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Ischemia/reperfusion (IR) injury, a main reason of mortality and morbidity worldwide, occurs in many organs and tissues. As a result
of IR injury, senescent cells can accumulate in multiple organs. Increasing evidence shows that cellular senescence is the underlying
mechanism that transforms an acute organ injury into a chronic one. Several recent studies suggest senescent cells can be targeted
for the prevention or elimination of acute and chronic organ injury induced by IR. In this review, we concisely introduce the
underlying mechanism and the pivotal role of premature senescence in the transition from acute to chronic IR injuries. Special focus
is laid on recent advances in the mechanisms as well as on the basic and clinical research, targeting cellular senescence in multi-
organ IR injuries. Besides, the potential directions in this field are discussed in the end. Together, the recent advances reviewed here
will act as a comprehensive overview of the roles of cellular senescence in IR injury, which could be of great significance for the
design of related studies, or as a guide for potential therapeutic target.
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FACTS

● Ischemia/reperfusion(IR) injury is an inevitable pathological
process in many clinical practices, such as transplant surgery,
emergency rescue after shock, myocardial infarction and so
on. The morbidity and mortality owing to IR injury remain high
although many treatments have been developed to prevent
this process.

● Cellular senescence is a state of irreversible cell-cycle arrest
that could be caused by many stresses, including IR injury,
which is called Stress-induced Cellular Senescence(SIPS).

● SIPS plays a key role in IR-induced acute and chronic tissue
damage/dysfunction of multiple organs, especially in kidney,
heart and brain.

OPEN QUESTIONS

● Currently, the underlying mechanism of IR-induced acute to
chronic organ and tissue damage remains complicated and
obscure. Therefore, it is of great significance that further study
needs to be carried out.

● Cellular senescence serves as a core mechanism in IR-induced
acute to chronic organ and tissue damage. However, the
specific mechanism underlying senescence-induced acute and
chronic tissue damage remains unclear and needs to be
clarified in the future.

● A large number of reports have confirmed that cellular

senescence may serve as a therapeutic target to alleviate IR-
induced tissue and organ injury. Hence, the development of
treatments targeting cellular senescence will have a wide
clinical application in IR-induced acute and chronic injury.

INTRODUCTION
Ischemia/reperfusion (IR) injury refers to a condition when the
tissues or organs suffer from restricted blood supply, the recovery
of blood supply and perfusion do not alleviate ischemic injury,
conversely lead to further damage/dysfunction. It is an inevitable
pathological process in many clinical practice, such as transplant
surgery, emergency rescue after shock, and myocardial infarction.
Despite techniques such as thrombolytic therapy, percutaneous
coronary angioplasty, and cardiopulmonary bypass have made
incredible advancements in reducing tissue ischemia, the morbidity
and mortality owing to IR injury after operation still remain high.
Extensive studies are focusing on investigating the underline
mechanisms of IR injury, involving oxidative stress [1–4], calcium
overload [1, 3], mitochondrial dysfunction [3, 5, 6] and excessive
inflammation [1, 3, 7, 8]. These multiple signaling pathways are
interrelated and interactive, which eventually contribute to different
kinds of cell phenotypes due to different environments and extents
of damage: apoptosis [7, 9], necroptosis [9–12], necrosis [1, 2, 7],
pyroptosis [9, 13, 14], ferroptosis [15–17] and cellular senescence
[18]. However, the full picture of the pathophysiology of IR injury is
far from complete and further research is needed.
Cellular senescence refers to the state of nonreversible cell-

cycle arrest that plays dual roles in different conditions [19, 20]
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(Fig. 1). In IR-induced acute and chronic tissue damage/dysfunc-
tion, cellular senescence is of great significance. In general,
senescence can be divided into replicative senescence and
premature senescence [21](Fig. 2). Different from replicative
senescence induced by telomere shortening after repeated cell
division, premature senescence refers to the situation that
accelerated by numerous stressful stimuli such as oxidative stress,
DNA damage, mitochondrial dysfunction, inflammation, activated
oncogenes [22, 23], which is also described as stress-induced
premature senescence (SIPS). For the most part, cellular senes-
cence is triggered primarily by the activation of p53/p21CIP1 and/
or p16/pRb pathways and characterized as G1/S (or G2/M) cell-
cycle arrest [22, 24–26]. Moreover, cellular senescence can induce
the production of various chemokines, inflammatory cytokines,
extracellular matrix remodeling factors, and growth factors by
“senescence-associated secretory phenotype” (SASP), including IL-
1, IL-6, PAI-1, TGF-β, CTGF, CCN2, and MCP-1 [27–32].
In recent years, studies have confirmed that cellular senescence

regulates the development and progression of IR-induced acute
and chronic diseases in different organs dynamically and
reversibly [33]. More and more evidence revealed that genetic
and pharmacological clearance of senescent cells could amelio-
rate IR-induced acute and chronic disease [34–37]. However,
cellular senescence induced by IR injury is extremely complex and
has not yet been fully elucidated. Here, we focus on the recent
advances in the role and mechanism of cellular senescence in IR-
induced acute and chronic injury in different organs, and clarify
the basic and clinical treatment options aiming at treating IR-
induced cellular senescence in diverse organs.

RECENT ADVANCES IN ISCHEMIA/REPERFUSION-INDUCED
SENESCENCE MACHINERY
Consistent with other premature senescence caused by various
stressful stimuli, the mechanism underlying IR-induced cellular

senescence is complex, including oxidative stress, mitochondrial
dysfunction, mitophagy deficiency, inflammation response, and
epigenetic modification, which finally contribute to the activation
of p53/p21CIP1 and/or p16/pRb senescent pathway (Fig. 3).

Mitochondrial dysfunction and oxidative stress
IR injury is primarily characterized by mitochondrial dysfunction
and burst production of reactive oxygen species (ROS). The
excessive production of ROS causes oxidative stress in tissues,
leading to cell death and ultimately organ dysfunction [38].
Growing evidence showed that mitochondrial dysfunction and
oxidative stress induced by IR might further result in cellular
senescence, mediated by p21 and p16 signaling activation [39].
In terms of the internal mechanism, recent studies have shown

that mitochondrial autophagy (mitophagy) deficiency after renal
IR would alter mitochondrial network and cause the accumulation
of dysfunctional mitochondria, which led to excessive ROS-
induced senescence [40, 41]. In addition, Miao et al. reported
that IR would inhibit Klotho, a widely reported factor associated
with anti-senescence, leading to the activation of Wnt1- and
Wnt9a-induced mitochondrial injury and cellular senescence in
renal [18]. Meanwhile, Tammaro et al. recently indicated that
deficiency of the triggering receptor expressed on myeloid cells-1
(TREM-1), an innate immune receptor, would damage mitochon-
drial metabolism, increase ROS accumulation, drive G2/M arrest
and senescence in tubular epithelial cells after renal IR [42].
Moreover, IR can accelerate mitochondrial fission–associated
myocardial senescence in mice, following myocardial infarction
[43]. These discoveries are consistent with the hypothesis that
mitochondrial dysfunction and oxidative stress are involved in IR-
induced senescence.

Inflammation
The increased generation of ROS and mtDNA after IR, which are
also named damage-associated molecular patterns(DAMPs),
would contribute to neutrophil infiltration and a large amount
of pro-inflammatory cytokines release, which plays a crucial role in
cellular senescence. Increasing studies have shown a complicated
interaction between senescence and inflammation in IR injury [44].
On the one hand, the overactive inflammatory response is one of
the major predispositions to SIPS. On the other hand, senescent
cells may give rise to senescence of their nearby cells through the
SASP, amplifying the inflammatory response that follows [45, 46].
As for the internal mechanism, inflammation is considered a

complicated interaction between immune cells and parenchymal
cells [47] and marked by infiltration of immune cell in the
mesenchyme [48]. In the early phases of IR injury, neutrophils are
recruited by DAMPs mainly [49]. These DAMPs, interact with
pattern recognition receptors(PRRs) on macrophages and con-
tribute to their activation [50], and thus promote cell-cycle arrest
through SASP [51]. Another kind of innate immune cells, Dendritic
cells(DCs), which serve as a mediator of the recruitment and
activation of effector T cells, promoting interstitial immune
response [52]. DCs would also aggravate SASP production in
immune cells in cisplatin-induced AKI, which serve as crucial
amplifiers of local innate immune responses in AKI [53]. These
studies emphasize the importance of inflammation microenviron-
ment in cellular senescence. Meanwhile, Qian Li et al. pointed out
that renal sympathetic neurotransmitter NE, acting on the α2A-AR
of epithelial cells, could promote the crosstalk between inflamma-
tion and cellular senescence, contributing to renal fibrosis after IR
injury [54]. Weifeng Yao et al. found that aerosol inhalation of a
hydrogen-rich solution would attenuate renal macrophage
infiltration, the release of pro-inflammatory cytokine, and cellular
senescence via TGF-β1 pathway in septic acute kidney injury (AKI)
[55]. Besides, inflammation and senescence share a cascade
amplification process with each other in cardiac [56] and hepatic
IR injury [57]. Recently, Qi et al. found that inhibition of NF-κB

Fig. 1 Role of cellular senescence in physiology and pathology
conditions. Cellular senescence plays dual roles in different
conditions. In physiological conditions, cellular senescence con-
tributes to tumor suppression, wound healing, and embryonic
development. Cellular senescence is thought to have evolved as an
antitumor mechanism where the senescence-associated secretory
phenotype(SASP) recruits immune cells to facilitate senescent cells
removal. In embryonic development and wound, cell-cycle arrest is
induced in damaged cells and results in their elimination by
macrophage. Nevertheless, in pathological conditions, senescent
cells may result in carcinogenesis if they exist for a long time
without clearance. Cellular senescence can also contribute to
different kinds of age-associated diseases (such as Alzheimer’s
diseases, cardiovascular diseases, osteoporosis, diabetes, renal
disease, and liver cirrhosis) and chronic tissue injury progression.
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pathway would disrupt the reciprocal cycle between inflammation
and senescence of TECs [58], and the elimination of senescent
myocardiocytes after MI would markedly reduce SASP and induce
efferocytosis of macrophage to downregulate inflammation [59].
Putting it all together, further exploring the positive feedback loop
between inflammation and cellular senescence might help to
alleviate multi-organ injury induced by IR.

Epigenetic modification
In addition to oxidative stress and inflammation, epigenetic
modification is critically involved in IR-induced senescence.
Epigenetic modification refers to changes of genome that occur
without any alteration in DNA sequence, including histone
acetylation [60, 61], DNA methylation [62, 63], miRNA [62], LncRNA
[64, 65], and m6A [66] modification. Growing evidence indicated
that epigenetic modification shared complex interaction with cell

senescence in multi-organ IR injury. For instance, renal IR injury
enhanced the amount of histone H3 acetylation, triggered G2/M
arrest and cellular senescence [62], as well as p53 acetylation in
the premature senescence of renal tubular epithelial cell (TEC)
[67]. Castellano et al. indicated that after IR, aberrant methylation
in DNA regions, which involved in cell-cycle control, would result
in cell-cycle arrest and senescence in TEC [68]. Meanwhile, m6A
modification was found to be a novel mechanism in IR-induced
cellular senescence and organ dysfunction [69, 70]. For example,
activation of m6A methyltransferase METTL3 after MI can lead to
cell-cycle arrest of cardiomyocyte [66]. Besides, Liu et al. reported
that miR-493 targets STMN-1 to promote hypoxia-induced
epithelial cell-cycle arrest in G (2)/M, leading to renal fibrosis
[71]. Moreover, LncRNAs, including SNHG6, AK028326, and Malat1,
were recently reported to regulate the p53-senescent pathway in
IR-induced kidney injury [64]. Taken together, epigenetic

Fig. 2 Cellular senescence signaling pathways. The internal mechanism that leads to cellular senescence varies depending on the triggers
and context. Several pathways contribute to the activation of cell-cycle inhibitors, inhibition of retinoblastoma protein (RB) phosphorylation,
and cell-cycle arrest which is the main manifestation of cellular senescence. The production of various chemokines, inflammatory cytokines,
growth factors, and extracellular matrix remodeling factors which are named “senescence-associated secretory phenotype” (SASP) is also
another significant manifestation of cellular senescence. Cellular senescence can be divided into replicative senescence and stress-induced
premature senescence(SIPS). (I) In replicative senescence, telomere shortening may trigger activation of ataxia telangiectasia mutated (ATM) or
ataxia telangiectasia and RAD3-related protein (ATR) kinases, and result in p53 upregulation, and increased p21. (II) In stress-induced
premature senescence, mitochondrial dysfunction and oxidative stress may activate the mitogen-activated protein kinase kinase (MKK3 and
MKK6) pathway and their downstream effector p38, leading to the upregulation of p16, p53, and p21 level. DNA damage activates a signaling
cascade via ATM/ATR kinases, p53 upregulation, and increased p21. In inflammation response, a component of the senescence-associated
secretory phenotype (SASP) pathway named transforming growth factor-β (TGF-β), may upregulate p21 level through SMAD complexes.
Lastly, oncogenic signaling or loss of tumor suppressors upregulates p16, p53, and p21 levels, mediated by RAS, MYC, and phosphoinositide
3-kinase (PI3K) and their downstream effectors ATM, ATR, and ARF.
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regulation is closely related to multi-organ IR injury, which may
serve as a novel therapeutic target to ameliorate or prevent IR
injury through regulating cellular senescence.

The p53/p21 pathway and p16/pR pathway
Under the combined action of oxidative stress [72, 73], inflamma-
tion [57], and epigenetic modification [68], the p53/p21CIP1

pathway and p16/pRb pathway are activated to induce cellular
senescence in IR injury [74–77] (Table 1 and Table 2). Specifically,
IR induces the persistent DNA damage response (DDR) and
triggers cell signaling cascades reaction involved in the cell-cycle
arrest process and DNA repair by activating the p53/p21CIP1

[22–24] and p16/pRb [73] pathway. As a result, the cyclin-
dependent kinases (CDKs) as well as retinoblastoma protein (RB)
are inhibited while the checkpoint activity is enhanced, leading to
G1/S (or G2/M) cell-cycle arrest.
For instance, oxidative stress happened in IR injury was

reported to activate p53-dependent accumulation of p21CIP1 and
mediate cardiomyocyte senescence, contributing to cardiac
dysfunction as well as pathological remodeling [72]. Meanwhile,
Qi et al. found that IR-induced inflammation would consequently
cause p16INK4A activation and lead to hepatic cellular senescence
[57]. Moreover, a recent study confirmed that IR-induced
aberrant methylation involved in cell-cycle control and DNA
damage would finally result in p53 upregulation and cell-cycle
arrest in specific regions [68].

CELLULAR SENESCENCE IS THE CORE MECHANISM OF
TRANSITION FROM ACUTE TO CHRONIC STAGE AFTER IR
Besides the acute organ dysfunction, cellular senescence was
recently confirmed to make a contribution to the transition from
acute to chronic stage in different organs after IR. Here, we will
combine the recent research progress and discuss the pivotal role

of cellular senescence in acute kidney injury to chronic kidney
disease (AKI-to-CKD) transition, cardiac injury progression and in
ischemic stroke-induced glial scar and cerebral fibrosis (Fig. 4).

Cellular senescence in AKI-to-CKD transition
The kidney receives 20% of cardiac output and consumes 10% of
body oxygen, which makes it vulnerable to IR injury [78].
Moreover, although patients suffer from mild AKI can restore
normal renal function, more than 70% of them experience renal
maladaptive repair, and more than 50% of them will gradually
develop into CKD [79], becoming the fifth leading cause of death
by 2040 [78, 80]. Hence, research on the underlying mechanism of
AKI-to-CKD is becoming increasingly attractive, and one of the
recent snapshots is the senescent TECs and senescence-associated
fibrosis [9, 74, 81–83]. To be specific, cellular senescence
participates in AKI-to-CKD through multiple mechanisms, such as
SASP, chronic inflammation, mitochondrial dysfunction, oxidative
stress, and myofibroblasts activation.

SASP and chronic inflammation. On the one hand, senescent
TECs caused by renal IR remain metabolically active and adopt
SASP to release inflammatory cytokines and other fibrotic factors
that serve as contributors to risk factors in maladaptive repair [84]
and renal fibrosis [85, 86], such as collagen deposition, vascular
rarefaction and chronic inflammation [86–89]. Interestingly, recent
evidence found that senescent TECs could interrupt the macro-
phage polarization, increasing M1 infiltration and impaired M2
polarization to induce chronic inflammation in kidney [90]. On the
other hand, senescent TECs caused by renal IR might further
induce DNA damage response in neighboring cells by cell-cell
contact via the gap junction and cause cellular senescence in
intact bystander TECs and fibroblasts [91, 92], which might
enhance SASP release and lead to renal maladaptive repair and
senescence-associated fibrosis [81].

Fig. 3 Premature senescence induced by ischemia/reperfusion injury. IR injury first initiates (I) oxidative stress and mitochondrial
dysfunction, followed by (II) inflammation and (III) epigenetic modification, finally activates (IV) p53/p21 and p16 senescence pathway and
cause cellular senescence. (I) IR injury may damage the function of mitochondria in parenchymal cells such as renal tubular epithelial cells,
neurons, cardiomyocytes, and hepatocytes, lead to ROS generation through downregulation of TREM-1 and klotho and can also mediated by
mitophagy defficiency. (II) Inflammation response is characterized by infiltration of immune cells such as macrophages, neutrophils, and
lymphocytes in the mesenchyme which are recruited by ROS generated by oxidative stress initially. The infiltrating inflammatory cells will
release pro-inflammatory factors (also known as SASP if released by senescent cells) such as IL-6 and IL-8. Besides, senescent parenchymal
cells can also release SASP to amplify the inflammation response. (III) Multiple kinds of epigenetic modification including m6A modification,
DNA methylation, histone, and p53 acetylation, miRNAs and LncRNAs are involved in IR-induced senescence. (IV) p53/p21 pathway and p16
pathway are the final signaling to induce cellular senescence.
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Mitochondrial dysfunction and oxidative stress. On the one hand,
Klotho deficiency in IR-induced senescent TECs would further
promote mitochondrial injury, ROS generation, and fibrotic lesions
[18, 93]. Meanwhile, senescent TECs would downregulate Nrf2 and
attenuate anti-oxidative response [39, 88, 94, 95], leading to AKI-
CKD transition [35]. On the other hand, senescent cells produce
and secrete ROS to induce further DNA damage response in
neighboring TECs via gap junction-mediated between adjacent
cells [92]. These pieces of evidence suggest that oxidative stress
and mitochondrial dysfunction are involved in senescence-
induced chronic renal injury.

Myofibroblasts activation. Another key characteristic of maladap-
tive repair is the activation of numerous myofibroblasts which
make contribution to the deposition of collagen and other pro-

fibrotic components in kidney [86]. Recently, increasing evidence
showed that senescent TECs would enhance myofibroblasts
activation via SASP generation in an epithelial-mesenchymal
transition (EMT) manner [96]. Meanwhile, senescent TECs would
generate TGF-β1, a factor contribute to interstitial fibroblast
proliferation and transition to myofibroblasts [97]. Furthermore, a
reciprocal activate loop between senescent TECs and myofibro-
blasts was mediated by Wnt9a-TGF-β1 pathway, which promoted
and accelerated the pathogenesis of renal fibrosis [97]. Taken
these pieces of evidence together, myofibroblasts activation is
substantially relevant to senescence TECs after renal IR.

Cellular senescence in cardiac IR-induced heart remodeling
Consistent with the kidneys, hearts are also prone to suffer from IR
injury since they are organs with high energy demand. As a

Table 1. Senescent pathways and outcomes in renal ischemia/reperfusion injury.

Organ Model Senescence pathway Senescence outcomes Ref.

kidney C57BL/6 mice;
Unilateral renal ischemia 30min and
reperfusion 1d, 7d

p53/p21 pathway
p16/pRb pathway

Renal cellular senescence ↑ (SA-β-gal ↑, p53 ↑,
p16INK4A ↑, p21CIP1 ↑)
Renal inflammation↑
Renal fibrosis↑

[64]

kidney C57BL/6 mice;
Unilateral renal ischemia 35min and reperfusion
1d, 3d, 7d, 14d, 28d

p53/p21 pathway
p16/pRb pathway

Renal senescence ↑ (p53 ↑, p16INK4A ↑, p21CIP1

↑)
Renal fibrosis↑
Renal function↓

[111]

kidney C57BL/6 mice;
Unilateral renal ischemia 35min and
reperfusion 11d

p53/p21 pathway
p16/pRb pathway

Renal senescence ↑ (SA-β-gal ↑, p16INK4A ↑,
P19ARF ↑)
Renal fibrosis↑
Renal mitochondrial injury↑

[18]

kidney C57BL/6 mice;
Unilateral renal ischemia 30min and reperfusion
3d, 21d

Not mentioned Renal cellular senescence ↑ (SA-β-gal ↑)
Renal inflammation↑
Renal fibrosis↑

[138]

kidney C57BL/6 mice;
Unilateral renal ischemia 15min and reperfusion
7d, 14d, 35d

p53/p21 pathway Renal cellular senescence ↑ (p21CIP1 ↑)
Renal inflammation↑
Renal fibrosis↑

[114]

kidney Swiss-Webster mice;
Bilateral ischemia 30min and reperfusion 1, 8d

p53/p21 pathway
p16/pRb pathway

Renal senescence ↑ (p16 INK4A ↑)
Renal cell apoptosis↑

[74]

kidney C57BL/6 mice;
Unilateral renal ischemia 30min and reperfusion
1d, 3d, 7d, 14d, 28d

p53/p21 pathway
p16/pRb pathway

Renal senescence ↑ (p21CIP1 ↑)
Renal inflammation↑
Renal apoptosis↑

[141]

kidney C57BL/6 mice;
Bilateral kidney ischemia 25min and
reperfusion 3d, 7d

p53/p21 pathway
p16/pRb pathway

Renal senescence ↑ (p53 ↑, p16INK4A ↑, p21CIP1

↑)
Renal inflammation↑
Renal injury↑
Renal fibrosis↑

[90]

kidney In vivo: C57BL/6 mice;
Unilateral renal ischemia 30min and
reperfusion 7d
In vitro: NRK-49F cells; H2O2 culture 24 h

p16/pRb pathway In vivo: Renal senescence ↑(p16INK4A ↑)
Renal fibrosis↑
Renal inflammation↑
In vitro: Renal senescence ↑(p16INK4A ↑)
Renal inflammation↑

[89]

kidney C57BL/6 mice;
Bilateral ischemia 45min and reperfusion 24 h

p53/p21 pathway
p16/pRb pathway

Renal senescence ↑(SA-β-gal ↑, p53 ↑, p21CIP1 ↑,
p16INK4A ↑)
Renal function↓
Renal fibrosis↑
Renal inflammation↑

[81]

kidney C57BL/6 mice;
Bilateral ischemia 32min and reperfusion 7d

p16/pRb pathway Renal senescence ↑ (p16INK4A ↑, SA-β-gal ↑,
klotho ↓ )
Renal function↓
Renal fibrosis↑

[97]

kidney BALB/c mice;
Right nephrectomy, left kidney ischemia 30min
and reperfusion 24 h

p53/p21 pathway
p16/pRb pathway
p53 acetylation↑

Renal senescence ↑ (p53 acetylation ↑, p21 CIP1

↑)
Renal apoptosis↑
Renal function↓

[142]

Abbreviations: NRK-49F cells normal rat kidney–49 F cells, LAD left anterior descending artery, LCA left coronary artery, TAC Transverse aortic constriction, hiPSC-
MSCs MSCs derived from human induced pluripotent stem cells.
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process of cardiac repairment after IR, cardiac remodeling is
initially adaptive to the damage induced by IR in the short term,
but becomes maladaptive due to the sustained stress, resulting in
progressive and irreversible cardiac dysfunction and heart failure
[72]. Among all the culprits, cellular senescence induced by IR
injury plays an essential role in heart remodeling and transition
into chronic heart injury [56, 72].
Recent studies showed that senescent cardiomyocytes induced

by cardiac IR would secret SASP [98] and further activate the
maladaptive cardiac remodeling, including cellular hypertrophy,
inflammation, fibrosis, and attenuation of regeneration, which
ultimately contribute to cardiac chronic fibrosis [56, 98]. At the
same time, studies revealed that IR-induced senescent cardio-
myocyte might provide cardioprotective effects by promoting
cellular senescence of fibroblast, which promoted neonatal heart
regeneration by accelerating cardiomyocyte proliferation and
inhibiting cardiac fibrosis [98]. Together, these results present

pieces of evidence of involvement of senescent cells in the acute
to the chronic transition of cardiac dysfunction after IR.

Cellular senescence in ischemic stroke-induced glial scar and
cerebral fibrosis
In addition to the kidney and heart, brain is also prone to suffer
from I/R injury. A recent study also showed that neuron
senescence served as a pathogenic mechanism for ischemic
stroke-induced brain damage [99, 100], which might result in glial
scar and cerebral fibrosis [101].
On the one hand, senescent neurons induced by stroke have a

significant increase in the expression of SASP including IL6, TNFα,
and CXCL1 [99, 100, 102], which induce cerebral inflammation
microenvironment forming and extracellular matrix(ECM) deposi-
tion by a pericyte-dependent manner [101]. On the other hand, in
the early stages of cerebral IR injury, glial cells especially astrocytes
are activated by pro-inflammatory cytokines generated by

Table 2. Senescent pathways and outcomes in cardiac, hepatic, and brain ischemia/reperfusion injury.

Organ Model Senescence
pathway

Senescence outcomes Ref.

Heart C57BL/6J mice;
LAD ischemia 60min and reperfusion 24 h,
72 h, 1w, 4w

p16/pRb pathway
P53/p21 pathway

Cardiac senescence ↑ (SA-β-gal ↑, SASP, p16INK4A ↑,
p21CIP1 ↑)
Cardiac function↓

[56]

Heart C57BL/6J mice;
Coronary artery ischemia 1d, 2d, 7d, 28d

p53/p21 pathway
p16/pRb pathway

Cardiac senescence ↑ (SASP ↑, p53 ↑, p21 CIP1 ↑,
p16 INK4A ↑)

[72]

Heart In vivo: C57BL/6J mice;
LCA ischemia 45min and reperfusion 24 h
In vitro: Neonatal rat cardiomyocytes;
Hypoxia 12 h and reoxygenation 24 h

p53/p21 pathway
p16/pRb pathway

In vivo: Cardiac senescence ↑ (SA-β-gal ↑, SASP ↑,
p16 INK4A ↑, p53 ↑, p19 ↑)
Cardiac function↓
In vitro: Cardiac senescence ↑ (SA-β-gal ↑, SASP ↑,
p16 INK4A ↑, p53 ↑, p19 ↑)

[123]

Heart In vivo: C57BL/6 mice;
LAD ischemia 7d
In vitro: Primary mice cardiomyocytes;
H2O2 culture 24 h

p53/p21 pathway
p16/pRb pathway

In vivo: Cardiac senescence ↑ (SASP ↑, p53 ↑, p16
INK4A ↑)
Cardiac function↓
In vitro: Cardiac senescence ↑ (SA-β-gal ↑, p53 ↑,
p16 INK4A ↑)

[143]

Heart In vivo: mice and rats;
LAD ischemia 1w, 4w;
In vitro: neonatal rat cardiomyocytes;
hypoxia 16 h and reoxygenation 10 h

p53/p21 pathway In vivo: Cardiac senescence ↑ (p53 ↑, SA-β-gal ↑)
Cardiac function↓
Cardiac fibrosis↑
In vitro: Cardiac senescence ↑ (SA-β-gal ↑, p53 ↑)

[43]

Heart C57BL/6 mice;
LAD ischemia 1d, 1w, 2w, 4w

p53/p21 pathway
p16/pRb pathway

Cardiac senescence ↑ (SA-β-gal ↑, SASP ↑, p16 INK4A

↑, p53↑ and p21CIP1 ↑)
[98]

Heart C57BL/6N mice;
TAC 2w, 6 w

p53/p21 pathway
p16/pRb pathway

Cardiac senescence ↑ (SA-β-gal ↑, p16 INK4A ↑,
p21CIP1 ↑)

[144]

Liver In vivo: C57/B6 mice;
Partial hepatectomy, ischemia 1 h and
reperfusion 6 h, 1d, 3d, 5d
In vitro: hiPSC-MSCs cell line
H2O2 culture 2 h and normal medium culture
48 h

p16/pRb pathway In vivo: Hepatic senescence ↑ (SA-β-gal ↑, p16 INK4A

↑)
Hepatic function↓
In vitro: Hepatic senescence ↑ (SA-β-gal ↑, p16
INK4A ↑)

[57]

Brain Adult male Wistar rats
tMCAO ischemia 1 h and reperfusion 24 h, 3
and 7 d

p53/p21 pathway
p16/pRb pathway

In vitro: Cerebral senescence ↑ (lipofuscin granules
↑, SASP ↑, p16 INK4A ↑, p53↑ and p21CIP1 ↑)

[99]

Brain In vivo: Male Sprague–Dawley rats;
left MCAO ischemia 1 h and reperfusion 4d
In vitro: Rat brain cortex astrocytes
Oxygen-Glucose Deprivation 4 h and
Reoxygenation 20 h

p16/pRb pathway In vivo: Cerebral senescence ↑ (SASP ↑, p16 INK4A ↑)
Inflammation ↑ (NOS2 ↑, MPO ↑)
neurological functions↓
In vitro: Cerebral senescence ↑ (SA-β-gal ↑)

[102]

Brain In vivo: CD1 male mices;
tMCAO ischemia 1 h and reperfusion 30min
and 72 h

p53/p21 pathway
p16/pRb pathway

Cerebral senescence ↑ (p16 ↑, p21 ↑)
Inflammation ↑ (TNFɑ↑, IL6 ↑, Cxcl1 ↑)

[100]

Abbreviations: NRK-49F cells normal rat kidney-49F cells, LAD left anterior descending artery, LCA left coronary artery, TAC transverse aortic constriction, hiPSC-
MSCs MSCs derived from human induced pluripotent stem cells, OGD/R oxygen-glucose deprivation/reoxygenation, tMCAO transient middle cerebral artery
occlusion, MCAO middle cerebral artery occlusion.
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senescent neurons [101, 103, 104]. Moreover, reactive astrocytes
may secrete a myriad of adhesion molecules and pro-
inflammatory cytokines, such as VCAM-1, ICAM-1, IL-1β, IL-6, and
TNF-α [105], which could involve in a cyclic process of consecutive
activation, consequently resulting in cerebral fibrosis, glial scar
[106, 107] and regeneration failure in ischemic zones [108].

THERAPIES THAT TARGET CELLULAR SENESCENCE AFTER IR
INJURY
As mentioned above, premature cell senescence caused by IR
injury plays a pivotal role in multiple organs’ acute and chronic
dysfunction. Therefore, treatments targeting cellular senescence
means a promising prospect in IR injury. Based on the observation,
the elimination of senescent cells is mostly beneficial and seems
to have few long-term deleterious consequences, researchers
have identified various novel agents and strategies to achieve this,
which were also called ‘senotherapeutic’ strategies [109]. In
summary, it can be classified into four classifications: pharmaco-
logical agents named ‘senolytics’ that clear senescent cells,
‘senomorphics’ that prevent harmful effects of senescent cells
[110], rejuvenating agents that stimulate SIRT1 to alleviate
senescence, and stem cell therapy (Fig. 5).

Senolytics
Formed by the words “senescence” and “lytic” (destroying),
senolytics include pharmacological agents targeting the specific
elimination of senescent cells. Increasing pieces of evidence have

shown that senolytics might be effective tools to eliminate
senescent cells to treat age-related diseases and IR-induced
cellular senescence [34]. As for senolytics, the most reported
include the combination of dasatinib and quercetin (D+Q),
Navitoclax and FOXO4-D-Retro-Inverso peptide (FOXO4-DRI).

Fig. 4 Mechanisms of senescence-induced acute injury to chronic stage transition. a After kidney IR injury, IR-induced cellular senescence is
a major initiative of AKI-to-CKD transition, which is mediated by SASP and chronic inflammation, mitochondrial dysfunction and oxidative
stress and myofibroblast activation. Firstly, the existence of senescent TECs will cause persistent inflammation and lead to M1 infiltration and
M2 polarization deficiency. Besides, Senescence burden in tubule is aggravated via gap junction and further contributes to chronic
inflammation, leading to collagen deposition and vascular rarefaction. Secondly, Mitochondrial dysfunction and ROS generation caused by
cellular senescence may result in renal fibrosis. Finally, fibroblast will be activated via Wnt9a-TGF-β1 pathway and intensify renal fibrosis.
b After ischemic stroke, IR-induced senescent neurons may lead to reactive gliosis and scar forming. c After heart IR injury, IR-induced
senescent cardiomyocytes result in heart remodeling through inflammation and SASP.

Fig. 5 Therapies that target cellular senescence to alleviate IR
injury. Several kinds of intervention including senolytics, seno-
morphics, rejuvenating agents, stem cell therapy, and other
intervention, are developed to attenuate the deterioration brought
by senescent cells.
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A growing body of pieces of evidence suggest that D+Q
treatment could disable pro-survival networks and eliminate
senescent cells in IR-related organ dysfunctions [111, 112]. For
instance, D+Q could reduce senescent cell burden, promote
TECs’ proliferation, ameliorate renal fibrosis, and decrease renal
inflammation in IR-induced kidney disorders. [111] Moreover,
treatment of aged animals with D+Q was reported to eliminate
senescent cells and diminish cell-free mitochondrial DNA (cf-mt-
DNA) release, attenuating the IR-associated cardiac injury and
prolonging the survival of aged cardiac allografts [112]. Mean-
while, D+Q were reported to be beneficial in reducing
senescent cell levels and improving renal transplantation
outcome [109].
Navitoclax (ABT-263) is a kind of Bcl-2 inhibitors that induces

senescent cell apoptosis and death in aged mice [34, 113] and
promotes rejuvenation of stem cells for tissue regeneration [109].
A recent study revealed that ABT-263 could reduce senescent cell
burdens and restore a regenerative phenotype with improved
function, increased tubular proliferation, and reduced fibrosis in
the kidneys after renal IR [114]. Furthermore, ABT-263 was shown
to eliminate cerebral IR-induced neural cell senescence, reduce
the infarct volume and improve neurological function in animal
models [102]. Elimination of senescent cells with Navitoclax
during cardiac IR injury was proved to be a potential novel
therapeutic avenue in improving patients outcomes following
cardiac IR [56].
FOXO4-DRI, as a novel cell-penetrating peptide, is designed to

interfere with the endogenous p53-FOXO4 interaction [36] and
potentially target senescent cells by influencing the p53-
dependent apoptosis [36]. Although the clearance of senescent
cells with FOXO4-DRI was reported to restore renal function and
reduce inflammation markers in the kidney of aged mice [35, 36],
whether it is therapeutically feasible in IR injury still needs further
exploration. Other approaches rely on immune-system-mediated
clearance of senescent cells are emerging consecutively and
might become promising methods in mitigating senescent
burden after IR-induced senescence in the near future [115].

Senomorphics
The use of senomorphic agents is an alternative to complete the
clearance of senescent cells through senolysis against IR injury.
Senomorphics is designed to prevent cells occurring growth arrest
as well as to disrupt the generation and secretion of SASP while
keep the cells alive. This method could interfere with the pro-
inflammatory nature of IR-induced cellular senescence and
potentially delay the critical effects of IR injury and organ aging
[110].
The most commonly reported senomorphics are rapamycin and

metformin. Rapamycin is a kind of mTOR inhibitors that have been
reported to regulate autophagy and inhibit cellular senescence in
renal IR injury [81, 116, 117] via enhancing Wnt signaling [110].
Metformin, an AMPK activator, has been reported to attenuate IR-
induced mitochondrial dysfunction [118], decrease the level of
p16INK4a and p21CIP1 and inhibit the release of SASP-related
cytokines [119]. Increasing evidence also showed that Lipoxin A4
might stimulate inflammation resolution and inhibit cellular
senescence in septic AKI [46].

Rejuvenating agents
Rejuvenating agents specifically refer to the interventions that
stimulate SIRT1 to alleviate senescence. In mammals, SIRT1 is well-
characterized to enhance cell proliferation and inhibit cellular
senescence through the suppression and deacetylation of p53,
[120–122]. Resveratrol (RSV), as the most reported agonist of
SIRT1, is potentially to protect organs against IR-induced
premature cellular senescence [123]. Further clinical studies are
needed to confirm and elaborate the protective effects on the
application of RSV in IR injury.

Stem cell therapy
Stem cell therapy is another promising treatment for IR-induced
senescence. Multipotent mesenchymal stem cells (MSCs), being a
category of adult stem cells springing from the mesoderm, with
multi-directional differentiation and self-renewal potential, have
recently emerged as a key player in regenerative medicine and
clinical translational research [124–126]. Typically, MSCs have been
extensively studied to inhibit premature senescence by protecting
against the IR-induced pro-oxidative state, cell-cycle inhibition
[93], and chronic fibrosis [127].
Recently, the increasing underlying mechanism of MSCs against

IR-induced senescence has been clarified. On the one hand, MSCs
can exert immunomodulatory ability via secreting soluble factors
or direct contact with the immune cells, and transform them into
an anti‐inflammatory phenotype and further inhibit cellular
senescence [128]. On the other hand, MSCs can secret extra-
cellular vesicles (EVs) to inhibit the generation of SASP in
senescent cells [129, 130]. For instance, cell-cycle arrest of
myocardiocytes after MI can be alleviated by MSC-EVs carrying
miR-150-5p via downregulation of TXNIP [131, 132], or by MSC-EVs
targeting miR-497/Smad7/TGF-β pathway [133]. Yu et al. also
found that EVs carrying mi-202-3p could protect neurons from IR
injury via downregulating TLR4-mediated inflammation response
[124]. Xiao et al. point that MSC-EVs reduce endothelial cell
senescent burden and activate angiogenesis through miR-146a/
Src pathway [134].
With the further study of MSCs, more and more novel

treatments derived from MSCs have been contrived. For example,
prior clearance of senescent cells enhanced the beneficial effects
of KIM‐MSC on cellular senescence [135]. Yu et al. suggested that
mi-R217 inhibitor may enhance MSCs’ repair of vascular damage
and senescence via SIRT1 upregulation [136]. Klotho gene-
modified MSCs were recently found to inhibit cellular senescence
and show elevated anti-fibrotic effects in kidneys after IR [137]. In
general, stem cell therapy provides an innovative approach in IR
injury treatment, but the mechanism and clinical application still
need further study.

Other interventions
Several other interventions were also found effectively targeting
cellular senescence in IR injury. For instance, it was reported that
Cilnidipine could prevent hypoxia-induced mitochondrial hyper-
fission and myocardial senescence [43]. Dexmedetomidine, a
highly selective α2 adrenergic receptor (α2-AR) agonist, was
proved to be useful in inhibiting cellular senescence and IR-
induced renal fibrosis [81]. Moreover, Nicotinamide mononucleo-
tide (NMN) could attenuate renal interstitial fibrosis by suppres-
sing DNA damage and senescence of TECs in AKI [138]. More and
more further study may reveal the potential clinical application
value of such interventions.

CONCLUSION AND OUTLOOK
Increasing pieces of evidence are revealing new insight into the
crucial role of cellular senescence in IR injury. Up to now, IR-
induced mochondrial dysfunction and oxidative stress, inflamma-
tion, epigenetic modification, and activation of p53/p21 and p16/
pRb pathways have been reported to ultimately cause cellular
senescence. At the same time, IR-induced cellular senescence
contributes to the transition from acute organ injury to chronic
dysfunction through inflammation, oxidative stress, mitochondrial
dysfunction, and myofibroblast activation. However, the currently
known function of cellular senescence in IR injury is just the tip of
iceberg. For instance, senescence in different types of cells would
bring different outcomes. As is mentioned in hepatic and cardiac
IR injury, the senescence of hepatic stellate cells [139] and cardiac
fibroblast [98] played a protective role in the repair process. Thus,
advanced technology such as organoid model [140] and single-
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cell sequencing should be adopted to explore the precise role of
cellular senescence in acute organ injury to chronic disease
transition.
With the growing awareness of the importance of cellular

senescence in IR-induced acute organ injury and chronic
dysfunction comes the potential to target cellular senescence
with novel therapeutic strategies. Senolytics, senomorphics, SIRT1
agnoist and stem cell therapy are the most well-reported and
promising treatments for cellular senescence in in vivo and in vitro
experiments. However, in light of the fact that cellular senescence
is instrumental in preventing dangerous DNA mutations, it is
important to assess carefully the effects and safety of these drugs
to attenuate IR injury in humans.
In a word, more and more researches will certainly shed light on

the role of cellular senescence in IR injury and acute to chronic
dysfunction transitions. This pervasive disease will certainly be
overcome with further research and the novel therapies deserve
the higher priority.

DATA AVAILABILITY
The data used to support the findings of this study are available from the
corresponding author upon request.
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