35). 
The mechanism underlying IR-induced BSE and tumour cell 
escape from IRIS remains unknown, and further research is 
urgently required to solve this problem.

6. Other related mechanisms

Although the p16-pRB and p53-p21 tumour suppressor 
pathways are widely recognized as the main mechanisms 
underlying SLGA, it is still unclear what makes this arrest 
stable and what makes CS act as a double-edged sword in 
cancer treatment (116), especially in terms of improving 
the efficacy of RT. There may be other related mechanisms 
contributing to IR-induced senescence.

Mitochondrial dysfunction. Mitochondria play an important 
role in radiation-induced cellular damage, and different 
qualities of radiation affect the changes in mitochondrial 
dynamics (117). Cells exposed to low-dose X-rays and replica-
tive senescent cells exhibit a residual capacity to use fatty acids 
and glutamine as alternative fuels, respectively (118). Several 
mitochondrial signalling pathways have been revealed to 
induce CS (119). DNA cleavage occurring in senescent HDFs 
after γ-irradiation was triggered by a modest decrease in the 
mitochondrial membrane potential, which was strong enough 
to release mitochondrial endonuclease G (EndoG). Then, 
EndoG translocated into the nucleus to induce the nonlethal 
cleavage of damaged DNA (27).

IR-induced senescence in quiescent ECs is mediated by 
at least 2 different pathways dependent on the mitochondrial 
oxidative stress response and p53 activation (120). hTERT 
suppression caused by either C ion irradiation or MST-312 
impairs mitochondrial function, and telomere-mitochondrion 
links play a role in the induction of senescence in MCF-7 cells 
after C ion irradiation (76).

Ferritinophagy. Ferroptosis is a form of regulated necrotic 
cell death controlled by glutathione peroxidase 4 (GPX4). 
Ferritinophagy is a lysosomal process that promotes ferritin 
degradation and ferroptosis. Iron accumulation in SNCs is 
driven by impaired ferritinophagy. The autophagy activator 
rapamycin could prevent both the iron accumulation phenotype 
of SNCs and the increase in TfR1, ferritin and intracellular 
iron, however, rapamycin failed to re-sensitize these cells to 
ferroptosis (121).

Acyl-CoA synthetase long-chain family member 4 (Acsl4) 
is preferentially expressed in a panel of basal-like breast 

cancer cell lines and predicts their sensitivity to ferroptosis. 
Acsl4 inhibition is a viable therapeutic approach for preventing 
ferroptosis-related diseases (122).

Cyclic guanosine monophosphate (GMP)‑adenosine 

monophosphate (AMP) synthase (cGAS). cGAS is a DNA 
sensor in the DDR process. Genomic DNA damage leads 
to cGAS activation, stimulation of inflammatory responses, 
CS and cancer via the cGAMP/stimulator of interferon genes 
(STING) pathway (123). cGAS deletion also abrogated SASPs 
induced by IR. cGAS mediated CS and inhibited immortaliza-
tion, and cGAS activated antitumour immunity (124). cGAS 
recognized cytosolic chromatin fragments in SNCs. The activa-
tion of cGAS, in turn, triggered the production of SASP factors 
via STING, thereby promoting paracrine senescence (125).

7. Future perspectives

Although our understanding of CS in IR is still initial, 
similar to RT in the treatment of cancer, IRIS functions as a 
‘double‑edged sword’ and crucially influences the comprehen-
sive results of RT. First, because the SASPs created by different 
types of SCNs are highly different, SCNs play a complicated 
role in the response of cancer to RT via SASPs. Developing 
effective pharmacological methods, such as senolytic agents, 
to remove accumulated SNCs or weaken SASP intensity may 
be a promising method (126). In addition, combining prosenes-
cence therapy with checkpoint immunotherapy may contribute 
to eradicating cancer cells from the viewpoint of CS (127). 
Finally, more well-designed preclinical and clinical trials have 
the potential to facilitate the development of targeted SNC 
therapy, which will ultimately improve the clinical outcomes 
of cancer patients subjected to RT.
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