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Abstract Cellulose is the most abundant polysac-

charide on Earth. It can be obtained from a vast

number of sources, e.g. cell walls of wood and plants,

some species of bacteria, and algae, as well as

tunicates, which are the only known cellulose-

containing animals. This inherent abundance natu-

rally paves the way for discovering new applications

for this versatile material. This review provides an

extensive survey on cellulose and its derivatives, their

structural and biochemical properties, with an over-

view of applications in tissue engineering, wound

dressing, and drug delivery systems. Based on the

available means of selecting the physical features,

dimensions, and shapes, cellulose exists in the

morphological forms of fiber, microfibril/nanofibril,

and micro/nanocrystalline cellulose. These different

cellulosic particle types arise due to the inherent

diversity among the source of organic materials or

due to the specific conditions of biosynthesis and

processing that determine the consequent geometry

and dimension of cellulosic particles. These different
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cellulosic particles, as building blocks, produce

materials of different microstructures and properties,

which are needed for numerous biomedical applica-

tions. Despite having great potential for applications

in various fields, the extensive use of cellulose has

been mainly limited to industrial use, with less early

interest towards the biomedical field. Therefore, this

review highlights recent developments in the prepa-

ration methods of cellulose and its derivatives that

create novel properties benefiting appropriate

biomedical applications.

Keywords Biomedical applications ·

Cellulose · Cellulose derivatives · Drug delivery ·

Tissue engineering · Wound dressing

Introduction

The increasing demand for bio-based materials is

gaining more attention for immediate applications in

biomedical fields such as tissue engineering, wound

healing, and drug delivery. Polysaccharides, long-

chain biopolymeric carbohydrate molecules primarily

composed of monosaccharide units, are bio-based

materials that combine immense potential in biomed-

ical applications with the unique beneficial features

of natural polymers in contrast with synthetic poly-

mers. Among several kinds of polysaccharides,

cellulose and chitin are the most important natural

biopolymers based on their broad distribution in

nature. Cellulose is synthesized mostly in wood and

plants, whereas chitin is obtained from lower animals

(Barikani et al. 2014; Moon et al. 2011). In this

review paper, we focus on the characteristics, prepa-

ration methods, and application of cellulose and its

derivatives in the biomedical field.

Cellulose is an unbranched, natural polymer

composed of repeating glucose units (C6H10O5)n
(French 2017), and is considered as the most profuse

organic material and polysaccharide on Earth. This

biodegradable polymer is mostly found in nature in

the form of microfibrils in the cell walls of wood and

plant, algae tissues, and membrane of epidermal cells

of tunicate. It is also synthesized by bacteria in the

form of nanofiber networks. Cellulosic materials

exploit hierarchical structure design that spans from

nanoscale to macroscopic dimensions in the form of

fibril aggregates, fibrils, nanocrystallite, and

nanoscale disordered domains (Fig. 1a,b). Cellulose

features an intricate multi-level structure, built up of

bundles/aggregates of superfine fibrils. The superfine

fibril contains several cellulose chains (Fig. 1a). Each

fibril is composed of repeating large ordered (crys-

talline) domains and small disordered (amorphous)

domains with a cross-sectional dimension ranging

from 2 to 20 nm, depending on the source of

synthesis (Fig. 1b) (Ioelovich 2008). A single cellu-

lose chain passes through many crystalline and

disordered domains, while strong β 1→4 glycosidic

bonds link single cellulose chain units. Cellulose

chains are remarkably aligned in the crystalline

domain of a cellulose fibril (Klemm et al.

2018, 2011).

Cellulose and its derivatives, as biocompatible

polymers, have attracted considerable attention for

applications in the biomedical field due to suit-

able physical and mechanical properties. Cellulose

naturally develops functionality, flexibility, and high

specific strength by exploiting hierarchical structure

(Ansari et al. 2015; Moon et al. 2011). It also has low

density, low price, as well as biodegradability (Fidale

et al. 2013). Cellulosic materials enable tuning of

porosity and interconnectivity desirable for targeting

biomedical applications (Sultan and Mathew 2018).

Nevertheless, cellulose has several less favorable

Fig. 1 Schematic illustration of the microstructure of a

cellulosic fiber. a Plant/wood fiber, fibril aggregate, and

nanofibril (containing cellulose chains) associated with lignin

and hemicellulose. b Cross section and longitudinal section

showing the crystalline and disordered regions of a cellulose

nanofibril embedded in lignin and hemicellulose matrix
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properties for application in the biomedical field like

moisture sensitivity, insolubility in water and most

common solvents, and low resistance against micro-

bial attacks (Dumitriu et al. 2018; Tilki et al. 2010).

However, cellulose can be chemically modified by

substitution of its native hydroxyl groups with

functional groups, such as specific acids, chlorides,

and oxides, to address less favorable properties or to

develop new desired characteristics.

Traditionally, cellulosic materials have been used

in industries for developing paper and textile (Kar-

mazsin 1987), while in the last decades, cellulosic

materials have been used for a variety of applications,

e.g. biomedical applications (Ates et al. 2020; Trache

et al. 2020). Cellulosic materials especially show

great promise as cost-effective forward-looking

materials for biomedical applications because of their

biocompatibility, biodegradability, and low cytotox-

icity. Moreover, due to their chemical functionality,

cellulosic materials can be easily modified to yield

useful products. Cellulosic materials play an essential

role in traditional disease control and health care.

Meanwhile, many new application areas are also

explored, such as tissue engineering (Ninan et al.

2013), wound treatment (Solway et al. 2011), and

drug delivery (Gunduz et al. 2013). In the current

review, the results of detailed studies on cellulose

from various sources and the preparation of cellulose

derivatives, as well as their applications as novel

biomedical substances in the field of tissue engineer-

ing, wound dressing, and drug delivery systems are

presented.

Cellulose structure

Cellulose is a high molecular weight unbranched

chain, homo-biopolymer with repeating D-glucose

units, linked together by β 1→4 glycosidic bonds

(Brown et al. 1996; Habibi et al. 2010). One end of

the cellulose chain is reduced to a hemiacetal

functionality (Habibi et al. 2010; Moon et al. 2011).

The structure of cellulose is complicated due to

different packing and aggregation of the cellulose

chains, which varies among cellulose producing

organisms. Cellulose has three hydroxyl groups in

each glucose residue with a degree of polymerization

based on glucose units ranging from 1000 to 15,000,

depending on the cellulose origin and treatments

(Table 1). The intra-chain hydrogen bonding between

hydroxyl groups and oxygen of the adjoining ring of

cellulose molecules stabilizes the linkage and results

in a unbranched conformation of cellulose chains

(Agoda-Tandjawa et al. 2010).

Cellulose molecules assemble in the form of

ordered parallel layers into elementary fibrils, either

in plant cell walls, algae cell walls, tunicate epider-

mal cell membranes, or produced by bacteria. Linked

by van der Waals forces and strong intra- and/or

intermolecular hydrogen bonds, the cellulose chains

are tightly aggregated together with a lateral dimen-

sion of 3–5 nm. Each elementary fibril is a bundle of

cellulosic crystals along the fibril axis alternated with

disordered domains. Bundles of elementary fibrils

further constitute cellulose microfibrils with a cross-

sectional width of 5–20 nm and a length of several

micrometers, depending on their origin (Klemm et al.

2005).

Cellulose is a semi-crystalline material, and its

degree of crystallinity depends on its origin, extrac-

tion method, and pretreatment. The degree of

crystallinity of wood-based and plant-based cellulose

usually ranges from 40 to 60%, while cellulose from

other sources, like bacteria and tunicin, shows a

higher degree of crystallinity ranging from 80 to

100% (Avolio et al. 2012; Moon et al. 2011; Müller

et al. 2014). Crystalline cellulose exists in the

allomorphs of cellulose I, II, III, and IV (Moon

et al. 2011), which are discussed below.

Cellulose I, II, III, and IV

The different allomorphs of crystalline cellulose are

cellulose I, II, III, and IV (Ishikawa et al. 1997).

Cellulose I contains parallel chains in the crystalline

structure and is naturally derived from a variety of

sources (trees, plants, tunicates, algae, and bacteria)

(Wada et al. 2010). Cellulose I forming sheets, which

are stacked together by hydrogen bonds and Van der

Waals interactions (Wada et al. 2010), contribute

significantly to the stiffness and specific structure of

cellulose.

The crystalline phase of cellulose I is composed of

two metastable structures, i.e. triclinic (Iα) and

monoclinic (Iβ). The ratio of Iα to Iβ structures

depends on the source of cellulose. The Iα structure

with a triclinic unit cell is the allomorph known for

most algal and bacterial cellulose (Wada et al. 2010).
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The Iβ allomorph has a monoclinic unit cell contain-

ing two parallel chains, which is typically found in

plant-based and tunicate-based cellulose (Yamamoto

et al. 1996). The Iα structure can be partly converted

into the Iβ structure (Debzi et al. 1991; Horikawa and

Sugiyama 2009), through hydrothermal treatment in

alkaline solution at 260 °C or through high-temper-

ature treatment in helium gas and organic solvents

(Debzi et al. 1991).

The thermodynamically metastable cellulose I can

be converted into either cellulose II or III (Fig. 2). Up

to now, cellulose II is considered to have the most

stable structure, specifically a monoclinic structure,

that provides technical relevance for its use. Conver-

sion of cellulose I into cellulose II was discovered by

John Mercer in 1844, during the treatment of cotton

by an alkaline solution (Heines 1944). Cellulose II is

typically obtained by regeneration (dissolution and

recrystallization) or mercerization (aqueous sodium

hydroxide treatment) of native cellulose (Wada et al.

2010). During this conversion, the parallel chain

arrangement of cellulose I changes into a more

stable antiparallel chain arrangement of cellulose II.

Cellulose III can be formed from cellulose I or II

through liquid ammonia treatment, and is called

cellulose IIII and IIIII, respectively (Fig. 2).

Table 1 Degree of polymerization of cellulose from various sources

Source Type Degree of

polymerization

(range)

Reference(s)

Wood Wood from

various

species

6000–10,000 Hallac and Ragauskas (2011)

Wood pulp (in

general)

2000–4000 Henriksson et al. (2007), Sehaqui et al. (2011), Shimizu et al. (2016), Sjöström

and Westermark (1999)

Wood CNF 250–3500 Benı́tez and Walther (2017), Guo et al. (2017), Henriksson et al. (2007, 2008),

Kurihara and Isogai (2015), Shinoda et al. (2012)

Plant Cotton 10000–15,000 Hallac and Ragauskas (2011), Kumar et al. (2009)

Corn 1700 Xu et al. (2009)

Wheat straw 2600 Jahan and Mun (2009)

Jute 1900 Jahan and Mun (2009)

Bagasse 1000 Hallac and Ragauskas (2011)

Corn stover 2500 Hallac and Ragauskas (2011)

Corn kernel 1700 Hallac and Ragauskas (2011)

Bacteria 7000–16,000 Hallac and Ragauskas (2011), Tahara et al. (1997)

Algae 2500–4300 Guo et al. (2017), Hallac and Ragauskas (2011)

Tunicate 700–3500 Šturcová et al. (2005), Zhao and Li (2014), Zhao et al. (2015b)

The values of degree of polymerization are estimated by different methods including number-average (DPn), weight-average (DPw),

and viscosity-average (DPv)

Fig. 2 Phase transition between various crystalline allomorphs of cellulose (cellulose I, II, III, and IV)
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Subsequent thermal treatments can be applied to form

cellulose IV from both cellulose IIII and IIIII
(Nishiyama et al. 2002; Wada et al. 2010) (Fig. 2).

Cellulose sources

Cellulose is categorized based on its source of origin,

i.e. as wood-based cellulose (WC), plant-based

cellulose (PC), bacteria-based cellulose (BC), algae-

based cellulose, and tunicate-based cellulose (Fig. 3).

In the long history of cellulose use, based on its

abundance and cost-effectiveness, WC and PC

became the most commonly known kinds of cellulose

in contrast with BC, tunicate-based cellulose, and

algae-based cellulose (Klemm et al. 2011).

Wood and plant cellulose

Cellulose has been extracted from softwood (such as

pine (Bilbao et al. 1997), cedar (Shi et al. 2015), and

spruce (Fernandes et al. 2011)) and hardwood (such

as oak (Robertson et al. 1997), and beech (Uehara

and Sakata 1990)). Furthermore, a wide variety of

plant materials has been studied for the extraction of

cellulose including cotton (Nam et al. 2020), flax (Yu

et al. 2015), pineapple leaf (Balakrishnan et al.

2018a, b), corn (Gopi et al. 2017), hemp, jute,

bagasse, ramie (Nishiyama et al. 2003), cereal straws

(Vargas et al. 2012), potato peel waste (Chen et al.

2012), and oil palm biomass (Haafiz et al. 2013)

(Fig. 3).

Fibers extracted from wood and plant show

similarities in composition and structure, including

biodegradable carbohydrate polymers, mainly cellu-

lose, hemicellulose, and lignin (Table 2). Cellulose

molecules in either wood or plant have a complex,

multi-level structure (Fig. 4); they are linked to other

biopolymers like hemicellulose and lignin (Bidlack

and Buxton 1992; Herranz et al. 1981; Ramsden and

Blake 1997) (Fig. 1a,b). Although cellulose from

plants and wood has the same chemical structure as

that from other sources, it has a different microstruc-

tural organization (Martı́nez-Sanz et al. 2011). In WC

and PC, cellulose chains are packed in layers as

nanofibrils, held together by hemicellulose and lignin

matrix (Fig. 1a, b). Although cotton fiber is PC, it

does not have lignin or hemicellulose to a significant

extent. The cellulose content in plants is generally

30-75% and in wood 40-50% (Parveen Kumar 2009;

Shahzadi et al. 2014; Sun and Cheng 2002) (Table 2).

Softwood and hardwood differ in chemical compo-

sition, i.e. they differ in the content of cellulose,

hemicellulose, and lignin (Table 2), and in structural

organization.

Bacterial cellulose

The cellulose produced by bacteria is called “micro-

bial cellulose”, “bacterial nanocellulose”,

“biocellulose” or specifically “bacterial cellulose”.

BC was first discovered by Brown in 1886 as a strong

jelly membrane on the surface of a vinegar fermen-

tation broth (Brown 1886). BC is synthesized by

terminal complex in almost pure form ([90%)

without binding to any other polymer, e.g. lignin

and hemicellulose (Fig. 5). Therefore, the isolation

and purification of BC are quite simple and do not

need extensive chemical or any other type of

treatment, in contrast with WC and PC. Since its

discovery, BC has attracted attention due to several
Fig. 3 Classification of cellulose according to source: wood,

plant, algae, animal (tunicate), and bacteria
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advantages such as high purity, ultrafine fibers

shapes, remarkably crystalline structure, high me-

chanical strength, biodegradability, biocompatibility,

high water-holding capability, conducive chemical

stability, and a high degree of polymerization (Cam-

pano et al. 2016). More importantly, BC is considered

a non-cytotoxic, non-genotoxic, and highly biocom-

patible material, attracting interest in diverse areas

with hallmarks in medicine (Gorgieva and Trček

2019).

BCs are mainly produced extracellularly by Gram

negative bacteria such as Komagataeibacter xylinus,

Agrobacterium, Achromobacter, Aerobacter, Azoto-

bacter, Pseudomonas, and Rhizobium, and only one

genus of Gram positive bacteria namely Sarcina

(Fig. 3) (Hong and Qiu 2008; Jonas and Farah 1998)

with oxygen supply (air) and a carbon source (mainly

D-glucose), as well as a nitrogen source (Jozala et al.

2015; Klemm et al. 2011). Komagataeibacter xylinus

(formerly Acetobacter xylinum) is the most widely

used species of bacteria for producing BC since it

produces relatively large amounts of BC from a wide

range of carbon and nitrogen sources in liquid culture

(Hong and Qiu 2008; Zhong et al. 2013). Carbon

sources used for this purpose are commonly agro-

industrial wastes, e.g. rotten fruit like pineapple peels

juice and sugar as a medium (Castro et al. 2011;

Jozala et al. 2015). The yield of BC synthesis is up to

40% in relation to the starting carbon source,

although, generally, the large-scale production of

BC is costly (Klemm et al. 2011).

Table 2 Content of cellulose, hemicellulose, and lignin as major components in the chemical composition of wood and plant fibers

Source Type Cellulose (wt.

%)

Hemicellulose (wt.

%)

Lignin (wt.

%)

Reference(s)

Plant fibers (except

cotton)

30–75 10–35 0–20 Madsen and Gamstedt 2013, Thygesen et al.

2005

Wood fibers Softwood 45–50 18–35 23–35 Madsen and Gamstedt 2013

Hardwood 40–50 24–40 18–25 Liitiä et al. 2003, Madsen and Gamstedt

2013

Fig. 4 Schematic of wood structure from tree to cellulose

molecule, and major biomedical applications

Fig. 5 Schematic of bacterial cellulose network representing terminal complex, microfibrils, protofibrils, and crystalline and

disordered regions of cellulose chains
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Themain characteristics of BC are the high degree of

crystallinity (80–90%), the high degree of polymeriza-

tion (in the range of 7000–16000 glucose residues;

Table 1), and high mechanical strength associated with

inherent single cellulose nanofibers (at the order of the

specific strength of steel or Kevlar). BC can be

processed into the morphological forms of fleeces,

films, spheres, and hollow particles (Müller et al. 2014),

whichmake it versatile for biomedical materials design.

Although WC, PC, and BC have the same chemical

building blocks, they differ in mechanical properties

due to their difference in structural organization

(Martı́nez-Sanz et al. 2011) (Table 4). Furthermore,

the degradation rate of BC is slightly higher than that of

WC and PC (Castro et al. 2011; Klemm et al. 2011). BC

is synthesized in a variety of synthetic and non-synthetic

media by a class of acetic acid-generating bacteria.

During biosynthesis, BC forms a pellicle of a random

nanofibrillar network of cellulose chains composed of

crystalline and disordered regions (Koizumi et al. 2008)

(Fig. 5). Moreover, BC takes up enormous amounts of

water (in some cases, more than 99% water), and

produces stable hydrogels. Well-separated BC nanofi-

bers have large surface areas forming an extremely

porous structure (Chen et al. 2009). BC consists of

randomly assembled, \100 nm wide ribbon-shaped

fibrils, composed of 7–8 nm wide elementary nanofib-

rils aggregated in bundles (Gorgieva and Trček 2019; Li

et al. 2016a). This unique nano-morphology results in a

large surface area that can hold a large amount of water,

and at the same time displays excellent elasticity, high

wet strength, and conformability (Gorgieva and Trček

2019). The combination of the advantageous properties

of BC has become an exciting feature for biomedical

applications, especially in tissue engineering and in the

pharmaceutical industry, as implants and scaffolds,

emulsion and hydrogel stabilizers, drug-delivery sys-

tems, smart artificial skin or wound regeneration

therapies, and enzyme and biomolecules immobiliza-

tion for enhanced activity and higher stability in vivo.

Algal cellulose

Various types of algae, e.g. brown species (Posidonia

Oceanica) (Tarchoun et al. 2019), green species

(Cladophora) (Pan et al. 2016), and red species

(Gelidium elegans) (Chen et al. 2016b) (Fig. 3), are

other important sources of cellulose, with the algae cell

walls made up of a large portion of cellulose. Red algae

(like Gelidium elegans) have a rich content of carbo-

hydrates, which are mainly composed of an energy-

dense substrate (cellulose) and mucilaginous materials

(agar). Algae are alternative renewable sources for

cellulose production since they can receive nutrients

from waste streams (i.e. wastewater, flue gas), and be

cultivated at a large scale ultimately benefitting the

environment (Aysu et al. 2016). Valonia- or Clado-

phora-derived cellulose has a remarkably high degree

of crystallinity ([95%) (Sugiyama et al. 1991). Algal

cellulose is not pure, and is associated mainly with

hemicellulose, protein, and lignin (Rabemanolontsoa

and Saka 2013).

Cellulose extracted from green algae has unprece-

dented advantages over WC, PC, and BC because of

its high crystallinity ([70%) (Chen et al. 2016b), low

moisture adsorption capacity, high porosity in the

mesoporous range, and associated high specific

surface area (Strømme et al. 2002; Zhou et al.

2019). Overall, algal nanocellulose has excellent

potential for biomedical applications such as tissue

engineering because of its nontoxicity, and facile

chemical modification (Hua et al. 2016).

Tunicate cellulose

Tunicates are invertebrate animals living in the

oceans in vast numbers and are the only known

animal source of cellulose (Fig. 3). There are several

enzyme complexes in the plasma membrane of

tunicate epidermal cells responsible for cellulose

synthesis. Tunicate-based cellulose is obtained from

the outer tissue of tunicate, named “tunic”, from

which a pure form of cellulose termed “tunicin” can

be extracted (Zhu et al. 2018b). The purified

extracted cellulose from tunic is called tunicate

cellulose or tunicin. Most of the research in this field

has focused on a class of tunicates known as

Ascidiacea (sea squirts), which includes over 2300

species (Zhao and Li 2014).

Hundreds of cellulose nanofibrils are bundled in the

tunic (Kimura et al. 2001). The shape and dimensions

of a nanofibril bundle vary depending on the species.

Nanofibril bundles are deposited in a multi-layered

texture parallel to the surface of the epidermis. The

length of tunicate cellulose nanofibrils ranges from

100 nm to several micrometers (typically[2 µm), the

width ranges from10 to 30 nm (Table 3), and the aspect

ratio ranges from 60 to 70 (Zhao et al. 2015b).
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Generally dry tunic contains approximately 60%

cellulose and 27% nitrogen-containing components

(Berrill 1947). However, after treatment and extrac-

tion, tunicate cellulose is highly crystalline (ca. 95%)

composed of nearly pure cellulose in the morpholog-

ical form of high aspect ratio fibrils (Zhao and Li

2014). Tunicate cellulose has a high specific surface

area ranging from 150 to 170 m2/g (Sturcová et al.

2005). It also has a reactive surface due to hydroxyl

groups (Šturcová et al. 2005). The degree of polymer-

ization of tunicate cellulose has been reported to be in

the range of 700–3500 (Table 1).

Various morphological forms of cellulosic particles

Cellulose naturally exists or is isolated from various

sources in some predetermined dimension and shape,

which can simply be classified into cellulose fibers,

cellulose filaments, cellulose crystals, and cellulose

micro/nanofibrils (Fig. 6). Each cellulosic particle

type has a distinguished size, morphology, aspect

ratio, crystallinity, and physiochemical properties.

These cellulosic particles are discussed below.

Cellulose fibers

At the site of biosynthesis of wood or plants,

cellulose is synthesized as microfibrils that are further

organized to assemble cellulose fibers (Fig. 1a).

Cellulosic fibers are typically found in three

geometries, i.e. strand fibers (long fibers of

20-100 cm length), staple fibers (short fibers of\

60 mm length), and pulp fibers (very short fibers of

1–10 mm length) (Ardanuy et al. 2015). A staple fiber

is an entire but single cell, while a strand fiber is

composed of many cells. Cotton fibers are staple

fibers, with a length of 25–45 mm. The length of

cotton linters, i.e. the fibers that remain adhered to the

cotton seed, is only a few millimeters. Strand and

staple fibers are obtained from crop or wild plants

Table 3 Typical dimensions of nanocellulose from various sources

Nanocellulose

type

Source Length

(nm)

Width

(nm)

Reference(s)

Nanofibril Wood [1000 2–100 Dufresne (2013), Gumrah Dumanli (2017)

Plant [1000 3–100 Chinga-Carrasco (2011), Zambrano et al. (2020)

Bacteria Different

networks

20–

100

Klemm et al. (2018)

Tunicate [2000 10–30 Zhao and Li (2014), Zhao et al. (2017), Zhao et al. (2015b)

CNC Wood 100–200 3–6 Klemm et al. (2011), Peciulyte et al. (2015)

Plant 100–500 3–30 de Rodriguez et al. (2006), Habibi et al. (2008), Li et al. (2009)

Bacteria 100−1000 10−50 Araki and Kuga (2001), Roman and Winter (2004), Sacui et al. (2014)

Algae [1000 5–30 Moon et al. (2011), Revol (1982)

Tunicate 100–2000 5–30 Elazzouzi-Hafraoui et al. (2008), Habibi et al. (2006), Jalal Uddin et al. (2011),

Rusli et al. (2011), Šturcová et al. (2005), Zhao et al. (2015b)

Fig. 6 Cellulosic particles in different forms: fiber [with

permission: (Oliaei et al. 2020)], filament [with permission:

(Håkansson et al. 2014)], micro/nanofibril, and nanocrystal

[with permission: (Habibi et al. 2008)]
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directly after a water retting process. Pulp fibers are

usually obtained as individual cells from wood and

sometimes plant sources (like sisal, banana, fique,

and cotton linters) by a pulping process. Pulping is an

extensive treatment with solutions that remove the

lignin between cells and result in individual plant

cells that are just a few mm long (Ardanuy et al.

2015; Elhawary 2015).

Cellulose filaments

Cellulose nanofibers can be assembled into filament

form by wet-extrusion (Walther et al. 2011), flow-

focusing (Håkansson et al. 2014), or spinning

(Iwamoto et al. 2011; Vuoriluoto et al. 2017)

processes. These cellulose filaments may have dif-

ferent physicochemical aspects (e.g. allomorph,

crystallinity), but all filaments are mechanically

strong, ductile, and have very high aspect ratios

(Fig. 6). Filaments are interesting as building blocks

of materials for biomedical applications.

There is also a different type of cellulose filament,

which is not obtained via the above-described

processes but by peeling cellulose fibers from wood

or plants (Tibolla et al. 2017). This peeling process is

only mechanical and does not require chemicals or

enzymes and has no released effluent, which makes

the generated filaments appealing for biomedical

applications.

Cellulose micro/nanofibrils

Cellulose microfibrils, also originally-called

microfibrillated cellulose (MFC), have been devel-

oped first by Turbak et al. (Turbak et al. 1983) and

Herrick et al. (Herrick et al. 1983) at ITT Rayonier

Inc., USA, in the late 1970s. Cellulose fibers (mainly

from wood) are mechanically disintegrated into

micro- and nanofibrils, for example by passing

through a homogenizer. Cellulose nanofibrils (CNFs;

width \ 100 nm) are mainly obtained at a low

concentration from water suspensions of wood or

plant pulps. CNFs are not always obtained as pure

cellulose nanofibers; they can be disintegrated from

sources that are still containing a considerable

amount of hemicellulose and lignin (Abe et al.

2009; Kumagai and Endo 2018; Oliaei et al. 2020).

Many attempts have been made to obtain individual

fibrils, such as mechanical disintegration, including

homogenization (Turbak et al. 1983; Wang et al.

2013) and micro-fluidization (Ferrer et al. 2012), as

well as the application of enzymatic treatments

(Tibolla et al. 2017; Wågberg et al. 2008). Some

chemical treatments are also used to facilitate the

disintegration of CNFs, such as TEMPO (2,2,6,6te-

tramethylpiperidinyloxyl)-catalyzed oxidation (Isogai

et al. 2011), and carboxymethylation (Wågberg et al.

2008), which also introduce different functionalities

to the cellulose fibrils. The width of CNFs is

generally in the range of 2–100 nm depending on

the source of cellulose, fibrillation process, and

pretreatment (Table 3). The length of CNFs is

typically[1 μm (Dufresne 2013; Gumrah Dumanli

2017) (Table 3). CNFs are mostly comprised of

alternating crystalline and disordered domains

(Klemm et al. 2011). Principally, CNFs have typi-

cally an elastic modulus between 14 and 36 GPa

(Lindström 2017; Supachok et al. 2012), and an

ultimate tensile strength around 1 GPa (Ali and

Gibson 2012; Lindström 2017) at ambient conditions,

but even higher values have been reported (Bledzki

and Gassan 1999; Henriksson et al. 2007; Sakurada

et al. 1962).

Crystalline cellulose

When cellulose microfibrils are subjected to a proper

combination of mechanical, chemical, and/or enzy-

matic treatments, the highly crystalline regions of the

cellulose microfibrils can be extracted, resulting in

the formation of microcrystalline cellulose (MCC;

with a diameter in micron scale) or cellulose

nanocrystals (CNCs; with a diameter in nano scale)

(Trache et al. 2017). MCC and CNCs are stiff rod-

like particles consisting of cellulose chain segments

in a nearly perfect crystalline structure, which was

first developed by Ranby (1949). MCC was first

commercialized under the brand name Avicel®

(Battista and Smith 1962). In 1964, the Food

Machinery Corporation introduced Avicel® PH to

the pharmaceutical industry as an ingredient for

direct tableting (Dinand et al. 1996). The length of

MCC from Avicel® PH is in the range of microm-

eters. Nowadays, MCC is produced by more than ten

suppliers all around the world. The most common

source of pharmaceutical MCC is wood cellulose

(Thoorens et al. 2014).
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MCC is a purified form of partially depolymerized

alpha cellulose through hydrochloric acid hydrolysis

(Schuh et al. 2013). The partial depolymerization of

the disordered regions of cellulose by acid hydrolysis

produces shorter and more crystalline particles like

MCC due to its inclination to hydrolysis (Wardhono

et al. 2020; Zhao et al. 2015a). MCC has broad

compatibility with active pharmaceutical ingredients

(APIs), due to its physiological inertness, ease of

handling, biodegradability, as well as inherent secu-

rity of supply (Nsor-Atindana et al. 2017).

Commercial MCC has round or rod-like particles

measuring 10–200 µm (Juban et al. 2015). Pharma-

ceutical MCC is produced from softwood, hardwood

(Thoorens et al. 2014), and cotton (Shlieout et al.

2002; Suzuki and Nakagami 1999). MCC has several

advantages, such as biodegradability, thermal stabil-

ity, satisfying mechanical characteristics, high elastic

modulus, high aspect ratio, and low density, making

it an appropriate candidate to be used as a filler in

biocomposites (Pei et al. 2010). Moreover, the large

surface area and high internal porosity of MCC

provide appropriate cohesiveness for wetted mass

(Zolkefpeli and Wong 2013).

CNC particles are the extracted crystalline regions

of the cellulose microfibrils (Moon et al. 2011;

Shopsowitz et al. 2010; Siqueira et al. 2010). Purified

CNCs are often made by sulfuric acid hydrolysis of

native cellulose. Aggressive sulfuric acid hydrolysis

and ultrasonic treatment of bulk cellulose results in

disintegration of highly crystalline CNC particles,

which are then extracted. CNCs exhibit exceptional

characteristics, such as a high aspect ratio, large

specific surface area, high specific strength and

modulus, along with abundance, biodegradability,

reactive surfaces, and the ability to make stable sus-

pensions in various low-polarity solvents when a

surfactant is used (Chang et al. 2009; Wu et al. 2010).

The characteristics of nanocrystals, e.g. shape, length,

and width, depend on the cellulose source and the

extraction procedure, e.g. controlled time and tem-

perature for acid hydrolysis, high-pressure

homogenization conditions (Lu and Hsieh 2010)

(Table 3), and further modifications, such as neutral-

ization and dialysis (Martı́nez-Sanz et al. 2011).

CNCs can be prepared from different sources,

including WC, PC, BC, algal, and tunicate cellulose

(Le Goff et al. 2015; Martı́nez-Sanz et al. 2011;

Siqueira et al. 2010). CNC particles can be isolated

by breaking down MCC particles. After treatment of

MCC particles with sulfuric acid, a stable dispersion

of CNCs in water or organic solvents is prepared

(Klemm et al. 2011). CNCs typically have a

relatively broad length distribution because of the

diffusion-controlled nature of the acid hydrolysis.

Generally, the average length is a few hundred

nanometers, and the width a few nanometers (Moon

et al. 2011), with an aspect ratio between 10 for

cotton (Ebeling et al. 1999), and 67 for tunicin

(Angles and Dufresne 2000) and Capim dourado

(golden grass) (Siqueira et al. 2010). Typically,

CNCs derived from WC and PC have a length

between 100–500 nm, and a width between 3-30 nm,

while tunicate- and bacteria-based cellulose have a

length of 100 nm to several microns, and a width of

5–50 nm (Table 3). The degree of polymerization of

cellulose in CNCs is in the range of 500 to 15000.

CNC has been reported to have an elastic modulus of

60–220 GPa, and a tensile strength of 7500–

7700 MPa (Table 4). Compared to bulk cellulose,

which has more significant disordered fractions, these

nanocrystals exhibit very high specific strength,

elastic moduli, high surface area, and unique liquid

crystalline properties (Wu et al. 2013).

CNC as nanoparticle reinforcement has received

much attention as it has attractive advantages, such as

low density, very good uniformity and durability, and

biodegradability. The high strength and elastic mod-

ulus, as well as the small dimensions of

nanocrystalline cellulose, provide a far-reaching

reinforcement effect on the overall matrix structure

(Le Goff et al. 2015; Septevani et al. 2018). The

versatility and adaptability of bionanocomposites

enable these nanocrystalline cellulose-based materi-

als to be utilized for biomedical applications,

including medical implants, wound dressing, drug

delivery, and scaffolds for tissue engineering and

vascular grafts (Rudisill et al. 2015).

Cellulose properties

Cellulose solubility

A major limitation of cellulose in biomedical appli-

cations is its insolubility in water and other common

solvents. This is due to the stabilization of cellulose

molecules by intra- and intermolecular hydrogen
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bonds, as well as to electrostatics and hydrophobic

interactions within the integrated fibrils, forming

tough bundles with numerous hydroxyl groups, which

are distributed on the backbone (Bergenstråhle et al.

2010; Lindman et al. 2017). The overall effects of the

hydrogen bonding mechanism on stabilization are not

completely understood; recently, electrostatics, and

hydrophobic interactions have been suggested to play

an important role (Lindman et al. 2017). As a result

of the consequent tight connections between the

entangled chains of cellulose, cellulose becomes

insoluble in water and most common solvents.

Therefore, it is essential to develop intricate solvents

that create systems requiring minimum energy for

dissolving cellulose. Ionic liquids are considered

environmentally friendly solvents, and some of them

dissolve cellulose. Besides, ionic liquids have low

toxicity, thermal stability, negligible volatility, recy-

clability, and promote dissolvability for cellulosic

particles (Li et al. 2016b). Ionic liquids, including

1-butyl-3-methylimidazolium formate (BMIMFmO)

(Xu et al. 2010), 1-butyl-3-methylimidazolium chlo-

ride (BmimCl) (Erdmenger et al. 2007), N,N-

dimethylacetamide/lithium chloride (DMAc/LiCl)

(Potthast et al. 2002), NaOH/thiourea (Jiang et al.

2017), LiOH/urea, and NaOH-urea (Cai and Zhang

2005) are able to properly dissolve cellulose. 1-Ethyl-

3-methylimidazolium diethyl phosphate ([EMIM]

DEP), an ionic liquid solvent, is a favorable cellulose

solvent since it has low viscosity with a

corresponding low melting point (19–21 °C). A

solution of cellulose in [EMIM] DEP-pyridine mix-

ture is stable in time (Vitz et al. 2009).

Some ionic liquids can be used to dissolve

cellulosic materials, but limitations exist regarding

their usage such as high energy consumption, high

cost, and inherent difficulty in solvent recovery (de

Oliveira Ribeiro et al. 2018; Zhu et al. 2018a).

N-methylmorpholine-N-oxide monohydrate

(NMMO·H2O), an organic solvent, has also been

used to dissolve cellulose. NMMO is a nontoxic

solvent, of which more than 99% can be recycled

after dissolution (Zhang et al. 2017). Thus, depending

on the specific conditions required for application,

there is continuous interest in developing innovative

cellulose solvents with favorable properties to allow

usage of cellulose in biomedical applications.

Mechanical properties of cellulose

Cellulose-based materials and their composites with

inorganic materials and polymers are emerging for

the design of high-performance mechanical and

functional materials (Benitez and Walther 2017).

The high intrinsic stiffness and strength of cellulose I

crystals yield promising materials that exhibit

extraordinary mechanical properties if they are

assembled correctly, making them a suitable candi-

date for biomedical applications where high

mechanical performance is desired. CNFs, for

Table 4 Typical elastic modulus, tensile strength, and elongation to rupture of common cellulosic particle types

Cellulosic

particle types

Elastic

modulus

(GPa)

Tensile

strength

(MPa)

Elongation to

rupture (%)

Reference(s)

(Measurement or estimation techniques)

Plant fiber 5–130 300–1050 1–8 Bledzki and Gassan (1999), López et al. (2012, 2013), Moon et al. (2011)

(Tensile)

Wood pulp

fiber

14–40 380–1240 3–22 Bledzki and Gassan (1999), López et al. (2011), Moon et al. (2011), Mott

et al. (2002) (Tensile and micro-mechanical modelling)

Wood CNF 14–84 1000–1300 4–8 Ali and Gibson (2012), Benitez and Walther (2017), Cheng et al. (2009),

Klemm et al. (2018), Lindström (2017), Supachok et al. (2012)

(Molecular modelling, micromechanical modelling, AFM and Raman)

BC 60–115 – – Guhados et al. (2005), Moon et al. (2011) (AFM and Raman technique)

Tunicate

cellulose

110–200 – – Iwamoto et al. (2009) (AFM)

CNC 60–220 7500–7700 – Dufresne (2017), Moon et al. (2011), Ramezani and Golchinfar (2019),

Rusli and Eichhorn (2008), Šturcová et al. (2005), Tashiro and

Kobayashi (1991) (Raman, Modeling, Inelastic X-ray scattering)
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instance, feature outstanding intrinsic mechanical

properties (high specific modulus and strength) due

to high crystallinity (Benitez and Walther 2017), as

well as order and intermolecular interactions such

as hydrogen bonding between cellulose chains (Yu

et al. 2012). The elastic modulus of crystalline

cellulose I along the cellulose chain axis has been

reported to be 124–155 GPa (Šturcová et al. 2005;

Tanaka and Iwata 2006; Tashiro and Kobayashi

1991).

The rigid crystalline CNCs have specific moduli

similar to Kevlar and steel (Eichhorn et al. 2010;

Moon et al. 2011; Xiong et al. 2016). Moreover, BC

in never-dried form has exceptional mechanical

characteristics that resemble soft tissue (Hu and

Catchmark 2011; Svensson et al. 2005). BC in the

dried form also possesses exceptional mechanical

properties. The elastic modulus of BC has been

reported to be very high, i.e. 60–115 GPa (Benitez

and Walther 2017; Guhados et al. 2005; Hsieh et al.

2008) (Table 4). The mechanical properties of BC

and interactions with smooth muscle cells have been

investigated, and it has been argued that the mor-

phology of single nanofibrils, the network structures

of BC, and the stress–strain response reveal similar-

ities to that of a collagen network (Bäckdahl et al.

2006). It is worth mentioning that extensive research

has been carried out to improve collagen-based

constructs (Berglund et al. 2003; L’Heureux et al.

1993; Seliktar et al. 2000), as they have enormous

potential for biomedical applications. This opens up

opportunities for novel biomimetic scaffold design

where BC replaces the collagen network of the

extracellular matrix. Information about the mechan-

ical properties of cellulosic forms from different

sources is provided in Table 4. Based on the data in

Table 4, and what has been discussed so far, it can be

easily understood that the elastic modulus and tensile

strength of cellulosic reinforcements are very impres-

sive and promising for biomedical applications such

as tissue engineering, wound healing, and drug

delivery, where strong and stable structures are

required.

Hygroscopic properties of cellulose

Despite impressive mechanical properties of cellulose

in dry-state, the low wet-strength of this material is a

limiting parameter for many applications

(Mertaniemi et al. 2016). The reason for this problem

is associated with the intrinsic hygroscopic properties

of cellulose, which is considered a hygroscopic

substance due to the tendency to form hydrogen

bonding with water. The water molecules attract and

hold in the structure of cellulose. Penetration of water

in the structure of cellulose is mainly limited to the

disordered domains. As a result, the percentage of

disordered domains and fiber saturation point concur

around 30% (Kolin and Janezic 1996). The water

swelling of cellulose allows for favorable aqueous

processing of cellulose and/or cellulose-based hybrid

and composite materials. However, such materials as

products are prone to significant swelling due to both

adsorption of moist air or absorption of liquid water

along the hydrophilic surface of the cellulose or

within embedded hydrophilic polymers. Nanocellu-

lose-based materials can thus take up water and swell

much more compared with fiber-based materials due

to their higher surface area (Benı́tez et al. 2013).

Moreover, in chemically modified cellulose-based

materials that carry charged groups, water uptake is

elaborated by the osmotic swelling pressure gener-

ated by the charged groups (Walther et al. 2020).

These hygroscopic properties of cellulose might

determine whether cellulose can be used for a

specific biomedical application.

Toxicity

Toxicity of materials is a concern for biomedical

applications. Cellulosic particles are extracted from

sources with no or low toxicity, but the dimension,

surface modification, hydrophilization, hydropho-

bization, and aggregation might influence their

cytotoxicity and biocompatibility. Generally, the

nanoscale dimension of particles has been recognized

as a potential factor generating toxicity of materials

that are composed by these particles (Nel et al. 2006).

Conflicting reports on in vitro research exist on cyto-,

geno-, and immunotoxicity of cellulosic nanoparti-

cles (Catalán et al. 2015; Coelho et al. 2018).

Moreover, inflammation is often occurring after

exposure to cellulosic nanoparticles as a normal

biological response to a foreign material. It may

disappear after a while. Attempts have been made to

correlate the cellulosic nanoparticle size and rigidity

(of a specific type and chemical function) to cell

toxicity in acute tests, but no clear correlation has
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been documented. Therefore, more research is needed

on the long-term in vivo effects of cellulose nano-

materials, since this may provide different results

from those obtained by acute and in vitro studies.

Cellulose derivatives

For upgrading the value or expanding versatility of

cellulose, and by using chemical treatment or func-

tionalization, various cellulose derivatives have been

developed and utilized in biomedical industries. The

properties of cellulose derivatives are not only

determined by the type and degree of substitution,

but also by the functionalization pattern along the

polymer chain. Regio-selective synthesis of cellulose

derivatives is limited by cellulose’ poor solubility in

organic solvents, and high steric hindrance due to the

stiff and bulky cellulose main chain. The hydroxyl

group is the most targeted reactive group on the

cellulose chain. Cellulose hydroxyl groups are rela-

tively poor nucleophiles, resulting in the requirement

for fairly harsh reactions, so that taking advantage of

the relatively small reactivity differences between the

2-, 3- and 6-OH groups is difficult (Zheng et al.

2014). Therefore, regio-selective substitution is one

of the remaining challenges in the synthesis of

cellulose derivatives. To synthesize cellulose deriva-

tives under more general and practical conditions for

commercial purposes, it is necessary to understand

the relationship between cellulose derivatives’ regio-

chemical structure and their properties (Zheng et al.

2014). The chemical derivatization of cellulose,

based on the hydroxyl group, generally includes

etherification and esterification. The derivatives may

vary in terms of essential characteristics, e.g. chem-

ical structure, moisture sorption, water interaction,

surface activity, and solubility, which is discussed

below in detail, and summarized in Table 5.

Cellulose ether

Cellulose hydroxyl groups can be partially or totally

etherified by different reagents, e.g. epoxides, alpha

halogenated carboxylic acids, and halogenoalkanes

(Kamel et al. 2008). The solubility rate of cellulose

ethers (CEs) is affected by the acidity or alkalinity of

the solution. In acidic conditions, cellulose ether

dissolves very slowly, while in alkaline conditions it

dissolves rapidly. Cellulose ether can be water-

soluble depending on the substituent chemical struc-

ture, as well as degree and pattern of substitution.

Most water-soluble cellulose ethers have a degree of

substitution of 0.4–2. Although many cellulose ether

compositions have been synthesized since the early

1900s, only a few have gained commercial impor-

tance. Among all CEs, carboxymethyl cellulose

(CMC), methyl cellulose, and hydroxyethyl cellulose

are extensively used in the formulation of industrial

biomedical products due to their nontoxic profile and

appropriate rheological and mechanical properties.

CEs high water retention capacity (Fidale et al. 2013)

and thermo-gelling ability (Sanz et al. 2015) are

known to accelerate wound healing. These important

properties of CEs depend on the chemical structure of

the substituent and degree of substitution. Despite the

success of hydrated CEs in practical biomedical

applications, rather few attempts have been made to

investigate CEs water retention mechanism.

Methyl cellulose

Methyl cellulose is the most important commercial

cellulose ether. Methyl cellulose is the simplest alkyl

ether, which can be synthesized in an alkaline

medium with a methylating agent, such as methyl

chloride or dimethyl sulfate (Viera et al. 2007)

(Fig. 7). A different degree of substitution can be

obtained via altering the synthesis conditions, such as

the reaction time or the methylating agent (Viera

et al. 2007). Methyl cellulose dissolves in many

organic solvents, depending on the degree of substi-

tution. For instance, if the degree of substitution is

between 1.4 and 2.0, methyl cellulose dissolves in

water, and if this degree is between 2.4 and 2.8, it is

generally soluble in water and some organic solvents

(Table 5) (Vieira et al. 2012). Methyl cellulose has

thermo-gelling ability. The degree of cellulose sub-

stitution, molecular weight, presence and

concentration of additives are parameters affecting

the methyl cellulose gel-formation temperature and

the characteristics of the resulting gel (Sarkar 1979).

Besides, methyl cellulose is an emulsifying additive

(Içten et al. 2017), which is useful for drug delivery

systems. Methyl cellulose is mostly used for biomed-

ical applications such as tissue engineering, wound

healing, and pharmaceutical formulations.
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Carboxymethyl cellulose

CMC is one type of CEs, which is commercially

available and has unique features like hydrophilicity,

water solubility and stability, high chemical stability,

nontoxicity, biocompatibility, and biodegradability.

Also, it has no known side effects to human health

(Sahoo and Jena 2018). However, it is insoluble in

some organic solvents such as ethanol. The solubility

of CMC depends on the degree of polymerization, the

degree of substitution, and on the distribution of the

substituent. CMC can be used as effective viscosity

increasing agent, rheological control agent, binder,

stabilizer, and film former in the biomedical field

with particular attention to drug delivery and tissue

engineering systems. CMC is formed by reaction of

cellulose with monochloroacetic acid, where the

hydroxyl groups are substituted by carboxymethyl

groups in C2, C3, and C6 of each glucose residue,

such that the substitution slightly prevails at the C2

position. No secondary OH groups are formed during

the reaction (Heinze and Pfeiffer 1999; Xiquan et al.

1990). Therefore, CMC chemical structure is based

on carboxymethyl groups (–CH2–COOH) bound to

some of the hydroxyl groups of the cellulose

backbone (Fig. 7) (Swamy and Yun 2015). The

degree of substitution of commercial CMC grades for

biomedical products is typically between 0.6 and 1.25

(Swamy and Yun 2015). CMC properties depend on

its molecular weight, degree of substitution, and the

Table 5 Chemical structure, specific functional group, major solvents, and applications of cellulose derivatives

Cellulose

derivatives

Type Specific

functional

group

Solvent Major applications Reference(s)

Cellulose

ether

Methyl

cellulose

–OH or –OCH3 Cold water (\50 °C),

acetic acid

Food industry, tissue

engineering

de Dicastillo et al. (2016),

Nasatto et al. (2015),

Schütz et al. (2017)

CMC –OH or

–OCH2COOH

Water Tissue engineering, wound

dressing, drug

delivery, food industry,

adsorption technologies,

water-based paints,

textile, paper industry

Capanema et al. (2018),

Duan et al. (2016),

Mondal et al. (2015),

Mousavi et al. (2017),

Ogushi et al. (2007)

Ethyl cellulose –OH or –

OCH2CH3

Glycerol, propane-1,2-

diol, H2O-insoluble

Paper industry, tissue

engineering

Hakulinen (1988), Wang

et al. (2017)

Hydroxy-ethyl

cellulose

–OH or

–OCH2CH2OH

Water Cosmetic, cleaning

solutions

Durand-Cavagna et al.

(1989), Kozlowska et al.

(2018)

Hydroxy-

propyl

cellulose

–OH or

–OCH2CH

(OH)CH3

Water Tissue engineering, drug

delivery, wound healing,

sensor technologies

Li et al. (2019b), Yamada

et al. (1999), Zhang et al.

(2019)

Cellulose

ester

Cellulose

acetate

–OH or

–O(C=O)CH3

Acetone, acetic acid,

dimethylacetamide

Separation industry, textile,

tissue engineering,

wound healing, drug

delivery, food packaging

Dairi et al. (2019), Ioniță

et al. (2018), Liakos et al.

(2018)

Cellulose

nitrate

–OH or –

ONO2

Methanol, nitrobenzene,

mixture of ethanol-

ether

Separation industry,

painting, coating,

explosive materials

Maynard (1848),

Schoenbein (1849),

Shashoua et al. (1992),

Soylak et al. (2002

Cellulose

sulfate

–OH or –

OSO3H

Water Tissue engineering, drug

delivery, cell

immobilization/

encapsulation

Palaninathan et al. (2018),

Su et al. (2019)

CMC carboxymethyl cellulose
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distribution of carboxymethyl substituents along the

polymer chains. CMC is often activated in aqueous

sodium hydroxide, whereby it is transformed into its

sodium form for further use.

Ethyl cellulose

Ethyl cellulose is another important commercial CE.

The chemical structure of ethyl cellulose is based on

converting some of the hydroxyl groups on the

repeating glucose units into ethyl ether groups (Fig. 7)

(Davidovich-Pinhas et al. 2015). Ethyl cellulose is

prepared by reaction of alkali cellulose with ethyl

chloride at about 60 °C for several hours (Rekhi and

Jambhekar 1995). The complete etherification of

cellulose yields triethyl cellulose, although normally

ethyl cellulose with 2–2.6 degree of substitution is

used for a range of commercial products (Koch

1937). The physical characteristic and performance

of materials based on ethyl cellulose depend on the

degree of etherification, molecular weight, and

molecular uniformity. Solubility in most organic

solvents is typically achieved with degree of substi-

tution between 2.2 and 2.6 (Koch 1937).

Fig. 7 Classification of cellulose derivatives. a Chemical conversion procedures of cellulose to its derivatives. b Chemical structure

of cellulose derivatives
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Ethyl cellulose is a biodegradable substance that

has no water-solubility, no toxicity, excellent film-

forming capacity, water resistance, and barrier-form-

ing characteristics (Yang et al. 2014). Ethyl cellulose

has excellent strength at room temperature, but its

strength decreases immediately with increasing tem-

perature. Ethyl cellulose has potential for use in

biomedical applications, especially drug delivery.

Hydroxyethyl cellulose

Another CE is hydroxyethyl cellulose, which is

prepared from the reaction of alkali cellulose and

ethylene oxide (Wang et al. 2015) (Fig. 7). The

chemical structure of hydroxyethyl cellulose can be

easily further modified due to its reactive hydroxyl

groups. Hydroxyethyl cellulose is soluble in hot and

cold water (Zhang and Chen 2002) and many organic

solvents. Its ease of solubility makes it an appropriate

candidate in many biomedical applications (Yang

et al. 2016). Further, its non-toxic nature, ease of

compression, ability to host nanoparticles, and capa-

bility to accommodate a high level of drug loading

are critical factors for its biomedical usage (Yang

et al. 2016). Also, hydroxyethyl cellulose can be

mixed with cellulose, enabling solvent-free process-

ing of cellulose, and making it more compatible with

less-polar matrices (Hooshmand et al. 2017), which

might further expand cellulose applications in the

biomedical field.

Hydroxypropyl cellulose

Hydroxypropyl cellulose is a water-soluble (both in

cold and hot medium) thermoplastic in the category

of CEs. The chemical structure of hydroxypropyl

cellulose is based on partial or complete substitution

of free hydroxyls with hydroxypropyl groups. In the

reaction with 1,2-propylene oxide, secondary OH

groups are formed (Fig. 7). These secondary groups

can further react. Therefore, the chemical structure of

hydroxypropyl cellulose can be easily further mod-

ified due to its backbone reactive hydroxyl groups,

which may provide new properties that are of interest

for biomedical applications e.g. drug delivery and

tissue engineering.

Cellulose ester

Cellulose ester is a commercially available class of

thermoplastic biopolymers derived from cellulose

(Moraı̈s et al. 2010). Unlike cellulose, cellulose esters

have good solubility in common solvents and melt

before decomposition (Edgar et al. 2001). Various

morphological forms of cellulosic particles, e.g.

fibers, fibrils, or crystals, can be esterified to form

cellulose ester (Berlioz et al. 2009; Ramı́rez et al.

2017). Cellulose esters can be utilized in biomedical

applications via less complicated production pro-

cesses, which are further discussed below.

Cellulose acetate

Cellulose acetate (CA) was first discovered in 1865

by Schützenberger (Kulterer et al. 2011) as a

thermoplastic biodegradable polymer. It is produced

by the esterification of cellulosic sources such as

cotton, wood, sugarcane, and even recycled paper

(Rodrigues Filho et al. 2011). CA is relatively cheap

since it is commonly obtained from agricultural by-

products, like cotton burrs, cottonseed hulls, and

sugarcane bagasse (Cheng et al. 2010). Also, the

existing CA preparation techniques do not need

further chemical or mechanical treatment to isolate

remaining cellulose from other components, which is

advantageous for some biomedical applications, e.g.

tissue engineering (Vikingsson et al. 2015), wound

healing (Schunck et al. 2005), and drug delivery

systems (Mwesigwa and Basit 2016).

Generally, CA synthesis approaches include ring-

opening esterification and transesterification under

heterogeneous or homogeneous conditions (Khosh-

nevisan et al. 2018). CA is conventionally produced

by acetylation of hydroxyl groups in cellulose with

acetic anhydride (Clermont and Manery 1974), acetic

acid (solvent), and sulfuric acid (catalyst) (Fig. 7).

N-ethyl-pyridinium chloride (Heinze et al. 2000),

N,N-dimethylacetamide (DMAc)/lithium chloride

(LiCl) (Morgado et al. 2013), and 1,3-dimethyl-2-

imidazolidinone (DMI)/LiCl dissolve CA (Chen et al.

2016a). These solvent systems typically need pro-

longed pretreatment. Ionic liquids have also been

used as efficient solvents of CA (Abbott et al. 2005),

though their industrial application is limited due to

their high cost (Chen et al. 2016a).
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Cellulose nitrate

Cellulose nitrate, also known as nitrocellulose or

celluloid, is considered the first semi-synthetic poly-

mer in the advent of the plastic industry. Cellulose

nitrate is a versatile polymer that has been widely

used since the 1900s (Falkowitz and Piech 1956).

Cellulose nitrate is commercially produced through

the reaction of cellulose with nitric acid, by substi-

tuting cellulose hydroxyl groups with nitrate groups

(Fig. 7). Cellulose nitrate is the polynitrate ester of

cellulose with a typical 2.2–2.8 nitrate groups per

glucose unit within the structure (Neves et al. 2019).

Cellulose nitrate properties and applications depend

on the degree of nitration. Cellulose nitrates are

employed as explosives, plastics, or in coating and

ink industries. By lowering the degree of nitration

and adding a plasticizer, a workable plasticized

material could be produced (Neves et al. 2019).

Future studies may explore the possibilities of

cellulose nitrate in biomedical applications.

Cellulose sulfate

Cellulose sulfate is a cellulose derivative with

relatively simple chain structure and unique biolog-

ical properties. The sulfation of cellulose is carried

out using amongst others sulfuric acid, sulfur triox-

ide, and chlorosulfonic acid (Schweiger 1972). The

reaction is carried out either directly on cellulose

(under heterogeneous condition) or on partially

substituted cellulose esters or ethers (mostly under

homogeneous condition). Cellulose sulfate generally

has water soluble, antiviral, antibacterial, and anti-

coagulant properties, which can be attributed to the

presence of the sulfate groups and the broad degree of

substitution. Apart from the simplicity in preparation,

affordable cost, and large-scale production, cellulose

sulfate’s excellent biocompatibility, film-forming

ability, and biodegradability makes it a frontrunner

for potential biomedical applications like tissue

engineering (Palaninathan et al. 2018) and drug

delivery (Su et al. 2019).

Cellulose in biomedical applications

For biomedical applications, it is an essential require-

ment to assess the biocompatibility of materials and

verify their interaction with cells, especially for

applications where the material needs to remain in

contact with living tissue and should not cause any

cytotoxic or other side effects. Cellulose offers

unique features of biodegradability, biocompatibility,

low production cost as compared to synthetic

biopolymers, abundance, sustainable resources, non-

toxicity, and excellent mechanical properties. These

features offer potential as bioresorbable polymers that

plays an increasingly important role in biomedical

applications due to their unique ability to be resorbed

entirely in pre-designed time frames ranging from

months to a few years.

Tissue engineering

Tissue engineering is known as an interdisciplinary

field that applies the principles of engineering and life

sciences toward the development of smart biological

substitutes that potentially restore, maintain, and

improve tissue functions that have malfunctioned

(Table 6). The tissue engineering field generally

utilizes biomaterials to develop constructs for

intended medical interventions. Such constructs are

to be exposed to living biological entities in the

human body, from biomolecules and physiological

fluids to cells, up to tissues and organs. In terms of

physical properties, regenerative tissue material must

possess optimal strength, e.g. compressive strength

for bone tissue engineering, or tensile strength for

artificial blood vessels and other soft tissue repairs.

On the other hand, chemical considerations such as

the surface chemistry of the materials are crucial, and

the selection of materials must be rendered for

specific application purposes. For instance, it is

possible to tune porosity, thickness, and interconnec-

tivity of nanocellulosic materials without

compromising the mechanical properties for tissue

scaffold production (Bäckdahl et al. 2008). For tissue

engineering, cellulose as an additive or as primary

scaffold material should have mechanical properties

matching real tissues (Farzamfar et al. 2018; Hasan

et al. 2018), promote porous structures for scaffolds

(Hoo et al. 2013), or provide anchoring sites for

osteoblasts (Gouma et al. 2012), and fibroblasts

(Taokaew et al. 2015). The most commonly used

cellulose derivatives for tissue engineering include

cellulose acetate (Farzamfar et al. 2018), hydrox-

yethyl cellulose (Zulkifli et al. 2017), hydroxypropyl
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cellulose (Hoo et al. 2013), cellulose sulfate (Palan-

inathan et al. 2018), carboxymethyl cellulose (Hasan

et al. 2018), methyl cellulose (Zhuo et al. 2017), and

ethyl cellulose (Mao et al. 2018a).

One of the ubiquitous usages of biomaterials in

tissue engineering is in the production of a biolog-

ically compatible scaffold that will support the

attachment, proliferation, and differentiation of living

cells that contribute to the promotion of tissue

regeneration in vitro and in vivo conditions. Mam-

malian cells are not able to attach to the cellulosic

surfaces used in artificial tissue scaffolds due to their

hydrophilic nature and low non-specific protein

adsorption. However, cell adhesion to substrate

surfaces in cellulosic materials can be improved by

the addition of matrix ligands. For example, ionic

charges can be added to the cellulose membranes to

adsorb collagen on the membrane surfaces, which can

promote cellular adhesion (Courtenay et al. 2017).

The positively charged BC has been applied, in the

absence of proteins, to enhance cell attachment

(Courtenay et al. 2017). BC is a biomaterial with a

huge potential in dental and oral applications (Canas-

Gutierrez et al. 2020). Recently, cost-effective and

user-friendly functional biopolymeric-based materi-

als have been used as a promising tool for

developing, repairing, and regenerating functional

tissues and organs in the human body. The use of

cellulosic composites has been proposed in develop-

ing scaffold constructs that can be implanted in

patients to replace failing or malfunctioning organs.

Moreover, the inclusion of the appropriate reinforce-

ment material for tissue-engineered biocomposite

scaffolds is a significant factor in improving its

characteristics and sustained biocompatibility. The

use of cellulosic materials as reinforcement in

biocomposites is now a fast-growing field, on account

of their property enhancing capabilities (Ao et al.

2017; Sajjad et al. 2019). For instance, cellulosic

fibers have been demonstrated recently to improve

the formidability of biocomposite scaffolds in bone

tissue engineering applications due to their unique

structure (Mao et al. 2018b). In addition, microfib-

rillated cellulose remarkably increases the surface

area, and its interfibrillar hydrogen bonds facilitate

network formation, which is desirable in bone tissue

engineering (Ioniță et al. 2018). Moreover, CMC

stimulates adhesion, spreading, and migration of

mouse fibroblasts in vitro (Adachi et al. 1992;

Aoshima and Jo 2013). Also, the presence of CMC

decreases osteoclastogenesis by murine bone marrow

progenitors (Agis et al. 2010), but increases osteo-

blast differentiation (Qi et al. 2018). Hydroxyethyl

cellulose is a non-ionic, water-soluble polymer, and

has a β-glucose linkage, which makes it a suit-

able candidate for tissue engineering applications.

Hydroxyethyl cellulose increases cell viability and

substantially stimulates cell growth (Tohamy et al.

2018). It also significantly enhances cell proliferation

at high concentrations of hydroxyethyl cellulose

(Chahal et al. 2016).

The appropriate mechanical properties of biomed-

ical devices and materials are essential and very

specific to the nature of the application area. For

example, the elastic modulus of the material needs to

be close to the medium and/or tissue that it is

replacing or reinforcing. Nanocrystalline cellulose

can be a promising material for cell attachment and

proliferation due to its excellent mechanical proper-

ties and biocompatible nature. One particular

advantage of using nanocrystalline cellulose is the

fibrillar high aspect ratio building blocks, which

construct a natural fiber network of fibrils or nanorods

that is held together by hydrogen bonding and

mechanical entanglement. Such a network could be

even further reinforced mechanically by cross-linking

the individual nanofibers. There are numerous cellu-

lar species cultured on nanocellulose biomaterials

such as hydrogels, electrospun nanofibers, sponges,

composites, and membranes (Luo et al. 2019).

Among the sources of nanocellulose, bacterial

nanocellulose is believed to be the most popular

choice for cell culture due to its high porosity,

biodegradability, and low toxicity (Halib et al. 2019).

Usually, the rate of scaffold degradation under a

given condition is an important issue as it should

match the time of tissue formation to ensure the

injured tissue is completely replaced by healthy

tissue, and its function is restored.

Wound dressing

The wound healing process involves an elaborate

series of biological phenomena to restore barrier

functionality, prevent dehydration, and reduce the

risk of bacterial infection. Burn wounds and skin

grafting require the development of novel wound

dressing materials. Cellulose-based polymers have a
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high potential for wound dressing applications

(Table 6). As wound dressing material, they should

promote water retention or high water absorption

capacity (Wutticharoenmongkol et al. 2019) or

promote porosity and dryness that abhors bacterial

attachment (Henschen et al. 2016). Here, the cellu-

losic material must be shaped like a sheet and used as

a cover on wounds. It is highly beneficial to make

drug-loaded cellulose-based bandages (Fan et al.

2019). Nanocellulose has excellent potential for

wound healing applications, based on its moisture

absorption and water retention ability that can be

implemented over the wound itself, to contribute

towards lowering inflammatory responses and pro-

moting fibroblast proliferation in the wound healing

cascade (Wang et al. 2016). Nanofibrillar cellulose is

an ideal matrix for wound healing due to its high

surface area to volume ratio, high water-holding

ability, and high porosity. Moreover, its structure

allows to mimic the architecture of the extracellular

matrix or tissue/organs. Nanofibrillar cellulose hydro-

gel is a novel material for controlling excessive

wound contraction in vivo and in vitro (Nuutila et al.

2018). Nanofibrillar cellulosics such as CMC and CA

are the most promising wound dressing cellulosic

materials that have been used in the treatment of

burns and ulcers due to biocompatibility with mucous

membrane and skin, biodegradability, non-toxicity,

low immunogenicity, high water bonding affinity,

and swelling capacity (Gomaa et al. 2017; Hakkar-

ainen et al. 2016). Oxidized cellulose nanofiber is

also appropriate for wound healing applications

because of its substantial water absorption capacity

and well-dispersed cellulose fibrils (Shefa et al.

2017).

Using CMC in wound healing requires some

modifications to decrease the consequent pain burden

in patients. A low level of localized pain, postoper-

ative bleeding, and synechia have been reported for

dissolvable CMC foam dressing (Szczygielski et al.

2010). Dissolvable CMC foam can also be used as

wound dressing after sinus surgery due to the

observed low levels of postoperative bleeding and

synechia formation during application (Szczygielski

et al. 2010). Nanocomposites based on BC are

prepared by the direct introduction of magnetic

nanoparticles within the cellulose culture medium

for efficient chronic wound healing. Bionanocom-

posites containing plant CNC have been reported to

be suitable wound healing templates for accelerating

tissue regeneration (Singla et al. 2017). CA is also a

suitable candidate in biocomposites for wound heal-

ing scaffold upon developing electrospun nanofibers

(Wutticharoenmongkol et al. 2019). Hydrophilicity

and bioactivity of CA enables cellular interaction

between CA and fibroblasts, which consequently

promotes cell proliferation (Gomaa et al. 2017).

BC is an appealing candidate for wound healing

applications based on its favorable characteristics,

such as biocompatibility, nontoxicity, and mechanical

stability. Furthermore, BC provides a moist environ-

ment for the wound, hence enhancing the healing

process (Sulaeva et al. 2015; Zmejkoski et al. 2018).

However, BCs provide a suitable environment on-site

as wound dressing materials, but the pH conditions

can affect their contribution to the healing process

(Shao et al. 2015a). Different materials have been

incorporated to develop BC-based biomaterials with

enhanced properties to be suitable for wound dressing

(Qiu et al. 2016). BC-montmorillonite-reinforced

composites have been developed as wound dressing

and regeneration materials for therapeutic applica-

tions without any side effects (Ul-Islam et al. 2013).

BC-chitosan membranes show antibacterial activity

and favorably low cytocompatibility for wound

dressing (Lin et al. 2013). BC-based membranes

show significant epithelialization and regeneration of

the skin, faster than the commercial wound dressing

product, Tegaderm™ (Lin et al. 2013). Besides, the

BC membrane accelerates the wound healing process

in a burn model system through the regulation of

angiogenesis and connective tissue formation (Kwak

et al. 2015). BC-based hydrogel microparticles have

been used as a dressing material for coverage of

partial-thickness burn wounds both in vitro and

in vivo (Pandey et al. 2017). Oxidized BC is another

kind of cellulosic materials, which is appropriate for

wound healing since it possesses considerable water

absorption capacity, antibacterial effect, and well-

dispersed cellulose fibrils (Wu et al. 2018).

Drug delivery

A drug delivery system is defined as the release of

drugs at an appropriate time, to specifically targeted

organs in a specified amount. Drug delivery systems

transfer drugs to the desired organs, tissues, or cells,

where the transfer mechanism can be controlled to
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respond to environmental stimuli such as light,

temperature, pH, chemical actions, and electric and

magnetic fields. Cellulose has a long history of

application in the pharmaceutical industry, where it

has been used as a tablet-coating when blended with

various excipients for oral administration. Despite an

extended history of use in tableting, there is still

ongoing research on the potential use of cellulose and

its derivatives in advanced drug-loaded systems in

terms of the rate of tablet dissolution as appropriate

excipients or extended drug release as novel drug

carriers (Table 6) (Abeer et al. 2014; Yan et al. 2019).

As a drug delivery system, cellulosic materials should

promote controllable diffusive properties and dis-

solvability. For instance, cellulose and its derivatives

have been observed to exhibit definite drug delivery

patterns by instant, controlled, or delayed-release in

oral dosage forms (Godakanda et al. 2019; Jeddi and

Mahkam 2019). Furthermore, the natural resistance

of cellulosic materials to the acidic environment of

the stomach makes them very practical to use as

enteric coatings on capsules or tablets (Guo et al.

2002).

Extemporaneously, compounded medicines are

used when a needed dose or dose form is commer-

cially inaccessible, or when a particular dosing

regime is required. Powdered cellulose and MCC

are used as adsorbents, capsule diluents, and thick-

ening stabilizing agents in compounded medicines

(Marques-Marinho and Vianna-Soares 2013). MCC

shows viscoelastic behavior and sensitivity to the

strain rate. In high-speed tableting, the time for

plastic deformation is limited, and hence, in this case,

elastic effects are more significant (Roberts and Rowe

1985). Thus, in the formulation design and dosing,

dependency of MCC to the strain rate should be

considered (Thoorens et al. 2014).

CNFs possess a considerable potential in biome-

dicine as carrier for controlled drug delivery because

of their suitable flexibility, conducive elasticity, low

density, low toxicity, and relatively reactive surface,

that can be used for grafting specific groups, in

addition to being renewable and cheap. The rheolog-

ical, barrier, and physicochemical characteristics of

CNFs allow them to stabilize oil–water and air–water

interfaces. Moreover, CNFs’ high surface area per

unit mass provides stabilization of nanoparticles and

a higher probability for positive molecular interaction

with poorly soluble drugs. CNFs have been used as

stabilizers for crystalline drug nanoparticles, as

matrix former to obtain a long-lasting sustained drug

release over several weeks, and as film former with

immediate release properties for poorly soluble drug

(Löbmann and Svagan 2017). CNFs can generally be

converted into aerogel form during drug adsorption

and subsequent freeze-drying (Bhandari et al. 2017).

Plant-based CNFs have been successfully used as an

injectable drug-releasing hydrogel in mice, demon-

strating the potential application of CNFs as a matrix

for controlled release or targeted local delivery of

drug compounds in humans (Laurén et al. 2014).

CA nanofiber mats have been used mainly in

diverse pharmaceutical applications due to their

advantageous characteristics, like high

shear strength and shear modulus, biocompatibility,

regenerative properties, high affinity with other

substances, biodegradability, and suitable flexural

and tensile strength. In particular, CA-based drug-

loaded nanofibers have received considerable atten-

tion in the development of topical and transdermal

drug delivery systems (Yu et al. 2013). Besides,

cellulose acetate phthalate is a novel material that

provides the most efficient solution for pH-controlled

drug release. One of the decisive applications of

cellulose acetate phthalate is in microencapsulation,

which is utilized in an aqueous or organic medium

(Wan and Chui 1995). Cellulose acetate phthalate

electrospun fibers facilitate resistance to HIV infec-

tions. These fibers, even after dissolution, are

nontoxic for vaginal epithelial cells and vaginal

lactobacilli. These fibers are suitable for loading anti-

HIV drugs and in preventing HIV infection during

sexual intercourse (Huang et al. 2012). Typically,

microencapsulation with cellulose acetate phthalate

has been done by coacervation phase separation,

spray-drying, and extrusion methods (Wan and Chui

1995).

One of the most prevalent hydrophilic biodegrad-

able polymers that has been used in controlled-

release formulations and that has been approved by

the United States Food and Drug Administration

(FDA), is hydroxy propyl methyl cellulose (Hu et al.

2018). Injectable chitosan/glycerophosphate ther-

mosensitive solutions containing vancomycin-loaded

hydroxy propyl methyl cellulose microparticles are

produced for the local treatment of osteomyelitis

(Mahmoudian and Ganji 2017). The porous and

spongy structure of a hydroxyl propyl methyl
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cellulose hydrogel allows for a long-term release

profile in vitro, which provides excellent potential for

usage in sustained antibiotic delivery (Mahmoudian

and Ganji 2017).

Conclusions

Over the last decades, numerous studies have

reported on the modification and utilization of

cellulosic materials. This review summarized

the preparation of cellulose and its derivatives from

different sources, with a focus on specific properties

that include structure at molecular and microscopic

levels, solubility in certain liquids, and mechanical

properties, with further emphasis on their versatility

for applications in the biomedical field. Recent

advances show that cellulosic materials prove to

have inherent characteristics that can be tailored for a

broad range of biomedical applications, in tissue

engineering, and for the development of drug deliv-

ery and wound dressing systems. Several chemical

derivatizations and/or modifications that are reported

here have been utilized to alter specific cellulose

properties for expanding the range of applications,

especially biomedical applications. In particular,

hydroxyethyl cellulose and CMC are used since they

are ideal as versatile materials for tissue engineering.

Further, CA, which promotes tissue regeneration in

wound dressing preparations, provides patient com-

fort. BC and cellulose nanocrystals are used for

encapsulation. Carboxymethyl cellulose, hydroxy

propyl methyl cellulose, ethyl cellulose, and cellulose

sulfate are used in drug delivery systems for

controlled release. Therefore, although cellulosic

materials are traditionally used in everyday house-

hold items as paper and textile, they exhibit the

necessary qualities for developing novel materials for

biomedical applications.

Future perspectives

Cellulose provides a sustainable resource satisfying

the requirements as biomedical material; it has

continuously inspired researchers to exploit cellu-

lose-based materials with novel functionalities.

Undoubtedly, cellulosic materials hold excellent

promise for applications in biological implants and

scaffolds for tissue engineering, wound and burn

dressing material, medical implants, and drug deliv-

ery systems because of their excellent physical and

biological properties, biocompatibility, biodegrad-

ability, and low cytotoxicity. The surface

functionalization and the form of cellulose used for

biomedical applications, e.g. hydrogel, solid film,

scaffold, membrane, and nanomaterials, provides a

useful and powerful tool to tune the interactions of

biomaterials with living tissue. Preliminary studies on

cellulosic materials have shown that they are favor-

able biomaterials compared to many other natural

polymers in tissue engineering due to their durability

and compatibility. The usefulness of cellulosic

materials in wound-healing and organ replacement

applications has been shown and commercialized, but

more interdisciplinary research is still needed to

further develop these materials. For instance, a wide

variety of mammalian cells needs to be cultured on

cellulosic materials to assess their viability and

proliferation in vitro. In vivo studies will also be

essential to prove its usefulness and functionality for

future biomedical applications. Future applications of

cellulose and its derivatives are already envisioned in

the pharmaceutical industry to act as drug delivery

systems, and/or smart artificial skin or wound regen-

eration therapies. Although cellulosic materials are

not inherently toxic, more research is needed to

evaluate the potential pharmaceutical side effects and

cytotoxicity profile. Cellulose’ hydrophilic nature,

leading to a poor dispersion in hydrophobic polymer

matrices, together with its cytotoxicity, has led to the

devotion of much effort on surface modification of

cellulosic materials. Various surface and/or bulk

modifications of cellulose offer new opportunities

for developing unique functional materials. Mean-

while, modification results in alterations of

physicochemical properties of materials, especially

at the nanoscale. Therefore, the influence of foreign

molecule incorporation on the cytotoxicity and/or

biocompatibility of nanocellulose should be specifi-

cally addressed in future research. Clearly, despite

the significant developments concerning biomedical

nanocellulosic materials, this area is still in its

infancy. We believe that there are still several areas

that need to be addressed and plenty of possibilities to

be explored on this topic.
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RV, Pastrana LM, Freitas-Silva O, Vicente AA, Cabral

LM, Teixeira JA (2018) Cellulose nanocrystals from

grape pomace: production, properties and cytotoxicity

assessment. Carbohydr Polym 192:327–336. https://doi.

org/10.1016/j.carbpol.2018.03.023

Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni

EM, Costa CA, Scott JL, Sharma RI (2017) Surface

modified cellulose scaffolds for tissue engineering. Cel-

lulose 24:253–267. https://doi.org/10.1007/s10570-016-

1111-y

Courtenay JC, Deneke C, Lanzoni EM, Costa CA, Bae Y, Scott

JL, Sharma RI (2018) Modulating cell response on cel-

lulose surfaces; tunable attachment and scaffold

mechanics. Cellulose 25:925–940. https://doi.org/10.

1007/s10570-017-1612-3

Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006)

Microbial cellulose—the natural power to heal wounds.

Biomaterials 27:145–151. https://doi.org/10.1016/j.bioma

terials.2005.07.035

Dai L, Liu R, Hu L-Q, Wang J-H, Si C-L (2017) Self-assem-

bled PEG–carboxymethylcellulose nanoparticles/α-

cyclodextrin hydrogels for injectable and thermosensitive

drug delivery. RSC Adv 7:2905–2912. https://doi.org/10.

1039/c6ra25793c

Dairi N, Ferfera-Harrar H, Ramos M, Garrigós MC (2019)

Cellulose acetate/agnps-organoclay and/or thymol nano-

biocomposite films with combined antimicrobial/antioxi-

dant properties for active food packaging use. Int J Biol

Macromol 121:508–523. https://doi.org/10.1016/j.ijbio

mac.2018.10.042

Davidovich-Pinhas M, Barbut S, Marangoni A (2015) The

gelation of oil using ethyl cellulose. Carbohydr Polym

Cellulose (2021) 28:1893–1931 1919

123

https://doi.org/10.1016/s1360-1385(96)80050-1
https://doi.org/10.1177/0883911509349687
https://doi.org/10.1002/mabi.200400222
https://doi.org/10.1007/s10570-015-0802-0
https://doi.org/10.1007/s10570-015-0802-0
https://doi.org/10.1007/s10570-020-03456-4
https://doi.org/10.1007/s10570-020-03456-4
https://doi.org/10.1016/j.ijbiomac.2017.08.124
https://doi.org/10.1016/j.ijbiomac.2017.08.124
https://doi.org/10.1016/j.carbpol.2010.10.072
https://doi.org/10.1002/em.21913
https://doi.org/10.1016/j.ces.2015.12.030
https://doi.org/10.4236/wjnse.2016.64013
https://doi.org/10.4236/wjnse.2016.64013
https://doi.org/10.1002/app.29060
https://doi.org/10.1016/j.jhazmat.2008.04.098
https://doi.org/10.1016/j.carbpol.2012.06.002
https://doi.org/10.1016/j.carbpol.2012.06.002
https://doi.org/10.1016/j.carbpol.2015.11.034
https://doi.org/10.1016/j.carbpol.2016.06.083
https://doi.org/10.1016/j.compositesa.2009.02.011
https://doi.org/10.1016/j.compositesa.2009.02.011
https://doi.org/10.1016/j.carbpol.2009.11.048
https://doi.org/10.1016/j.carbpol.2009.11.048
https://doi.org/10.1186/1556-276x-6-417
https://doi.org/10.1186/1556-276x-6-417
https://doi.org/10.1002/app.1974.070180918
https://doi.org/10.1002/app.1974.070180918
https://doi.org/10.1016/j.carbpol.2018.03.023
https://doi.org/10.1016/j.carbpol.2018.03.023
https://doi.org/10.1007/s10570-016-1111-y
https://doi.org/10.1007/s10570-016-1111-y
https://doi.org/10.1007/s10570-017-1612-3
https://doi.org/10.1007/s10570-017-1612-3
https://doi.org/10.1016/j.biomaterials.2005.07.035
https://doi.org/10.1016/j.biomaterials.2005.07.035
https://doi.org/10.1039/c6ra25793c
https://doi.org/10.1039/c6ra25793c
https://doi.org/10.1016/j.ijbiomac.2018.10.042
https://doi.org/10.1016/j.ijbiomac.2018.10.042


117:869–878. https://doi.org/10.1016/j.carbpol.2014.10.

035

De Dicastillo CL, Bustos F, Guarda A, Galotto MJ (2016)

Cross-linked methyl cellulose films with murta fruit

extract for antioxidant and antimicrobial active food

packaging. Food Hydrocolloid 60:335–344. https://doi.

org/10.1016/j.foodhyd.2016.03.020

De Oliveira Ribeiro WC, da Silva Lima AC, de Araújo Mor-
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Contact-active antibacterial aerogels from cellulose

nanofibrils. Colloid Surface B 146:415–422. https://doi.

org/10.1016/j.colsurfb.2016.06.031

Herranz J, Vidal-Valverde C, Rojas-Hidalgo E (1981) Cellu-

lose, hemicellulose and lignin content of raw and cooked

Spanish vegetables. J Food Sci 46:1927–1933. https://doi.

org/10.1111/j.1365-2621.1981.tb04521.x

Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983)

Microfibrillated cellulose: morphology and accessibility.

J Appl Polym Sci: Appl Polym Symp 37:797–813

Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R,

Salehi R, Ramazani A (2019) Fabrication and character-

ization of novel ethyl cellulose-grafted-poly (ɛ-

caprolactone)/alginate nanofibrous/macroporous scaffolds

incorporated with nano-hydroxyapatite for bone tissue

engineering. J Biomater Appl 33:1128–1144. https://doi.

org/10.1177/0885328218822641

Hong F, Qiu K (2008) An alternative carbon source from

konjac powder for enhancing production of bacterial

cellulose in static cultures by a model strain Acetobacter

aceti subsp. xylinus ATCC 23770. Carbohydr Polym

72:545–549. https://doi.org/10.1016/j.carbpol.2007.09.

015

Cellulose (2021) 28:1893–1931 1921

123

https://doi.org/10.3390/nano9101352
https://doi.org/10.3390/nano9101352
https://doi.org/10.1016/j.msec.2011.12.019
https://doi.org/10.1021/la0504311
https://doi.org/10.1016/j.progpolymsci.2007.05.012
https://doi.org/10.1016/j.progpolymsci.2007.05.012
https://doi.org/10.2174/0929867323666161014124008
https://doi.org/10.1007/s11095-012-0865-7
https://doi.org/10.1016/s0378-5173(01)00978-4
https://doi.org/10.1016/s0378-5173(01)00978-4
https://doi.org/10.1021/acssuschemeng.7b01169
https://doi.org/10.1021/acssuschemeng.7b01169
https://doi.org/10.1016/j.carbpol.2013.01.035
https://doi.org/10.1007/s10570-006-9075-y
https://doi.org/10.1039/b809212e
https://doi.org/10.1021/cr900339w
https://doi.org/10.1038/ncomms5018
https://doi.org/10.1016/j.jconrel.2016.07.053
https://doi.org/10.1016/j.jconrel.2016.07.053
https://doi.org/10.2166/wst.1988.0028
https://doi.org/10.2166/wst.1988.0028
https://doi.org/10.1016/j.ijpharm.2019.06.017
https://doi.org/10.1002/bbb.269
https://doi.org/10.1002/bbb.269
https://doi.org/10.1016/j.ijbiomac.2018.01.089
https://doi.org/10.1016/j.ijbiomac.2018.01.089
https://doi.org/10.1021/ed021p430
https://doi.org/10.1002/(sici)1522-9505(19990501)266:1%3c37:aid-apmc37%3e3.0.co;2-z
https://doi.org/10.1002/(sici)1522-9505(19990501)266:1%3c37:aid-apmc37%3e3.0.co;2-z
https://doi.org/10.1002/(sici)1522-9505(19990501)266:1%3c37:aid-apmc37%3e3.0.co;2-z
https://doi.org/10.1002/(sici)1521-3935(20000301)201:6%3c627:aid-macp627%3e3.0.co;2-y
https://doi.org/10.1002/(sici)1521-3935(20000301)201:6%3c627:aid-macp627%3e3.0.co;2-y
https://doi.org/10.1016/j.eurpolymj.2007.05.038
https://doi.org/10.1016/j.eurpolymj.2007.05.038
https://doi.org/10.1021/bm800038n
https://doi.org/10.1021/bm800038n
https://doi.org/10.1016/j.colsurfb.2016.06.031
https://doi.org/10.1016/j.colsurfb.2016.06.031
https://doi.org/10.1111/j.1365-2621.1981.tb04521.x
https://doi.org/10.1111/j.1365-2621.1981.tb04521.x
https://doi.org/10.1177/0885328218822641
https://doi.org/10.1177/0885328218822641
https://doi.org/10.1016/j.carbpol.2007.09.015
https://doi.org/10.1016/j.carbpol.2007.09.015


Hoo SP, Loh QL, Yue Z, Fu J, Tan TT, Choong C, Chan PP

(2013) Preparation of a soft and interconnected macrop-

orous hydroxypropyl cellulose methacrylate scaffold for

adipose tissue engineering. J Mater Chem B 1:3107–3117.

https://doi.org/10.1039/c3tb00446e
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(2005) On the determination of crystallinity and cellulose

content in plant fibres. Cellulose 12:563–576. https://doi.

org/10.1007/s10570-005-9001-8

Tibolla H, Pelissari FM, Rodrigues MI, Menegalli FC (2017)

Cellulose nanofibers produced from banana peel by

enzymatic treatment: study of process conditions. Ind

Crops Prod 95:664–674. https://doi.org/10.1016/j.indcrop.

2016.11.035

Tilki T, Yavuz M, Karabacak Ç, Çabuk M, Ulutürk M (2010)
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