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ABSTRACT

In the third part of our “Cellular Statistical Models of Broken Cloud Fields” series the cloud statistics
formalism developed in the first two parts is interpreted in terms of the theory of Markov processes. The
master matrix introduced in this study is a unifying generalization of both the cloud fraction probability
distribution function (PDF) and the Markovian transition probability matrix. To illustrate the new concept we
use the master matrix for computation of the moments of the cloud fraction PDF, in particular, the variance,
which until now has not been analytically derived in the framework of our previous work. This paper also
serves as a bridge to our future studies of the effects of sampling and averaging on satellite-based cloud masks.

1. Introduction

Clouds are among the major contributors of the un-

certainty to estimates of the Earth’s energy budget (e.g.,

Boucher et al. 2013; Flato et al. 2013). The combination

of observations, theory and models is essential for the un-

derstanding of how clouds contribute and respond to cli-

mate change (Stephens 2005). To this end, studies of cloud

cover and changes of its structure on the global scale are

very important. For example, the inability of a model to

properly capture the stratocumulus-to-cumulus cloud tran-

sition in the tropics can lead to significant errors in radia-

tive fluxes at the ground (de Roode et al. 1996). Current

climate models’ disagreement on the change of the sub-

tropical low-cloud amount under a global warming sce-

nario results in considerable uncertainties in global-mean

temperature predictions (Bony and Dufresne 2005; Webb

et al. 2013; Tsushima et al. 2016).

An essential role in the understanding of the cloud cover

structure and development is played by physically-based

dynamical models such as large-eddy simulations (LES).

At the same time, computationally inexpensive, stochastic

cloud models have been used to generate cloud fields re-

sembling observations (e.g., Evans and Wiscombe 2004;

Hogan and Kew 2005; Venema et al. 2006; Prigarin and

Marshak 2009). Such models can include the internal
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cloud structure (e.g., Schertzer and Lovejoy 1987; Caha-

lan 1994; Marshak et al. 1994; Schmidt et al. 2007) or

simply describe cloud fields as binary mixtures of cloudy

and clear areas (e.g., Su and Pomraning 1994; Zuev and

Titov 1995; Prigarin et al. 2002).

This study continues the series of Alexandrov et al.

(2010a,b) (hereinafter referred to as Part I and Part II,

respectively) devoted to statistical parameterization and

modeling of the cloud cover and structure (characterized

by sizes of clouds and gaps between them). The approach

adopted in this series is based on cloud-mask statistics of

2D broken cloud fields derived from observations made

along linear transects (chords). Such observations consist

of the lengths of cloudy and clear intervals in each tran-

sect. In distinction to, e.g., area-based characterization,

this approach works equally well for cumulus and stra-

tocumulus cloud fields with a smooth transition between

these types. In Part II the analytical expressions derived in

Part I were demonstrated to adequately describe the statis-

tics of shallow, broken cloud fields generated using a real-

istic LES model.

While the statistical framework of Part I was built by

generalizing a discrete lattice model to the continuous

case, it also can be equivalently formulated using the lan-

guage of the Markov processes theory. In this formu-

lation each transect consisting of subsequent cloudy and

clear segments is considered as a realization of a binary

Markov process, which can take on only two values: oc-

cupied (cloudy, “•”, “1”) or empty (clear, “◦”, “0”) (see,

e.g., Kulkarni 2011; Ibe 2013). Thus, the algorithm used
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in Part I for analytical computations and the construction

of examples is essentially a differential binary Markov

model based on probabilities of the transition between

close points.

Binary Markovian mixtures in their own right were sub-

jects of statistical studies (Sanchez et al. 1993; Astin and

Di Girolamo 1999), in particular those focused on cloud-

field properties (Su and Pomraning 1994; Astin and Latter

1998; Astin et al. 2001; van de Poll et al. 2006). At the

same time Markovian cloud models are extensively used

in the stochastic radiative transfer theory and simulations

(Levermore et al. 1988; Titov 1990; Zuev and Titov 1995;

Su and Pomraning 1995; Pomraning 1989, 1996, 1998;

Malvagi et al. 1993; Lane et al. 2002; Kassianov 2003;

Byrne 2005; Kassianov and Veron 2011). For example,

our algorithm outlined in Part I was used for the gener-

ation of simulated broken cloud fields in a recent series

of stochastic radiative transfer studies (Doicu et al. 2013,

2014a,b; Efremenko et al. 2016). (We should note here

that radiative transfer in Markovian clouds should be dis-

tinguished from the approach in which the propagation of

light itself is described as a Markov process (e.g., Xu et al.

2012, 2016).) The Markovian approach to cloud fraction

has been also the basis for an analysis of ground-based

measurements of sunshine duration and vertical visibility

(see, e.g., Morf (2011) and references therein).

In our series we focus on potential satellite remote sens-

ing applications, in particular, on the effects of the mea-

surement’s finite footprint and resolution on the observed

cloud statistics. Thus, we were interested in cloud frac-

tion and cloud/gap lengths distributions in an ensemble

of finite-size samples. In the current study we establish

the connection between the “cellular” and Markovian for-

malisms for the description of broken cloud fields by in-

cluding into consideration the statistical relationship be-

tween the states of end-points of such samples. In order

to do this we introduce the notion of a “master matrix”,

which is a unifying generalization of both the probability

distribution function (PDF) of the observed cloud fraction

and the transition matrix of a binary Markov process. This

provides a new theoretical framework for the investigation

of resolution and scale effects on cloud statistics. We also

explore the use of integrals of the master matrix with re-

spect to the cloud fraction as a convenient computational

tool, by using which the variance of the cloud-fraction

PDF is derived analytically directly from the results of Part

I.

2. Binary Markov models

We define the binary Markov model (BMM) as a statis-

tical ensemble of functions on the real line R which can

take only two (generally non-numeric) values (states): “•”

(occupied, cloudy) or “◦” (empty, clear). The states of the

points are statistically related; however, the states with co-

ordinates x > x0 (where x0 ∈ R corresponds to some “ini-

tial” point) depend only on the state at x0 (and not on the

states with x < x0). This constitutes the Markovian prop-

erty of the model. The properties of the BMM are gov-

erned by the transition matrix of the form

P =

(

P•• P•◦
P◦• P◦◦

)

, (1)

where Pi j is the probability of transition from the state i at

x0 into state j at x > x0 (i and j can be either “•” or “◦”).

Each row of P sums to unity:

P••+P•◦ = 1, (2)

P◦◦+P◦• = 1, (3)

since the probability to get from, e.g., “•” to “either • or

◦” equals one. We assume the model to be spatially ho-

mogeneous, so the transition matrix depends only on the

distance L = x− x0, rather than on x and x0 themselves:

P = P(L). We also assume single-layer cloud fields (see

Kassianov (2003); Kassianov and Veron (2011) for gener-

alization to multi-layer cases). The transition matrices for

two consequent intervals of the lengths L1 and L2 obey the

group property (Chapman-Kolmogorov equation):

P(L1 +L2) = P(L1) P(L2), (4)

and P(L) becomes the identity matrix when L → 0:

P(0) = I. (5)

The realizations of a binary Markov model on R are infi-

nite patterns of interchanging clear and cloudy intervals of

finite lengths. The statistical distributions of these cloudy

and clear lengths appear to be exponential (Levermore

et al. 1988; Pomraning 1989; Alexandrov et al. 2010a)

with the the respective means Lc = L• and Lg = L◦ (in the

notation of Parts I and II “c” stands for “clouds” and “g”

– for “gaps”). The pair of numbers (Lc,Lg) provides com-

plete parameterization of the model in the infinite space.

Often λi = 1/Li representing the rate at which the system

leaves state i are used instead of Li (see e.g., Ibe 2013). We

should note that while the above definition of the BMM

implies specification of the positive direction on R, the

parameters of the model and other statistics expressed in

their terms do not depend on the choice of this direction.

This makes BMMs applicable to characterization of cloud

fields in 1D (and even in 2D, see Part II).

3. State matrices

The state of the initial point of the interval can be also

considered as a random variable taking value “•” with the

probability u and “◦” – with the probability v = 1−u. It is
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convenient to describe such state by a “state matrix” with

identical rows:

U =

(

u v

u v

)

. (6)

If the probabilities of a state at x0 to be cloudy or clear are

specified by U(x0), the corresponding probabilities for the

state at x0 +L will be specified by the matrix

U(x0 +L) = U(x0) P(L). (7)

The state matrices have the following properties:

det U = 0, Tr U = 1, (8)

U′ U = U, thus, U2 = U. (9)

(here U′ is another state matrix).

The state matrices for definitely known (“pure”) cloudy

and clear states of a point are

U• =

(

1 0

1 0

)

, and U◦ =

(

0 1

0 1

)

(10)

respectively. Another important example of state matrix is

C =

(

c̄ s̄

c̄ s̄

)

, (11)

where c̄ is the cloud fraction in the infinite sample and

s̄ = 1− c̄. This matrix describes probabilities to be cloudy

or clear for a point randomly selected from such sample.

We will refer to the state described by C as to the “random

state”. The matrix C can be viewed as a transition matrix

from an infinitely distant state (L → ∞), since the depen-

dence on the initial state is expected to disappear with the

distance (see Section 5 below).

In this study state matrices will be used for characteri-

zation of the initial state of the sample interval, thus, char-

acterizing the sampling process.

4. Statistics of the ensemble of finite intervals

a. Model parameterization and sampling procedure

In Part I we considered the ensemble of finite-length

samples extracted from infinite-length realizations of bi-

nary Markov model. It was demonstrated in Part II

that the same analysis is valid for finite 1D transects ex-

tracted from a 2D field (in that case LES-derived 2D cloud

masks). The sampling procedure is specified by the length

L of the sample and the probabilities of its initial point to

be cloudy or clear (specified by a state matrix of the form

Eq. (6)). If the samples are chosen at random (which is

natural), the initial state is described by the random state

matrix C (Eq. (11)). However, in general, we can allow

for a “biased” sampling with a generic choice of the initial

state matrix U. For example, in the case of U = U• the

selection is restricted to the samples starting with a cloudy

point.

The samples can be classified according to the states of

their initial and end points, as well as their cloud fraction

c. Below we derive cloud fraction PDFs separately for the

four combination of the initial and final states of the sam-

ples. Their combination represents both statistics of cloud

fraction and transition probabilities of the binary Markov

process.

b. Even and odd diagrams

In order to derive cloud fraction PDFs conditioned by

the end-states of the sample intervals we recall the compu-

tation of the statistical sum in Appendix C of Part I. This

computation was based on four types of sample structures

classified by the states (clear or cloudy) of their beginning

and end points. These types were schematically repre-

sented by the diagrams presented below. In our convention

each of these diagrams is associated with transition from

its initial state (at the left end) into its final state (at the

right end). The specified left-to-right direction reflects the

difference between the initial state (which is pre-selected

regardless of the fraction of such states in the dataset) and

the final state (which probability is conditioned upon the

initial state). This means, for example, that two diagrams

looking like mirror images of each other may correspond

to different values. The computation in Part I included two

even diagrams

•−•◦−◦ ...•−•◦−◦, (12)

◦−◦•−• ...◦−◦•−•, (13)

corresponding to the two respective terms in the statistical

sum

F•◦(c) = ac e−(acc+ags) I0(Z), (14)

F◦•(c) = ag e−(acc+ags) I0(Z), (15)

and two odd diagrams

•−•◦−◦ ...◦−◦•−•, (16)

◦−◦•−• ...•−•◦−◦, (17)

corresponding to the terms

F••(c) = 2c e−(acc+ags) acag

I1(Z)

Z
+ e−ac δ (s), (18)

F◦◦(c) = 2s e−(acc+ags) acag

I1(Z)

Z
+ e−ag δ (c), (19)
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respectively. The δ -function term in Eq. (18) correspond

to completely overcast samples, while that in Eq. (19) –

to completely clear ones. The notations in Eqs. (14), (15),

(18), and (19) are the following: I0 and I1 are the modi-

fied Bessel functions; c is the cloud fraction in the sample

(which is a stochastic variable), s = 1− c;

ac =
L

Lc

, ag =
L

Lg

, (20)

where L is the sample length; and

Z = 2
√

acag cs. (21)

We remind that Lc and Lg are the mean lengths of respec-

tively cloudy and clear (gap) intervals in infinite space (or

as L → ∞). The corresponding parameters in an ensem-

ble of finite samples are different and can be expressed in

terms of Lc, Lg, and also L. The PDFs of cloudy and clear

interval lengths in such ensembles are no longer exponen-

tial and, as Eqs. (18) and (19), include δ -function terms

corresponding to completely clear and overcast samples

(see Part I for details).

c. (c̄,L∗) parameterization

In Markovian framework it is convenient to chose

another model parameterization, which is equivalent to

(Lc,Lg) and has the two independent parameters:

c̄ =
Lc

Lc +Lg

and L∗ =
LcLg

Lc +Lg

. (22)

Here c̄ is the mean cloud fraction (which is independent of

L for an ensemble of randomly selected samples) and L∗
is the double of the geometric mean of Lc and Lg:

1

L∗
=

1

Lc

+
1

Lg

. (23)

L∗ can be considered as a universal scale length of the

cloud field. This quantity is also often called “autocor-

relation length” (e.g., Levermore et al. 1988; Pomraning

1989). While it enters the exponent in the correspond-

ing autocorrelation function (Morf 1998, 2011), we should

note that the symbols “•” and “◦” are not real numbers,

but only elements of a set with no algebraic structure de-

fined on it. Thus, in order to define autocorrelation func-

tion one has to assign real numerical values (e.g., 0 and

1) to cloudy and clear states (cf. Supplement I to Alexan-

drov et al. (2016)). Note that L∗ < min(Lc,Lg), so it can

be considered as a characteristic inhomogeneity size in

the cloud field. For example, in a sparse cumulous field

with Lc ≪ Lg the value of L∗ ≈ Lc is determined by the

cloud size and is practically independent of the distance

between clouds. A scale transformation of the cloud field

when all distances are multiplied by the same number α

(so Lc → αLc and Lg → αLg) results in rescaling of L∗ to

αL∗, while c̄ remains intact.

In the (c̄,L∗) parameterization

ac = s̄ r and ag = c̄ r, (24)

where s̄ = 1− c̄ and

r =
L

L∗
(25)

is independent from the cloud fraction c̄. In this notation

ac +ag = r, acag = c̄s̄ r2, (26)

acc+ags = (s̄c+ c̄s)r, Z = 2r
√

c̄s̄ cs, (27)

and the Eqs. (14), (15), (18), and (19) take the following

more compact forms:

F•◦(c) = s̄r I0(Z) e−(s̄c+c̄s)r, (28)

F◦•(c) = c̄r I0(Z) e−(s̄c+c̄s)r, (29)

F••(c) = 2c c̄s̄ r2 I1(Z)

Z
e−(s̄c+c̄s)r +δ (s) e−s̄r

=
Z

2s
I1(Z) e−(s̄c+c̄s)r +δ (s) e−s̄r, (30)

F◦◦(c) = 2s c̄s̄ r2 I1(Z)

Z
e−(s̄c+c̄s)r +δ (c) e−c̄r

=
Z

2c
I1(Z) e−(s̄c+c̄s)r +δ (c) e−c̄r. (31)

5. Master matrix

a. Definition

The expressions Eqs. (28) – (31) can be combined into

the “master” matrix:

F(c) =

(

F••(c) F•◦(c)
F◦•(c) F◦◦(c)

)

, (32)

which in (c̄,L∗) parameterization has the form:

F(c) =

(

Z
2s

I1(Z) s̄r I0(Z)
c̄r I0(Z)

Z
2c

I1(Z)

)

e−(s̄c+c̄s)r

+

(

δ (s) e−s̄r 0

0 δ (c) e−c̄r

)

. (33)

We show in Appendix A that in the limit case of short

sample (r → 0, L ≪ L∗) the master matrix has the form

F0(c) =

(

δ (s) 0

0 δ (c)

)

. (34)

This expression indicates the absence of partially cloudy

samples in this limit case (all samples are either overcast

or all-clear). In the opposite case of long sample (r → ∞,

L ≫ L∗)

F∞(c) = C δ (c− c̄) (35)

(see Appendix A for derivation of this expression). This

means that all long samples have cloud fraction equal to c̄.
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b. Relations to cloud cover PDF and transition matrix

Each matrix element Fi j(c) is the cloud cover proba-

bility density conditional by having the first point of the

interval in the state i, and the last point in the state j. This

means that given an initial state described by a matrix U

of the form Eq. (6) (corresponding to the initial state prob-

ability u to be cloudy) we can compute the cloud fraction

PDF as

Fcf(c) = uF••(c)+uF•◦(c)+ vF◦•(c)+ vF◦◦(c), (36)

which can be conveniently written in matrix form:

Fcf(c) = Tr [U F(c)] (37)

(thus, justifying introduction of state matrices). If the en-

semble consists of randomly chosen samples (U = C),

then Eq. (37) leads to the PDF computed in Part I, which

in (c̄,L∗) parameterization has the following form:

Fcf(c) = 2c̄s̄ r e−(s̄c+c̄s)r

×
[

I0(Z)+(c̄c+ s̄s) r
I1(Z)

Z

]

+ s̄ e−c̄rδ (c)+ c̄ e−s̄rδ (s). (38)

In the limit cases of short and long samples this expression

transforms into

F0
cf(c) = s̄ δ (c)+ c̄ δ (s) and F∞

cf (c) = δ (c− c̄), (39)

respectively.

The master matrix elements Fi j(c) can be also consid-

ered as a transition probabilities between the sample’s end-

states i and j conditioned by the cloud fraction in the sam-

ple. This means that the transition matrix P of the Markov

process can be derived from the master matrix by integrat-

ing out the cloud fraction dependence:

P =

1
∫

0

F(c) dc. (40)

The expressions for P in the limit cases of L ≪ L∗ and

L≫ L∗ immediately follow from Eqs. (34), (35), and (40):

P0 = I and P∞ = C (41)

(since integrals of δ -functions are equal to unity).

Note that normalization condition for Fcf(c) follows

from Eqs. (37) and (40):

1
∫

0

Fcf(c) dc =

1
∫

0

Tr [U F(c)] dc = Tr



U

1
∫

0

F(c) dc





= Tr [U P] = Tr U′ = 1. (42)

Here U′ is some other state matrix of the form Eq. (6) and

we used Eqs. (7) and (8).

Note that since the master matrix is a precursor of both

the PDF (Eq. (38)) and the transition matrix (Eq. (40)), the

sample length L also has a dual meaning being the sample

length for cloud fraction statistics and also the lag length

between its initial and final points in the Markov formal-

ism.

6. Transition probability matrix

Explicit computation of the transition matrix according

to Eq. (40) is performed in Appendix B resulting in the

following expression

P =

(

c̄+ s̄ e−r s̄− s̄ e−r

c̄− c̄ e−r s̄+ c̄ e−r

)

. (43)

This expression can be also derived in a simpler way

using the differential form of the Chapman-Kolmogorov

equation (see e.g., Ibe 2013; Morf 1998; Kassianov 2003;

Kassianov and Veron 2011) or the uniformization method

(Kulkarni 2011). Thus, our computation provides a clo-

sure demonstrating that the same result can be also ob-

tained using the master matrix (Eq. (32)) and verifying

Eq. (40). Eq. (43) can be also written as

P = e−r I+
(

1− e−r
)

C, (44)

where I is the identity matrix, while C is the random state

matrix defined by Eq. (11). The group properties Eqs.

(4) and (5) of transition matrices can be verified using this

expression and noticing that C2 = C. The factor e−r < 1

balances the fractions of I and C in the transition matrix.

In the limit case of very short interval (L ≪ L∗, r ≪ 1)

we have P ≈ I, i.e., state change between close points is

improbable. In the opposite limit case of very long interval

(L ≫ L∗, r ≫ 1) we see that P ≈ C, thus, the transition

probability no longer depends on the state of the initial

point and is governed by the overall cloud fraction in the

infinite space. This is in agreement with Eq. (41). The

weakening of the coupling between points with increase

of the lag L can be qualitatively evaluated by

det P(L) = e−r, (45)

which tends to zero as L → ∞, reflecting increasing degen-

eracy of the transition matrix.

It follows from Eq. (44) that an arbitrary state U (in-

cluding the pure states defined by Eq. (10)) is transformed

by the transition matrix into a mixture of itself and the ran-

dom state:

U P = e−r U+
(

1− e−r
)

C. (46)

The fraction of the random state in this mixture increases

with the distance from the initial point. It follows from Eq.

(46) that the random state U = C remains random after the

transition: CP = C.

---
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7. Matrix integrals

The transition matrix computed according to Eq. (40)

can be considered as “zeroth moment” of the master ma-

trix. We would like to extend this notion to integrals of a

general form

F
( f )

=

1
∫

0

f (c) F(c) dc, (47)

where f (c) is an arbitrary function of cloud fraction de-

fined on [0,1]. They are related to the corresponding inte-

grals of cloud fraction PDF as

f =

1
∫

0

f (c) Fcf(c) dc = Tr
[

U F
( f )
]

, (48)

where U describes the initial state of the sample. In this

notation P = F
(1)

corresponding to f (c)≡ 1, and Eq. (48)

yields f̄ = 1. Matrix integrals present a convenient tool

for computation of averages (such as the moments of the

cloud fraction PDF) since integration is performed sepa-

rately for different matrix elements. The results of such

integration are linear combinations of functions of r with

matrix coefficients depending on c̄ (like C), so subsequent

application of Eq. (48) is relatively simple.

As an example, we computed in Appendix C the first

moment of the master matrix

F
(c)

=

1
∫

0

c F(c) dc, (49)

which took the form

F
(c)

= c̄ C+ s̄ (I−C) e−r +(2c̄s̄ K+L)
1− e−r

r
, (50)

where

K =

(

1 −1

1 −1

)

and L =

(

0 s̄

−c̄ 0

)

. (51)

We verified that application of Eq. (48) to Eq. (50) leads

to the expression for the mean cloud fraction

c̄(L) =

1
∫

0

c Fcf(c) dc = c̄+(u s̄− v c̄)
1− e−r

r
(52)

derived in Part I without matrix formalism. Note that in

our definition c̄ denotes mean cloud fraction in infinite

space (L,r → ∞). The mean cloud fraction in finite sample

becomes L-independent (and equal to c̄) only for unbiased

random sampling corresponding to U = C.
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FIG. 1. Dependence of the cloud fraction variance (Eq. (58), solid

curve) and cs (Eq. (57), dashed curve) on the parameter r = L/L∗. Both

functions are normalized by c̄s̄.

In Appendix D we take the matrix integral

F
(cs)

=

1
∫

0

cs F(c) dc, (53)

obtaining the following expression:

F
(cs)

= c̄s̄

[

P− (B−6C+4I) g(r) (54)

+ 2(B−6C+3I)
1−g(r)

r

]

,

where P is the transition matrix (Eq. (44)),

B =
1

c̄s̄

(

0 s̄

c̄ 0

)

, (55)

and

g(r) =
1− e−r

r
. (56)

Eq. (54) was used for derivation of the mean of the product

cs, which in the random sample case has the form

cs = c̄s̄

[

1− 2

r
+

2

r2
(1− e−r)

]

. (57)

This expression was used for computation of the variance

D = (c− c̄)2 = c̄s̄− cs =
2c̄s̄

r

[

1− 1− e−r

r

]

. (58)

of the cloud fraction PDF Fcf(c) (Eq. (38)). Eq. (58) has

not been previously derived analytically from the results

I 
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of Part I, however, it was obtained (in slightly different

notations) by Morf (1998) using properties of the auto-

correlation function. It is evident from Eq. (58) that the

cloud fraction variance tends to zero as the sample length

increases (r →∞) and the cloud cover distribution narrows

(see Eq. (39)). In the short-sample case (r → 0) the vari-

ance converges to the constant value c̄s̄ (this can also be

directly derived using Eq. (39)). Both cs and D (normal-

ized by c̄s̄) are plotted as functions of r in Fig. 1.

8. Concluding remarks

In Part III of our “Cellular Statistical Models of Broken

Cloud Fields” series we further advance the approach to

cloud statistics introduced in Part I and applied to realistic

simulated cloud fields in Part II. This approach is focused

on statistics of cloud properties in an ensemble of finite

linear transects crossing a broken cloud field. Such an en-

semble can be considered as an idealization of satellite or

airborne datasets. In this study we interpret our previous

results in terms of the theory of Markov processes and in-

troduce the notion of the master matrix which unifies the

statistics of the cloud fraction and the Markovian proper-

ties of the cloud field.

The explicit expression, Eq. (32), for the master matrix

was derived based on the computations made in Part I. The

cloud fraction PDF and the transition probability matrix

of the Markov process were obtained using Eqs. (37) and

(40), respectively. We have generalized the latter equation

to define matrix integrals by Eq. (47) which appear to be a

convenient tool for the computation of the moments of the

cloud fraction PDF. We used the matrix integrals for the

derivation of the mean cloud cover in a sample (obtaining

the result of Part I in a different way), and also of the vari-

ance of Fcf(c). The latter computation has been performed

for the first time analytically based directly on the results

of Part I.

Besides suggesting new ways to compute broken cloud

field statistics, this study also sets up a framework for a

quantitative estimate of the effects of coarse resolution of

observations on the retrieved cloud masks. We plan to ad-

dress this subject in the next part of this series. In that

forthcoming study, an idealized satellite observation sys-

tem will be characterized by a state attribution function

(SAF) having the meaning of the probability that a sample

(satellite pixel) with a certain CF is declared “cloudy” in

the cloud mask. Such function can be chosen to be deter-

ministic (e.g., equal to 1 for CF larger than 50% and to

0 otherwise) or stochastic (e.g., proportional to the CF).

Physically, the stochasticity of SAF can be caused by ex-

ternal factors affecting the cloud-clear attribution (such as

solar-viewing geometry, detector sensitivity to low light,

etc.). We will use the SAF-based formalism to find the

connection between binary Markov cloud fields (charac-

terized by the master matrix) and binary cloud masks,

which also will be considered Markov chains. Our goal

will be to establish a quantitative relationship between the

“real” and the “observed” cloud-field statistics and to eval-

uate the possibilities to restore the former from the lat-

ter. This research will improve our understanding of how

the presence of sub-pixel clouds/gaps in satellite observa-

tions affects the retrieved cloud field statistics and, subse-

quently, physical and radiative properties of the clouds.

Another anticipated direction of our future studies is

the application of our techniques to global cloud-mask

datasets derived from satellite observations made by,

e.g., the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) or the Cloud-Aerosol Lidar with Orthogonal

Polarization (CALIOP). In these studies we expect to deal

with not only “narrow” sampling datasets (outlined in Part

I and generalized in this study), but also with “diverse”

sampling (described in Part II). Narrow sampling repre-

sents cloud populations with uniform statistical properties

(thus, limited to smaller geographical scales) and having

exponential chord-length distributions for both clouds and

gaps. Diverse sampling, on the contrary, is characteris-

tic of datasets with extensive geographic coverage (see,

e.g., Cahalan and Joseph 1989; Koren et al. 2008), which

may include numerous narrow-sampled subsets. In Part

II we showed that the chord-lengths distributions for such

datasets have a power-law form. While diverse datasets

can present substantial challenges (especially for analyt-

ical studies) caused by additional averaging over various

cloud populations, we look forward to explore the possi-

bilities for advancing in this direction.
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APPENDIX A

Master matrix in asymptotic cases

In the short-sample limit (r → 0, L ≪ L∗)

I0(Z)→ 1, and
I1(Z)

Z
→ 1

2
, (A1)

thus, all non-singular components of F in Eq. (32) vanish,

yielding

F0(c) =

(

δ (s) 0

0 δ (c)

)

. (A2)

In the long-sample limit (r →∞, L≫ L∗) the δ -function

term in Eq. (32) vanishes reflecting small probability

of all-clear or overcast samples. To find the asymptotic

shape of the non-singular term in Eq. (32) we use the
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index-independent asymptotic representation of the modi-

fied Bessel functions (Gradshteyn and Ryzhik 1965):

Iν(x)≈
ex

√
2πx

. (A3)

Thus,

I0(Z)≈ I1(Z)≈
exp(Z)√

2πZ
, (A4)

and the long-sample master matrix takes the following

form:

F∞(c) =

√

Z

2π

(

1
2s

s̄r
Z

c̄r
Z

1
2c

)

e−(s̄c+c̄s−2
√

cs c̄s̄) r, (A5)

where we used the definition of Z from Eq. (27):

Z = 2r
√

cs c̄s̄. (A6)

Note that the expression in the exponent can be written as

s̄c+ c̄s−2
√

cs c̄s̄ = w2, (A7)

where

w =
√

s̄c−
√

c̄s. (A8)

We then use the Gaussian approximation for δ -function

δ (w)≈
√

r√
π

e−w2r, (A9)

as r → ∞. The function δ (w) can be also written as

δ (w) =
δ (c− c̄)

|w′(c̄)| , (A10)

where w′(c̄) is the derivative of w with respect to c at c= c̄:

w′(c̄) =
d

dc

[√
s̄c−

√

c̄(1− c)
]

c=c̄

=
1

2

[

√

s̄

c̄
+

√

c̄

s̄

]

. (A11)

The fact that F∞(c) ∝ δ (c− c̄) allows us to set c = c̄ and

s = s̄ in Eq. (A5) (note that Z = 2c̄s̄ r in this case). After

these substitutions and some simple algebra the asymp-

totic expression for the master matrix takes the following

form:

F∞(c) =





√

c̄
s̄

√

s̄
c̄

√

c̄
s̄

√

s̄
c̄





δ (c− c̄)
√

s̄
c̄
+
√

c̄
s̄

. (A12)

This can be written as

F∞(c) = U δ (c− c̄), (A13)

where the state matrix U of the form Eq. (6) corresponds

to

u =

√

c̄/s̄
√

c̄/s̄+
√

s̄/c̄
=

c̄

c̄+ s̄
= c̄, (A14)

thus, U = C, and finally we have

F∞(c) = C δ (c− c̄). (A15)

APPENDIX B

Derivation of the transition matrix

For derivation of the transition matrix directly from the

master matrix (Eqs. (32), (33)) according to Eq. (40) we

can use the results of computations made in Part I for veri-

fication of proper normalization of the cloud fraction PDF.

According to Eq. (36) the singular density Fcf(c) can be

explicitly written in terms of the master matrix elements:

Fcf(c) = uF•◦(c)+ vF◦•(c)+uF••(c)+ vF◦◦(c), (B1)

where u and v = 1−u are the elements of the initial state

matrix U from Eq. (6). They have the meaning of the

probabilities of the initial state (first point of the sample)

to be respectively cloudy or clear. Before computing the

norm of Fcf(c) in Part I we took the integrals of the even

part (first two terms) and the odd part (last two terms) of

Eq. (B1). The integral of the even part is

N0 =

1
∫

0

[uF•◦(c)+ vF◦•(c)] dc

= 2
acu+agv

ac +ag

exp

(

−ac +ag

2

)

sinh

(

ac +ag

2

)

= 2(u s̄+ v c̄) e−r/2 sinh
( r

2

)

= (u s̄+ v c̄) (1− e−r) (B2)

From here we can derive the integrals of F•◦(c) and F◦•(c)
as coefficients at u and v respectively. Note that while u

and v are related (u+ v = 1) they were treated in Part I

as effectively independent variables (i.e., one was never

expressed through the other). These integrals according

to Eq. (40) are equal to the off-diagonal elements of the

transition matrix P:

P•◦(c) =

1
∫

0

F•◦(c) dc = s̄ (1− e−r), (B3)

P◦•(c) =

1
∫

0

F◦•(c) dc = c̄ (1− e−r). (B4)
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The expression for the integral of the odd part of Eq. (B1)

follows from the normalization condition

1
∫

0

Fc f (c) dc = 1 (B5)

(verified in Part I and holding regardless of the value of u)

and Eq. (B2):

1−N0 =

1
∫

0

[uF••(c)+ vF◦◦(c)] dc

= u+ v− (u s̄+ v c̄) (1− e−r)

= u (c̄+ s̄ e−r)+ v (s̄+ c̄ e−r) (B6)

(here we used the relation u + v = 1). The expressions

for the diagonal elements of the transition matrix follow

immediately from this relation:

P••(c) =

1
∫

0

F••(c) dc = c̄+ s̄ e−r, (B7)

P◦◦(c) =

1
∫

0

F◦◦(c) dc = s̄+ c̄ e−r, (B8)

and the entire matrix takes the form from Eq. (43).

APPENDIX C

First moment of the master matrix

In order to compute the first moment of the master ma-

trix representing the mean cloud fraction in the interval

we again rely on computations performed in Part I. In Ap-

pendix D of Part I the mean cloud fraction was computed:

c̄(L) =

1
∫

0

c Fcf(c) dc

=
ag

ac +ag

+
acu−agv

(ac +ag)2

[

1− e−(ac+ag)
]

= c̄+(u s̄− v c̄)
1− e−r

r
. (C1)

It is clear from this expression that c̄(L → ∞) = c̄. We

also note that for random (unbiased) sampling with U = C

(thus, u = c̄, v = s̄) the second term in Eq. (C1) vanishes

so c̄(L) no longer depends on L and is always equal to c̄.

The contribution of the even part of Eq. (B1) to c̄(L) was

computed in Part I:

M0 =

1
∫

0

c [uF•◦(c)+ vF◦•(c)] dc =
1

2
N0 −R0, (C2)

where N0 is defined by Eq. (B2):

N0 = (u s̄+ v c̄) (1− e−r) (C3)

and

R0 =
(acu+agv)(ac −ag)

(ac +ag)2
exp

(

−ac +ag

2

)

×
[

cosh

(

ac +ag

2

)

− 2

ac +ag

sinh

(

ac +ag

2

)]

= (us̄+ vc̄)(s̄− c̄) e−r/2

[

cosh
( r

2

)

− 2

r
sinh

( r

2

)

]

= (u s̄+ v c̄)(s̄− c̄)

(

1+ e−r

2
− 1− e−r

r

)

, (C4)

thus

M0 = (u s̄+ v c̄)

×
[

1− e−r

2
− (s̄− c̄)

(

1+ e−r

2
− 1− e−r

r

)]

= (u s̄+ v c̄)
[

c̄− s̄ e−r +(s̄− c̄) g(r)
]

, (C5)

where

g(r) =
1− e−r

r
(C6)

Eqs. (C1) and (C5) can be combined in order to determine

contribution of the odd part of Eq. (B1):

c̄(L)−M0 = c̄+(u s̄− v c̄) g(r)

− (u s̄+ v c̄)
[

c̄− s̄ e−r +(s̄− c̄) g(r)
]

= (u+ v) c̄−u s̄
[

c̄− s̄ e−r −2c̄ g(r)
]

− v c̄
[

c̄− s̄ e−r +2s̄ g(r)
]

= u c̄−u s̄
[

c̄− s̄ e−r −2c̄ g(r)
]

+ v c̄s̄
[

1+ e−r −2 g(r)
]

(C7)

Collecting coefficients at u and v in Eqs. (C5) and (C7) we

find the elements of the first moment matrix Eq. (49):

F
(c)
•◦ = s̄

[

c̄− s̄ e−r +(s̄− c̄) g(r)
]

, (C8)

F
(c)
◦• = c̄

[

c̄− s̄ e−r +(s̄− c̄) g(r)
]

, (C9)

F
(c)
•• = c̄− s̄

[

c̄− s̄ e−r −2c̄ g(r)
]

, (C10)

F
(c)
◦◦ = c̄s̄

[

1+ e−r −2 g(r)
]

. (C11)

The matrix itself can be written in the following form:

F
(c)

= c̄

(

c̄ s̄

c̄ s̄

)

+ s̄

(

s̄ −s̄

−c̄ c̄

)

e−r

+

(

2c̄s̄ s̄2 − c̄s̄

c̄s̄− c̄2 −2c̄s̄

)

1− e−r

r
, (C12)
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or

F
(c)

= c̄ C+ s̄ (I−C) e−r +(2c̄s̄ K+L)
1− e−r

r
,

(C13)

where

K =

(

1 −1

1 −1

)

and L =

(

0 s̄

−c̄ 0

)

. (C14)

These expressions can be used to verify that Eq. (C1) can

be obtained from Eq. (C13) by means of Eq. (48). Indeed,

U F
(c)

= c̄ C+ s̄ (U−C) e−r +(2c̄s̄ K+UL) g(r),

(C15)

Here we implied that

UC = C2 = C, and UK = K (C16)

for any state matrix U. Noting that

Tr U = Tr C = 1, Tr K = 0 (C17)

and

UL =

(

−vc̄ us̄

−vc̄ us̄

)

, thus, Tr [UL] = u s̄− v c̄, (C18)

we obtain (C1). In the case of unbiased sampling, when

U = C, Eq. (C15) takes simpler form

C F
(c)

= c̄ C+ c̄s̄ K g(r), (C19)

since

CL =−c̄s̄ K, (C20)

and Tr
[

C F
(c)
]

= c̄.

APPENDIX D

Variance of cloud fraction distribution

The second moment of the cloud fraction PDF was not

computed in Part I, thus, we perform this computation

here. It is convenient first to compute the matrix

Y = F
(cs)

=

1
∫

0

cs F(c) dc, (D1)

which has the following elements:

Y•◦ = s̄r

1
∫

0

cs I0(Z) e−(s̄c+c̄s)r dc, (D2)

Y◦• = c̄r

1
∫

0

cs I0(Z) e−(s̄c+c̄s)r dc, (D3)

Y•• = 2c̄s̄ r2

1
∫

0

c2s
I1(Z)

Z
e−(s̄c+c̄s)r dc, (D4)

Y◦◦ = 2c̄s̄ r2

1
∫

0

cs2 I1(Z)

Z
e−(s̄c+c̄s)r dc (D5)

(note that δ -function terms vanish as a result of the inte-

gration). Thus, we need to take only two different inte-

grals:

Y0 =

1
∫

0

cs I0(Z) e−(s̄c+c̄s)r dc, (D6)

Y1 =

1
∫

0

c2s
I1(Z)

Z
e−(s̄c+c̄s)r dc. (D7)

Note that the integral in Eq. (D5) can be obtained from

Eq. (D7) by interchanging c̄ and s̄. It is convenient to use

the following substitution

t = 2
√

cs = 2
√

c(1− c), (D8)

which runs from 0 to 1 when c ∈ [0,1/2] and back from 1

to 0 when c ∈ [1/2,1]. Thus, c can be expressed through t

as

c =
1

2
∓ 1

2

√

1− t2, (D9)

where the minus sign is used when c < 1/2, and the plus

sign is used when c > 1/2, while the integral over t in-

cludes both terms. In this notation

s =
1

2
± 1

2

√

1− t2, thus, cs =
t2

4
, (D10)

s̄c+ c̄s =
1

2
∓ s̄− c̄

2

√

1− t2 (D11)

Z = 2r
√

c̄s̄ cs = r
√

c̄s̄ t (D12)

dc =± t dt

2
√

1− t2
. (D13)
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Substitution of the above expressions into Eqs. (D6) and

(D7) yields

Y0 =
e−r/2

4

1
∫

0

t3 dt√
1− t2

(D14)

× cosh

(

s̄− c̄

2
r
√

1− t2

)

I0(
√

c̄s̄ rt),

while

Y1 = Y1a −Y1b, (D15)

where

Y1a =
e−r/2

8
√

c̄s̄ r

1
∫

0

t2 dt√
1− t2

(D16)

× cosh

(

s̄− c̄

2
r
√

1− t2

)

I1(
√

c̄s̄ rt),

Y1b =
e−r/2

8
√

c̄s̄ r

1
∫

0

t2 dt (D17)

× sinh

(

s̄− c̄

2
r
√

1− t2

)

I1(
√

c̄s̄ rt).

Here we have integrals of the following types:

V0 =

1
∫

0

x3
cosh

(

β
√

1− x2
)

√
1− x2

I0(γx) dx (D18)

V1a =

1
∫

0

x2
cosh

(

β
√

1− x2
)

√
1− x2

I1(γx) dx. (D19)

V1b =

1
∫

0

x2 sinh
(

β
√

1− x2
)

I1(γx) dx (D20)

To take the integrals Eqs. (D18) – (D20) we will use the

formula derived in Part I:

J0 =

1
∫

0

x
cosh

(

β
√

1− x2
)

√
1− x2

I0(γx) dx

=
sinh

(

√

β 2 + γ2
)

√

β 2 + γ2
, (D21)

and its derivatives

∂J0

∂β
=

1
∫

0

x sinh
(

β
√

1− x2
)

I0(γx) dx

=
β

β 2 + γ2
(D22)

×



cosh
(

√

β 2 + γ2
)

−
sinh

(

√

β 2 + γ2
)

√

β 2 + γ2



 ,

∂J0

∂γ
=

1
∫

0

x2
cosh

(

β
√

1− x2
)

√
1− x2

I1(γx) dx

=
γ

β 2 + γ2
(D23)

×



cosh
(

√

β 2 + γ2
)

−
sinh

(

√

β 2 + γ2
)

√

β 2 + γ2



 .

We immediately notice that

V1a =
∂J0

∂γ
(D24)

and use the relation

I1(x) =
dI0(x)

dx
(D25)

to see that

V1b =
∂ 2J0

∂β ∂γ
. (D26)

Also, using the recurrent relation for modified Bessel

functions

dIν(x)

dx
= Iν−1(x)−

ν

x
Iν(x), (D27)

in particular

dI1(x)

dx
= I0(x)−

I1(x)

x
, (D28)

we have that

dI1(γx)

dγ
= x I0(γx)− I1(γx)

γ
. (D29)

This means that

V0 =
∂ 2J0

∂ 2γ
+

1

γ

∂J0

∂γ
. (D30)

Before starting to compute the derivatives, we notice that

∂J0

∂β
= β f (α), and

∂J0

∂γ
= γ f (α), (D31)
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where

α =
√

β 2 + γ2, so that
∂α

∂γ
=

γ
√

β 2 + γ2
=

γ

α
, (D32)

and

f (α) =
coshα

α2
− sinhα

α3
. (D33)

The derivative of f with respect to its argument is

d f (α)

dα
= α−2 sinhα −3α−1 f (α), (D34)

and

∂ f (α)

∂γ
= γ[(α−3 +3α−5)sinhα −3α−4 coshα],

or

f ′γ =
γ

α

(

sinhα

α2
− 3 f (α)

α

)

. (D35)

Thus,

V0 = 2 f + γ f ′γ , (D36)

V1a = γ f , V1b = β f ′γ . (D37)

In the notations

α =
r

2
, β =

s̄− c̄

2
r, γ =

√
c̄s̄ r, (D38)

the matrix Y can be expressed in terms of these integrals

as

Y =
r e−r/2

4

( √
c̄s̄ (V1a −V1b) s̄ V0

c̄ V0

√
c̄s̄ (V1a +V1b)

)

,

(D39)

or

Y =
r e−r/2

4

(
√

c̄s̄ (γ f −β f ′γ) s̄ (2 f + γ f ′γ)
c̄ (2 f + γ f ′γ)

√
c̄s̄ (γ f +β f ′γ)

)

.

(D40)

Introducing notations

f1(r) =
r e−r/2

4
f =

1

2r

[

1+ e−r −2g(r)
]

, (D41)

where

g(r) =
1− e−r

r
, (D42)

and

f2(r) =
r e−r/2

4
f ′γ =

√
c̄s̄

[

g(r)− 12

r
f1(r)

]

, (D43)

This equation can be rewritten as

Y =

(

c̄s̄ r 2s̄

2c̄ c̄s̄ r

)

f1(r)

+

√
c̄s̄r

2

(

c̄− s̄ 2s̄

2c̄ s̄− c̄

)

f2(r). (D44)

This expression can be written as

Y = c̄s̄ [(r I+2B) f1(r)+(2C− I) f3(r)] , (D45)

where

B =
1

c̄s̄

(

0 s̄

c̄ 0

)

, (D46)

and

f3(r) =
r

2
g(r)−6 f1(r). (D47)

Further expansion yields

1

c̄s̄
Y = [r I+2B−6(2C− I)] f1 +(2C− I)

1− e−r

2

=
1

2

(

1+ e−r −2g−1+ e−r
)

I+(1− e−r)C

+ [B−3(2C− I)]r−1
(

1+ e−r −2g
)

= P−g I+[B−3(2C− I)]r−1 (2− rg−2g) ,

(D48)

where we used the expression Eq. (44) for the transition

matrix P. Finally,

Y = c̄s̄

[

P− (B−6C+4I) g+2(B−6C+3I)
1−g

r

]

.

(D49)

For an arbitrary initial state U we have

U B =
1

c̄s̄

(

vc̄ us̄

vc̄ us̄

)

, so Tr (U B) =
us̄+ vc̄

c̄s̄
, (D50)

while for random initial state U = C

C B =

(

1 1

1 1

)

, so Tr (C B) = 2. (D51)

Taking into account these equations and also that Tr U P=
1, we obtain the expression for cs in general case:

cs = Tr (U Y) (D52)

= c̄s̄− (us̄+ vc̄−2c̄s̄) g+2(us̄+ vc̄−3c̄s̄)
1−g

r
.
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In the random sample case (u = c̄, v = s̄) the second term

vanishes and the expression notably simplifies:

cs = Tr (C Y) = c̄s̄

[

1−2
1−g(r)

r

]

, (D53)

or explicitly

cs = c̄s̄

[

1− 2

r
+

2

r2
(1− e−r)

]

, (D54)

Note that in the limit case of long sample (r ≫ 1, L ≫ L∗)

this function converges to c̄s̄, because the cloud fraction

PDF becomes very narrow (Fcf(c)≈ δ (c− c̄)). In the op-

posite case of very short sample (r ≪ 1, L≪ L∗) expansion

of the exponent into Taylor series yields that cs ∝ c̄s̄ r → 0.

Using Eq. (D54) we can derive an expression for the

variance of the cloud fraction distribution

D = (c− c̄)2 = c2 − (c̄)2. (D55)

Indeed,

c(1− c) = c̄− c2 = c̄−D− (c̄)2, (D56)

thus,

D = c̄(1− c̄)− c(1− c) = c̄s̄− cs. (D57)

Eq. (D54) allows to write this expression explicitly as

D =
2c̄s̄

r

[

1− 1

r
(1− e−r)

]

. (D58)

D → 0 as the sample length increases (r → ∞) and the

cloud cover distribution narrows. On the other hand, when

sample is short (r → 0), the variance converges to a con-

stant value: D → c̄s̄. Plots of both cs and D as functions

of r are presented in Fig. 1.

The expression Eq. (D58) coincides with that de-

rived (in a simpler way) by Morf (1998) using properties

of the autocorrelation function of a binary Markov pro-

cess. However, here we presented the first-time analytical

derivation of the cloud fraction variance directly from the

results of Part I (numerical verification has been reported

by Morf (2014)).
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