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Abstract 

Despite several technological improvements and achievements, wastewater treatment remains a 

serious issue internationally. Toxins in wastewater pose a significant threat to human health if left 

untreated. Due to macro-porous structure and different surface functionalization, cellulose 

biomass-based hydrogel is the most traditional adsorbent for removing harmful ions from 

wastewater. Recently, the introduction of several new cellulose derived materials have 

demonstrated their competitiveness in the removal of harmful ions. Numerous exceptional 

qualities better define this promising material, including high mechanical strength, large surface 

area and chemical inertness. This paper discusses the development status, preparation and 

modification methods of cellulose composites created by various materials (graphene, fly ash, 

graphene oxide and bentonite) which evaluates the research development and existing challenges 

in water treatment. 

Keywords: Cellulose; carboxymethyl cellulose; cellulose-based hydrogels; pollutants, wastewater 

remediation. 
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1. Introduction 

Our society is comprehensively dependent on the use of plastics that are derived from petroleum 

feedstocks. Because of growing environmental concerns contiguous to plastic waste pollution and 

recycling problems, it is becoming ever imperative to look for nature-based resources wherever 

possible [1–4]. Pollution and climate change have emerged as two of the most conspicuous and 

significant problems that we will confront in our lifetime [5–7].  The scarcity of clean water supply 

in many developing nations may be owing to a failure to treat wastewater appropriately or to 

discharge effluent below an environmentally safe level to surrounding waterbodies [8,9]. Water 

quality, in particular, has deteriorated in overpopulated countries such as India, Kenya, Ethiopia 

and Nigeria [10]. With high biological (BOD) and chemical oxygen demand (COD), wastewater 

contains significant volumes of organic and inorganic nutrients causing imbalance ecosystem [11]. 

Excess nutrients such as nitrogen (N) and phosphorus (P) can induce eutrophication of waterbodies 

[12].  

With the current challenges, we are facing in terms of materials resources and pollution; there is 

an urgent need for more realistic ecological bio-based alternatives such as biopolymers; 

biocomposites, membrane and hydrogels. The cellulosic biomass derived from different natural 

resources offers a high potential to work as promising sustainable precursors for a cleaners and 

greener environment having advanced applications in water treatment, biomedical, soil 

remediation and pollution filtering to name a few using advanced synthesis and manufacturing 

techniques [13–16].  

Hydrogels are one such kind of materials that can be used for both wastewater treatment and 

biomedical. The natural or synthetic molecular biomaterials which has a high degree of adsorption 

efficiency and who maintains a huge quantity of liquid in their turgid state known as hydrogels 

[1,17–20]. When placed in water or other biological fluids, hydrogel has ability to resist 

disintegration [21–25]. For example, polyethylene glycol can be cross-linked to form hydrogel 

having stereographic polymeric constructions that can suck up a huge amount of water which 

varies from few percent to hundreds of times in comparison to its dry weight [26–29]. The cross-

linkage into various polymer chains is introduced with the help of a cross-linkage agent [30–33]. 
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The cross-linkage between polymers takes place under two conditions: (a) in vitro i.e. during the 

time of formation of the hydrogel, (b) in vivo i.e. inside the human body after successful 

implementation on a specific site. The cross-linkage present among polymeric chains prevents its 

decomposition in water and other fluids [31,34–36]. The vacant spaces among the three-

dimensional structure of the hydrogel are active sites for the uptake of water. This cross-linked 

composition provides nature to the hydrogel which makes them good enough for use in biological 

implants without any side effects [37–39]. The extent of expansion of hydrogels is measured based 

on the number of cross-linked units and type of mixture having water-loving polymers or 

copolymers. The tendency of the hydrogel to absorb maximum amount of liquid is hidden in its 

amazing structure [40–43]. The polymeric structure contains hydrophilic moieties such as –

CONH2, -COOH, -NH2, -OH, -SO3H etc [44–46]. For example, Verma et al. (2020) prepared 

sodium alginate-based hydrogels for elimination of malachite green dye and reported higher 

adsorption tendency of 628.93 mg g-1 [47]. The existence of rich quantities of –COOH groups in 

the sodium alginate backbone, due to this prepared material showed strong interaction with 

malachite green dye. In addition to traditional adsorption procedures, algae-based wastewater 

treatment method is another tempting solution due to excellent fixation of inorganic substances 

such as carbon dioxide and heavy metals [48]. Microalgae have high potential for inorganic 

nutrient intake because they require nitrogen and phosphate for protein synthesis as well as heavy 

metals as micronutrients for growth [10,49]. In this sense, the use of algae as wastewater 

bioremediation agents can successfully take nitrogen and phosphorus out of wastewater, preserve 

dissolved oxygen content and aid in the reduction of pathogens and faecal bacteria present in 

wastewater [50]. 
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Figure 1. The schematic diagram for stimuli-responsive properties of hydrogels fabricated from 

cellulose [51]. 

The environmental stimuli like pH, light and solvent affected the swelling tendency of the 

hydrogels fabricated from cellulose (Figure 1). The stimuli-responsive hydrogels fabricated from 

cellulose demonstrated the great potential in wastewater remediation. For example, in 

carboxymethyl cellulose, -CH2COOH groups present into its molecular chain plays a critical role 

in swelling and adsorption at different pH. The hydrophobic behaviour of carboxymethyl cellulose 

increases in an acidic medium because of the hydrogen bonding formed in its molecular chain. On 

the contrary, in basic medium, carboxyl groups present in the carboxymethyl cellulose chains can 

be ionized into carboxylate groups and increase the hydrophilic character of the carboxymethyl 

cellulose-based hydrogels. Pourjavadi et al. (2009) fabricated carboxymethyl cellulose-based 

acrylamide and 2-acrylamido-2-methyl propane sulfonic acid hydrogel by free radical 

polymerization and reported the maximum swelling (about 1400 g g-1) at pH 7. 

Cellulose is the most generous material which can be easily extracted from lignocellulosic 

biomasses, in our literature survey, several pieces of research have prepared the pure cellulose 
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from natural cellulosic biomass waste. Worldwide production of cellulose is in between 75–100 

billion tons, therefore could serve as an alternative material for petroleum/coal-based adsorbents. 

Furthermore, cellulose-based hydrogels have promising properties that make them a first-rate 

applicant for use in water-based remediation processes: (a) high specific surface area which 

provides more active sites, (b) hydroxyl groups provides easy grafting of sulfate, ester, amine and 

aldehyde functionalities has advantages in case of cellulose-based adsorbents across various water 

remediation processes like membrane filtration, degradation, flocculation and absorption, (c) high 

stability and surface tension of cellulose in water reduces the bio-fouling and enhances the wetting 

characteristics and (d) colloidal stability and aggregation of cellulose affects the applicability and 

efficacy of cellulose-based hydrogels in water remediation processes [52–54].  

Based on origin, hydrogels are of two types natural and synthetic. Both types of hydrogels have 

proved themselves in the field of adsorption. However, there are some problems associated with 

synthetic hydrogels such as poor solubility and toxicity, toxic cross-linkers, unreacted monomer 

units, highly crystalline composition [55]. These drawbacks stimulated the research to enhance the 

properties and functionality of hydrogels [56–60]. Hence, hydrogels are of natural origin gradually 

replacing manmade products. Natural hydrogels possess higher properties such as high flexibility, 

high-temperature sustainability, biodegradable nature, non-toxic behaviour, easy incorporation in 

the biological system and transport of pre-determined amount of drugs in a biological system 

without any harmful effects [61–63]. In addition, natural hydrogels are of great synthetic utility 

behaving as a superabsorbent with high mechanical strength, high elasticity and water holding 

capacity [64].  
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Figure 2. Different wastewater treatment techniques by using cellulose nanomaterials based 

systems [65]. 

For elimination of various toxins from contaminated water, variety of techniques have been 

employed, including precipitation, coagulation, reverse osmosis, adsorption, filtration with 

coagulation, ion exchange, ozonation and advanced oxidation processes [66–68]. Adsorption with 

the help of solid adsorbents from different biomass-based materials is an efficient technique for 

the remediation of toxins from contaminated water. Adsorption provides a number of advantages 

over other techniques, including a simple design and the potential for a minimal initial investment 

in terms of costs and land, it has drawn lot of interest from researchers [69]. The quest for low-

cost adsorbents with pollutant-binding capabilities has escalated in recent years, low-cost 

adsorbents from locally accessible resources like natural materials, industrial wastes and 

agricultural wastes are required for sustainable development [70,71]. There has been increasing 

research interest in the evolution of high-quality hydrogels, biocomposites and their application in 

the field of environmental remediation [72–74]. Several cellulose-based materials have been 

thoroughly explored for the alternate of expensive activated carbon and to prevent the use of 

additional costly and difficult remediation techniques like ion exchange, membrane filtration and 

chemical precipitation. Most of the published studies focus on reporting maximal adsorption 
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capacities of cellulose-based materials under batch processes, the model pollutants are mostly 

synthetic in form, and the adsorption characteristics of the produced adsorbents have been 

investigated with just a few adsorbates in mind [75].  

It is challenging to predict the prospective uses of these cellulose-based adsorbents in wastewater 

treatment and their removal effectiveness in real industrial effluents. Biodegradability, 

hydrophilicity, biocompatibility, chemical and thermal stability are the advantages of cellulose-

based adsorbents [76]. Also, cellulose, which is ecologically beneficial and inexpensive, will 

replace petroleum-based materials [77]. Therefore, this review focused on cellulosic-based 

hydrogels applications for wastewater treatment applications (Figure 2).

2. Cellulose and carboxymethyl cellulose    

The different sources of cellulose and applications of cellulosic hydrogels are summarized in 

Figure 3a. Cellulose is an extremely common biotic substance on Earth, with above one trillion 

tons of resources of cellulose present in nature. It is a renewable and ecological material that can 

give various valuable products after derivatization [78,81]. The major source of cellulose is ground 

flora. However, it is also present in fungi, algae, microbes and all land plants. The cellulosic 

content in cotton fibres is about 90 %, in bast fibres is 60-70 % and in wood is 45-50 % [82–84]. 

Cellulose is mainly the richest; they are produced in a sustainable technique and recommend many 

possibilities for use. It is an advantageous renewable, recyclable, biocompatible material that has 

a distinctive ability to generate a number of derivative products [85,86]. Despite such extensive 

properties, the major disadvantages are its luxurious manufacturing, its sensibility to water, and its 

sluggish regeneration [87,88]. Cellulose is a stereoregular, linear and semi-crystalline 

polysaccharide. Its macromolecules are oriented in a chair conformation containing D-

glucopyranose (Anhydroglucose) units which are connected by head-to-tail 1,4-β glycosidic 

bonds. Additionally, cellulose does not exist as an individual molecule, almost 36 cellulose 

individual molecules are combined and form a large unit called elementary fibrils. 
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Figure 3. (a) Sources of the cellulose and different applications of hydrogels fabricated from 

cellulose, (b) cellulose construction and numbering of C-atom. Adopted from [78], (c)

intermolecular hydrogen bonding between the cellulosic groups. Adopted from [79], (d) possible 

conformations: gauche–trans (gt), gauche–gauche (gg) and trans–gauche (tg). Adopted from [79] 

(e) molecular structure of sodium salt of carboxymethyl cellulose [80].  

Figure 3b shows the anhydroglucose unit containing three reactive -OH groups on the C-2, C-3, 

and C-6 atoms which are generally available for the modification of secondary and primary -OH 

groups [79]. Hydrogen atoms are on the axial plane of the ring and anion OH groups are located 

on the equatorial plane. The chemical structure of cellulose is supported by an intermolecular 

hydrogen bond arrangement. This pre-established hydrogen bond extends from the O(3′)-H 

hydroxyl to the O(5) ring oxygen of the next unit transversely by the glycosidic linkage and from 

the O(2)-H hydroxyl to the O(6′) hydroxyl of the next residue is shown in the Figure 3c. In-chair 

conformation two different hydroxyl groups are present in which one hydroxyl group is on the C6 
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carbon atom and the second is linked with ring carbon atom (C5) (Figure 3d). The primary anion 

OH introduces two different torsion angles, one is O5-C5-C6-O6 and the second is C4-C5-C6-O6. 

The 60o and 180o torsional angles are possessed by Gauche and Trans conformations respectively. 

The most possible three rotational conformations in the structure of cellulose are shown in Figure 

3d.  

Carboxymethyl cellulose is a cellulose derivative with excellent hydrophilic characteristics and 

great mechanical strength. Carboxymethyl cellulose is a naturally occurring anionic 

polysaccharide that is utilized in a variety of industries, such as textiles, food adhesives, paper, 

paints, cosmetics and medicines [89]. It is a non-toxic, reusable, abundantly accessible, 

biocompatible, and biodegradable natural polymer. It is amphiphilic because it contains a 

hydrophobic polysaccharide backbone and several hydrophilic –COOH groups [90]. The 

molecular structure consists of the sodium salt of carboxymethyl cellulose as shown in Figure 3e. 

Mainly, cellulose is formed of glucose rings linked by –C(1)–O–C(4) ether bonds, commonly 

known as β -1,4 glycosidic linkages and contains a lot of intramolecular hydrogen [80]. Moreover, 

the characteristics of carboxymethyl cellulose are determined by the degree of hydroxyl group 

substitution, or through purity, crystallinity and molecular weight [91]. 

2.1. Production of cellulose-based hydrogel

Numerous strategies have been used for the preparation of hydrogels fabricated from cellulose 

[92]. It is feasible to develop various hydrogels based on cellulosic material as (a) hydrogels with 

the help of native cellulose, (b) hydrogels from cellulose derivatives and (c) hydrogels by mixing 

of cellulose or its derivatives with different polymers. 

2.1.1. Cellulose native hydrogel

Hydrogel based on cellulose can be prepared with the help of cellulose solution through 

crosslinking. It can be effectively synthesized by hydrogen-bonded cross-linking because hydroxyl 

groups existed in the structure of cellulose. However, the widely expanded cellulose structure, 

which is hydrogen-bonded, as a result, structure is dense and difficult to dissolve in traditional 

solvents. Therefore, different solvents should be utilized to dissolve cellulose, newly developed 

solvents like ionic liquids, N-methylmorpholine-N-oxide and alkali/urea (or thiourea) aqueous 
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solutions have been introduced with major applications in the field of hydrogels [93]. Moreover, 

the manufacturing of almost pure cellulose hydrogels requires some bacterial organisms [94].  

2.1.2. Cellulose derivatives hydrogel 

The majority of cellulose derivatives are water-soluble and biocompatible. These can be utilized 

as thickeners, emulsifiers, binding agents, suspension supports, surfactants and particular in dairy, 

cosmetics and pharmaceutical companies. Derivatives of cellulose like hydroxypropyl cellulose, 

methylcellulose, hydroxypropyl methylcellulose and carboxymethyl cellulose can be utilized to 

produce hydrogel by chemical and physical crosslinking [95]. The physically crosslinked 

hydrogels are prepared by hydrogen bonding, ionic bonding or by the interaction between 

polymer-polymer chains. In this case, no creation or breakage of covalent bonding [92,96], 

chemically linked hydrogels is obtained by functionalized crosslinking of two or more polymeric 

networks [97].

2.1.3. Hydrogels from mixing of different polymers 

A desirable, economical and beneficial approach for producing novel structural materials is the 

combining or merging of various polymers[98–100]. Novel structural materials for specific 

applications including biocomposites [101–103] have been developed using cellulose or its 

derivatives combined with other synthetic and natural polymers, like starch, lactic acid, chitosan, 

alginate and hyaluronic acid [92,104–106]. Cellulose-starch for the food industry [107], cellulose-

chitosan for heavy metal removal [108] and cellulose-alginates for tissue engineering [109] are 

some examples of mixed cellulose polymer composite. 

3. Cellulose-based hydrogels for wastewater remediation

A lot of technological research and development studies have been done on a variety of 

consolidated and emerging water purification technologies to provide compelling solutions to the 

water pollution problem [65,110–112]. Among others, the developments and the use of low-cost 

adsorbents for the removal of important aquatic contaminants such as activated carbon has gained 

significant interest and while most of these adsorbents are claimed to have high efficiency > 99 %, 

this is often only valid under optimal conditions of pH, contaminant concentration and other 
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operating parameters, which do not reflect environmentally genuine conditions [113–119]. Many 

of these adsorbents are also designed to target a limited number of contaminants at a time, which 

makes their use impractical for polluted waters. Cellulose-based hydrogels can help to overcome 

these issues and have been already utilized for organic dyes, heavy metals and other organic 

pollutants like pesticides, herbicides and organic compounds removal from aqueous solutions. 

Table 1 and Table 2 summarize the outcomes from recent studies on hydrogels fabricated from 

cellulose for the removal of different types of toxins. It can be concluded from the tables that 

hydrogels fabricated from cellulose are effectively capable of the adsorption of all types of toxins 

such as dyes, metal ions, pesticides and other toxic organic molecules, but are more effective in 

removing dyes (lignin-holding hemicellulose-based hydrogel: 2691 mg g-1 for methylene blue) in 

comparison with other toxic ions.   

3.1. Cellulose-based hydrogels for organic pollutants 

Organic polyphenol compounds, whether organochlorinated or aromatic, are recognised to be the 

most toxic to living beings and plants. The sources of such environmental contaminant materials 

are numerous from the pharmaceutical sector, leaching and drainage from agriculture and forestry 

land (by the usage of pesticides and weed killers) and hazardous waste disposal. In the absence of 

any procedure persistent organic contaminants, other chemicals, permanently collect inside water 

which promotes the possibility of pollution in underground sources [35,120]. Abdel Ghaffar et al., 

successfully prepared carboxymethyl hydrogels fabricated from cellulose through radiation 

grafting procedure, which is simpler, low cost, environmentally sustainable. The adsorption 

potential of poly(carboxymethyl cellulose/methacrylic acid) (1/20 wt%) hydrogel for both 4-

chlorophenol and 2,4 dichloro phenoxy acetic acid was found greater than that of 

poly(carboxymethyl cellulose/methacrylic acid: acrylamide) (1/60:40 wt%). It is attributed to the 

existence of more hydrogen bonding within the poly(carboxymethyl cellulose/ methacrylic acid: 

acrylamide) hydrogel which inhibits the adsorption of pollutants.  

Gupta et al., synthesized the composite membrane through choline chloride blended cellulose 

acetate and coated on a fly-ash dependent ceramic substrate for successful elimination of phenol 

[121]. Choline chloride blend has important effects on membrane characteristics like swelling, 

pore depth, chemical stability, permeability, and hydrophilicity. In the analysis of phenol removal, 
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the removal percentage was reduced with increased pressure and concentration of feed phenol, in 

contrast, improved with pH rise. Hence, 0.9 % of choline chloride blended cellulose acetate can 

be used to produce the necessary composite membrane for high phenol removal. Aouada et al., 

synthesized the methylcellulose and poly(acrylamide) hydrogel for extracting paraquat [122]. A 

free-radical polymerization process was used to prepare poly(acrylamide)/methylcellulose 

hydrogels with varying amounts of acrylamide and methylcellulose. The acrylamide, 

methylcellulose and paraquat concentrations significantly affected the adsorption ability of 

hydrogels and the highest adsorption tendency was 14.3 mg g-1 with 6 % acrylamide and 0.75 % 

methylcellulose. In this adsorption process, Freundlich isotherm performed better than the 

Langmuir isotherm which means a heterogeneous surface. These findings indicate the 

poly(acrylamide)/ methylcellulose hydrogels are potentially possible absorbent for extracting 

paraquat herbicide.      
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Table 1. Cellulose-based hydrogels for removal of organic pollutants.  

Sr. 

No. 

Hydrogels Fillers Starting materials Organic 

Pollutants (dyes) 

Optimized 

parameters 

Maximum 

adsorption 

capacity 

References 

1. 

Cellulose 
nanofibrils-

graphene 
nanoplates aerogel 

Carbon nanotubes, 
Graphene 
nanoplates 

Cellulose, Sodium 
chlorite, potassium 
hydroxide, sodium 

hypochlorite, 2,2,6,6-
tetramethylpyperdine-

1-oxyl

Methylene blue 
Congo red 

Adsorbent dose = 
0.005g, 

Temperature = 25°C 1178.5 mg g-1

585.3 mg g-1

[123] 

2. 
Cellulose-based 
bio adsorbent

- Hyperbranched 
polyethyleneimine, 

Glutaraldehyde, 
Cellulose powder 

Reactive yellow, 
Bright yellow and 
Disperse brown

Adsorbent dose = 
0.1g, 

pH = 7 for reactive 
yellow, bright 

yellow, 
pH = 3 for disperse 

brown

970.87 mg g-1

571.43 mg g-1

581.40 mg g-1

[124]

3. 

Carboxymethyl 
cellulose grafted 

poly (3-
sulfopropylmethac

rylate) hydrogel 

- Carboxymethyl 
cellulose sodium salt, 

3-Sulfopropyl 
methacrylate potassium 

salt, N, N´- 
methylenebisacrylamid

e

Methylene blue 

Adsorbent dose = 
0.05g, 

pH = 6, 
Temperature = 25°C 1675 mg g-1

[125] 

4. 

Carboxymethyl 
cellulose-

acrylamide-
graphene oxide 

hydrogel 

Graphene oxide Carboxymethyl 
cellulose, Acrylamide, 

Ammonium 
persulphate, N, N´- 

methylenebisacrylamid
e, Potassium 

permanganate, Natural 

Acid Blue-133 

Adsorbent dose = 
0.1g, 

pH = 6, 
Temperature = 

20±2°C 
185.45 mg g-1

[126] 
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graphite powder, 
Hydrogen peroxide, 

Sodium nitrate, 
Sulfuric acid

5. 

Lignin-holding 
hemicellulose-
based hydrogel 

- Acrylic acid, 
Ammonium 

persulphate, N, N, N’, 
N’-tetramethyl-ethane-
1, 2-diamine, sodium 

lignosulfonate

Methylene blue 
dye 

Adsorbent dose = 
0.05g, 

pH = 10, 
Temperature = 30°C 

2691 mg g-1 

[127] 

6. 

Pineapple peel 
cellulose-based 

sepia ink hydrogel 
composite 

Sepia ink Ionic liquid 1-butyl-3-
methylimidazolium 

chloride, Pineapple peel 
cellulose, sodium 

chlorite, potassium 
hydroxide, 

polyethylene glycol

Methylene blue 
dye 

- 

138.25 mg g-1

[128] 

7. 

Cellulose/sodium 
alginate hydrogel 

composite 

- Cellulose, Sodium 
alginate, Sodium 
chloride, Calcium 

chloride

Methylene blue 
dye 

Adsorbent dose = 
0.445g, 
pH = 7, 

Temperature = 25°C

256.41 mg g-1 

[129] 

8. 

Waste cellulose-
based glycidyl 
methacrylate 

composite

- Cellulose waste, 
Glycidyl methacrylate, 
acetate and phosphate 

buffer solutions

Acid-fast yellow, 
acid methyl blue, 
acid methyl green 

Adsorbent dose = 
0.5g, 

pH = acidic, 
Temperature = 20°C

- 

[130] 

9. 

Carboxymethyl 
cellulose-based 

poly (acrylic 
acid)/bentonite 

composite 
membrane 

Bentonite Carboxymethyl 
cellulose, potassium 

persulfate, 
glutaraldehyde, N, N’ -

methylene-bis-
acrylamide, 1,5 

diphenyl carbazide

Crystal violet 

Adsorbent dose = 
0.1g, 

Temperature = 
~20°C 546 mg g-1

[131] 
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Other organic pollutants (Pesticides, organic compounds) 

1. 

Choline Chloride 
Blended Cellulose 
Acetate-Fly Ash 

Composite 
Membrane 

Fly ash Cellulose acetate, 
choline chloride, 

polyethylene glycol, 
fly ash, boric acid, 

sodium metasilicate, 
sodium carbonate

Phenol 

Phenol concentration 
= 100 mg L-1, 

pH = 10 
92.7% 

[121] 

2. 

Cellulose 
acetate–supported 

membrane, 
Imidazole-based 

ionic liquid 

- Cellulose acetate, 2-
ethyl 

imidazole salt, 2-
bromopropyl amine 

hydrobromide, toluene, 
ethyl acetate

Pirimicarb 

Adsorbent dose = 
0.01g, 

Temperature = 50°C 
74%, 68% 

[132] 

3. 

Carboxymethyl 
cellulose based 

methacrylic acid 
hydrogel, 

Carboxymethyl 
cellulose 

methacrylic 
acid/acrylamide 

hydrogel

- Carboxymethyl 
cellulose, acrylamide, 

methacrylic acid, 
4-chlorophenol, 

2,4-
dichlorophenoxyac

etic acid 

- 

- 

[120] 

4. 

Methylcellulose 
based 

poly(acrylamide) 
hydrogel 

- Methylcellulose 
poly(acrylamide), N, 
N’ -methylene-bis-
acrylamide, Sodium 
persulfate, N, N, N’, 

N’-tetramethyl 
ethylene-diamine

Paraquat 
dichloride 

- 

14.3 mg g-1

[122] 
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Table 2. Cellulose based hydrogels for removal of inorganic pollutants.

Sr. No. Hydrogel Fillers Starting materials Inorganic 

pollutants 

Optimized 

parameters 

Maximum 

adsorption 

capacity 

References 

1. 
Cellulose based 

adsorbent 

- Quaternized cellulose, 
Polyethylenimine, 3 -chloro - 2 -

hydroxypropyl trimethylammonium 
chloride, Epichlorohydrin, 

Cr(VI) 

Adsorbent dose 
= 0.05g, 
pH = 2, 

Temperature = 
30°C

490.3 mg g-1 [133] 

2. 

Fe(III)-complexed 
carboxylated 

cellulose beads 
adsorbents

Fe(III) 2,2,6,6- Tetramethylpiperidine-1-
oxyl, sodium hypochlorite, Sodium 
hydroxide, sodium chloride, FeCl3 

Br- 

Adsorbent dose 
= 5g, 

pH = 7, 
1.22 mg g-1 [134] 

3. 

Multiple active sites 
cellulose-based 

adsorbent 

- Microcrystalline cellulose, 
Epichlorohydrin, 

tetraethylenepentamine, 
bis(carboxymethyl) trithiocarbonate

Cu(II) 
Pb(II) 
Cr(VI) 

- 
100 % 
98 % 
99 % 

[135] 

4. 

Carboxymethyl 
cellulose and 

chitosan derived 
nanostructured 

sorbents 

- Sodium carboxyl methylcellulose, 
Chitosan, polyethyleneimine, 

tris(hydroxymethyl) -aminomethane Cd(II) 
Cr(VI) 

Adsorbent dose 
= 0.02g, 

pH = 5 for 
Cd(II), 

pH = 2 for 
Cr(VI)

470.0 mg g-1 

347.0 mg g-1 [136] 

5. 

Wheat straw 
cellulose-g-poly 

(acrylic acid)/poly 
(vinyl alcohol) 

hydrogel

Sodium sulfite, acrylic acid, 
potassium persulfate, poly (vinyl 

alcohol), ammonium cerium nitrate, 
N,N'-methylenebisacrylamide 

Cu(II)

- 

142.7 mg g-1 [137] 

6. 
Maleic anhydride 

modified 

- Diatomite, hydroxylamine 
hydrochloride, dithizone, CaCO3 Pb(II) 

Adsorbent dose 
= 0.01g per 10 
mL (10mg L-1

44 mg g-1 [138] 
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cellulose/diatomite 
beads 

powder, maleic anhydride, urea, 
acetone 

Pb 
concentration), 

pH = 6, 
Temperature = 

30°C

7. 

Sugarcane 
cellulose-based bio-

adsorbent 

Sugarcane bagasse cellulose fiber, 
Epichlorohydrin, ethylenediamine, 

carbon disulfide, 
carboxymethylcellulose sodium

Cu(II) 
Zn(II) 
Pb(II) 

- 
446.2 mg g-1

363.3 mg g-1 

558.9 mg g-1
[139] 

8. 

Cellulose based 
poly-ethylene imine 

composite 

- Cellulose, poly (ethylene imine), 
epichlorohydrin, urea, lithium 

hydroxide 
Cu (II)

Adsorbent dose 
= 0.01g, 
pH = 5, 

Temperature = 
room 

temperature

285.7 mg g-1 [140] 

9. 

Carboxymethyl 
cellulose based poly 

(acrylic 
acid)/bentonite 

composite 
membrane

Bentonite Carboxymethyl cellulose, potassium 
persulfate, glutaraldehyde, N,N’ -

methylene-bis-acrylamide, 1,5 
diphenylcarbazide 

Cd (II) 

- 

781mg g-1 [131] 

10. 

Cellulose based 
collagen hydrogel 

beads 

- Microcrystalline cellulose, collagen 
powder, 1-butyl, 3- 

methylimidazolium chloride, 
Na2SO4

Cu(II) 

Adsorbent dose 
= 0.05g, 
pH = 6, 

Temperature = 
19.85°C

1.06 mmolg-1 [141] 

11. 

Cellulose based 
polyacrylamide/ 
hydroxyapatite 

hydrogel composite 

Hydroxya
patite 

microcrystalline cellulose, N, N-
dimethylformamide, Acrylamide, 
N,N’ -methylenebis (acrylamide), 

potassium persulphate 
Cu(II) 

Adsorbent dose 
= 0.04g, 
pH = 5.8, 

Temperature = 
20±1°C

175 mg g-1 [142] 
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12. 

Cellulose-based 
acrylamide 
hydrogel

- Depithed bagasse, sulfuric acid, 
sodium hypochlorite, Acrylamide, 

potassium persulfate, glutaraldehyde

Cu(II) 
Cr(VI) 

- 
90.12% 
94.2% 

[143] 

13. 

Carboxy methylated 
cellulose-based 

chitosan physical 
hydrogel 

- Carboxymethylated cellulose, 
chitosan, acetic acid, 

Cu (II) 
Cd(II) 
Zn(II) 

Adsorbent dose 
= 0.2g, 

pH = 5 for 
Cu(II), 

pH = 6 for 
Cd(II) 

pH = 5.5 for 
Zn(II)

53.2 mg g-1 (Cu 
(II)) 

[144] 
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3.2. Cellulose-based hydrogel for organic dyes adsorption 

Mittal et al., prepared the carboxymethyl cellulose and chitosan crosslinked graphene oxide 

hydrogel nanocomposite for removal of organic dyes [145], highest removal tendency were 404.5 

mg g-1 for methyl orange (anionic dye) and 655.9 mg g-1 for methylene blue (cationic dye) 

calculated from Langmuir isotherm model, regeneration tendency was reported for twenty 

adsorption-desorption cycles. Yu et al. (2020) developed hybrid aerogels using cellulose 

nanofibrils (CNFs), carbon nanotubes (CNTs) and graphene nanoplates (GnPs). The prepared 

aerogel was utilized for adsorption of methylene blue (cationic dye) and congo red (anionic dye) 

dyes. The prepared aerogels showed maximal adsorption capacities of 1178.5 mg g-1 (cationic dye) 

and 585.3 mg g-1 (anionic dye). The SEM images of prepared aerogels and adsorption mechanism 

for congo red and methylene dye is presented in Figure 4. 

Figure 4. SEM images of hybrid aerogels and a possible mechanisms for the adsorption of congo 

red and methylene blue dyes [123].

 The SEM analysis proved the fact that aerogels have large air pockets well suited for more 

adsorption rates. Prepared cellulose nanofibrils have shown irregular shapes of pores which were 

due to the high suspension concentration before the freeze-drying. Whereas, carbon nanotubes and 

graphene nanoplates showed the stacked aggregation between the particles which was probably 
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because of strong binding between the individual particles. In comparison with the individual 

CNTs or GnPs, hybrid structures have shown a more porous network that facilitates a fast diffusion 

rate of molecules with enhanced accessible adsorption sites to the selected dye molecules. The 

aerogel demonstrated the best adsorption towards the contaminants when the CNTs and GnP ratio 

was 3:1. The hybrid ratio was another important parameter to analyse the best adsorption rate for 

the prepared adsorbent. Hybrid structures are mechanically strong and possess more adsorption 

sites than individual structures, which means tailoring cellulose to some hybrid structures advances 

the rate of adsorption more efficiently. 

 In another study, Chen et al., (2018) synthesized a cellulose loaded adsorbent by using modified 

hyper-branched polyethyleneimine with the help of glutaraldehyde [146]. The prepared sample 

was used for the elimination of anionic, cationic and non-ionic dyes. The reported adsorption 

capacity for reactive yellow X-RG (anionic), bright yellow M-7G (cationic) and disperse brown 

S-3RL (non-ionic) were 970.87 mg g-1, 571.43 mg g-1 and 581.40 mg g-1, respectively. 

Comparative FTIR spectrum of pure cellulose and prepared bio-adsorbent are represented in 

Figure 5a. The peaks at 1430 cm-1, 1579 cm-1 and 1656 cm-1 in the bio-adsorbent spectra were 

due to C-N stretching vibration, C=N stretching vibration and N-H bending vibration, respectively. 

The peaks at 3349 cm-1 in pure cellulose were transferred to 3402 cm-1 in the prepared bio-

adsorbent spectra because of overlapping of O-H and N-H stretching vibration [147]. These results 

revealed the fact that the aldehyde group of glutaraldehyde undergoes a chemical reaction with an 

amino group of polyethyleneimine which confirms the presence of a Schiff base structure. The 

peaks at 2923 and 2848 cm-1 were attributed to –CH2 stretching vibration, at 771 cm-1 was 

attributed to C-H bending vibration and also explained the successful introduction of hyper-

branched polyethyleneimine in the cellulose. The XPS spectra of pure cellulose and prepared bio-

adsorbent are represented in Figure 5b. 
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Figure 5. (a)  FTIR spectra of pure cellulose and prepared bio-adsorbent [124]. Reprinted with 

permission from [124]. Copyright 2018 Elsevier, (b) XPS spectrum of pure cellulose and prepared 

bio-adsorbent [124]. Reprinted with permission from [124]. Copyright 2018 Elsevier, (c) proposed 

mechanism for the synthesis of bio-adsorbent [124]. Reprinted with permission from [124]. 

Copyright 2018 Elsevier.

The same elements C 1s and O 1s were present in pure cellulose and prepared bio-adsorbent but 

one new element N 1s was introduced in the prepared bio-adsorbent showed modification by 

hyper-branched polyethyleneimine. The three peaks of C 1s at 288.2 eV, 286.7 eV and 284.8 eV 

were attributed to O-C-O, C-O/C-N and C-C respectively. After the modification by hyper-

branched polyethyleneimine, three peaks of C 1s were shifted to 286.6 eV, 285.3 eV and 284.6 eV 

or the intensity of the peaks decreased. The peak of O 1s at 533 eV was corresponded to C-O/C-

OH [148] but shifted to 532.6 eV after the modification with hyper-branched polyethyleneimine. 

The peaks of N 1s at 398.8 eV and 399.4 eV were due to C=N-C and –NH2/-NH- respectively 
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confirmed the grafting of hyper-branched polyethyleneimine on the cellulose. FTIR and XPS 

results supported the grafting of hyper-branched polyethyleneimine on the pure cellulose chain. 

The possible mechanism for the preparation of bio-adsorbent is represented in Figure 5c. The 

proposed mechanism showed the functional modification on cellulose with the help of hyper-

branched polyethyleneimine and glutaraldehyde. 

Song et al., (2016) prepared lignin-supported hemicellulose hydrogel using acylated hemicellulose 

(AHC), acrylic acid, N, N, N', N'-tetramethylethane-1,2-diamine, ammonium persulfate and 

sodium lignosulfonate (NaLS) through free radical polymerization technique. The prepared 

hydrogel was utilized for the elimination of methylene blue (MB) dye and the reported adsorption 

tendency was 2691 mg g-1. After four successive cycles, the adsorption capacity for MB dye was 

about 80%. The nuclear magnetic resonance spectra of the pure hemicellulose (HC) and acylated 

hemicellulose (AHC) showed the signals at 5.8, 6.6 ppm and 3.0 to 4.5 ppm which confirmed the 

presence of protons for -CH=CH- group and pyran ring of xylan, respectively [149]. Also, the peak 

at 4.4 ppm represented the anomeric proton of the pyran ring of xylan. The FTIR spectra of 

hemicellulose, sodium lignosulfonate, acylated hemicellulose and Gel-3 (0.3 gm of acylated 

hemicellulose and 0.1 gm of sodium lignosulfonate) was discussed. The broad bands at 1728 and 

1638 cm-1 were because of carbonyl group and C=C double bond of the acylated hemicellulose 

respectively [150]. Additionally, the bands at 1515 and 1124 cm-1 were emanated from the 

aromatic ring and sulfonate group, respectively. These bands clearly showed the existence of 

sodium lignosulfonate in the Gel-3. Morphology of the synthesized lignin-based hemicellulose 

hydrogel with different sodium lignosulfonate dosages was presented. The porosity of lignin-based 

prepared hydrogel was changed significantly with the different amounts of sodium lignosulfonate. 

SEM monograph of the hydrogel free from sodium lignosulfonate (NaLS) named Gel-1. Gel-3 

type of hydrogel containing 0.1 gm of lignosulfonate showed greater porosity than Gel-1. Gel-3 

had reported the maximum adsorption capacity and swelling ability. The prepared lignin supported 

cellulose is not well suited for the cyclic economic ability concept as it lost efficiency at fourth 

cycle (80 %), whereas some researchers have reported recyclability of their material who maintains 

efficiency up to or above 90 % even after five adsorption-desorption cycles. In another work, 

Salama (2018) prepared superabsorbent hydrogel by grafting poly (3-sulfopropyl methacrylate) 

onto carboxymethyl cellulose.  The prepared superabsorbent hydrogel was utilised for the 

adsorption of methylene dye at optimized pH 6. The higher reported adsorption efficiency of the 
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superabsorbent was 1675 mg g-1. After five cycles, the adsorption percentage of superabsorbent 

hydrogel was 89%. The possible mechanism for the interaction of methylene blue and prepared 

superabsorbent is shown in Figure 6A. The hydrogel composites based on the cellulose of 

pineapple peel and sepia ink from cuttlefish were prepared through homogeneous acetylation of 

cellulose [128]. In this technique, acetylation of cellulose was performed in the presence of ionic 

1-butyl-3-methylimidadazolium chloride (BmimCl) liquid. The prepared adsorbent material was 

used for elimination of methylene blue. The removal efficiency was sharply increased from 53.72 

to 138.25 mg g-1 after adding the different concentrations of sepia link. Comparative FTIR 

spectrums of prepared samples are shown in Figure 6B. Peaks of sepia ink at 1368 cm-1, 3224 cm-

1, 1578 cm-1 were assigned to C-N stretching of amino acids, -OH and –NH stretching vibrations, 

ionized COO- and C=O double bond respectively [151]. FTIR of pineapple peel cellulose showed 

a broad peak at 3400 cm-1 corresponded to the -OH group and a small peek at 2900 cm-1 resulted 

from C-H stretching vibration. Similarly, FTIR of PPCAS-M6 (sepia ink/BmimCl by wt.= 10%)

and PPCA (sepia ink/BmimCl by wt.= 0%) hydrogel confirmed the acetylation via corresponding 

peaks at 1723 cm-1 and 1168 cm-1 because of C=O and C-O stretching’s respectively. Additionally, 

none of the peaks at 1723 cm-1 and 1168 cm-1 were reported for PPCS (without acetylation of 

pineapple peel cellulose) hydrogel which means monoester of cellulose was produced in BmimCl 

liquid via acetylation. 
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Figure 6. (A) Schematic representation for synthesis of superabsorbent hydrogel by grafting of 

poly (3-sulfopropyl methacrylate) onto carboxymethyl cellulose [125]. Reprinted with permission 

from [125]. Copyright 2018 Elsevier, (B) FTIR spectra of (a) sepia ink, (b) pineapple peel 

cellulose, (c) PPCAS-M6 hydrogel (sepia ink/BmimCl by wt.= 10%), (d) PPCA hydrogel (sepia 

ink/BmimCl by wt.= 0%) and (e) PPCS hydrogel (without acetylation of pineapple peel cellulose) 

[128]. Reprinted with permission from [128]. Copyright 2016 Elsevier, FESEM images of (C)

pineapple peel cellulose, (D) sepia ink, (E) PPCAS-M6 hydrogel (sepia ink/BmimCl by wt.= 10%) 

and (F) PPCA hydrogel (sepia ink/BmimCl by wt.= 0%) [128]. Reprinted with permission from 

[128]. Copyright 2016 Elsevier. 

Furthermore, Figure 6 shows the FESEM monographs of the prepared hydrogel composites. The 

fibre-like rough surface was observed in pineapple peel cellulose (Figure 6C). The image of sepia 

ink showed small granules having a diameter of 200 µm to 100 µm (Figure 6D). In comparison 

with the pineapple peel cellulose, PPCAS-M6 (sepia ink/BmimCl by wt.= 10%) hydrogel and 

PPCA (sepia ink/BmimCl by wt.= 0%) hydrogel showed the noticeable change from granular to a 

smooth surface (Figure 6E, F) [152]. However, the disappearance of granular structures from the 

surface of PPCAS-M6 confirmed the successful grafting of sepia ink onto the hydrogel matrix. 

Hence, sulfonate groups can enhance the adsorption rate of cellulose-based hydrogels. Researchers 

can apply the sulfopropyl methacrylate potassium salt as an ion-exchanger for an effective 

wastewater remediation.  

Cellulose/sodium alginate hydrogel was fabricated by Mohammed et al., in 2015. Cellulose nano-

particles were acquired from pulp fibres [129]. The synthesized hydrogel was utilized for 

adsorption of methylene blue dye. The reported adsorption tendency of hydrogel was 256.41 mg 

g-1. The prepared sample had shown a good absorption tendency (~97 %) after five reuse cycles. 

Morphology and porosity of the sodium alginate and cellulose/sodium alginate hydrogel were 

examined by scanning electron microscopy (Figure 7). The less-dense and plane surface of pure 

sodium alginate was observed (Figure 7a) but the density and roughness of the surface sharply 

increased on the addition of cellulose nanocrystal [153] (Figure 7b). Additionally, cross-linking 

and porous behaviour of cellulose/sodium alginate hydrogel were noted (Figure 7c,d). The 

reusability of the cellulose/sodium alginate hydrogel is represented in Figure 7e. In conclusion, it 

is a new generation recyclable approach that reduces our dependence on activated carbon because 
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this material is cheap, reusable and mechanically strong. The modification of cellulose with 

alginate showed improved adsorption capacity than pure alginate hydrogels. Moreover, the 

adsorption efficiency of prepared hydrogel remained at ~ 97 %, after the five-time regeneration 

processes which is well described as cyclic economic material which can open its services on large 

industrial scale [154].  

Figure 7. SEM images of (a) sodium alginate, (b) cellulose/sodium alginate hydrogel, (c)

crosslinking behaviour of cellulose/sodium alginate hydrogel and (d) porous behaviour of 

cellulose/sodium alginate hydrogen [129]. Reprinted with permission from [129]. Copyright 2015 

Springer, (e) reusability of the cellulose/sodium alginate hydrogel [129]. Reprinted with 

permission from [129]. Copyright 2015 Springer, SEM images of (f, g) pure cellulose hydrogel 

beads, (h, i) cellulose based collagen hydrogel beads (cellulose & collagen is 1:1), (j, k) prepared 

hydrogel (cellulose & collagen is 1:2), (l, m) prepared hydrogel (cellulose & collagen is 1:3) [141]. 

Reprinted with permission from [141]. Copyright 2013 Elsevier.

El-Kelesh et al. synthesized the waste cellulose-based glycidyl methacrylate composite [130]. In 

this study, firstly waste cellulose was treated chemically and then its grafting was done by using 

glycidyl methacrylate with the help of gamma rays and methanol/H2O. The prepared composite 

was utilized for the adsorption of acidic dyes (acid-fast yellow, acid methyl blue, acid methyl 
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green) from an aqueous solution. The reported maximum heat of adsorption values for acid-fast 

yellow, acid methyl blue and acid methyl green were 27.65, 34.77 and 38.81 KJ mol-1 respectively. 

The IR spectroscopic analysis of pure cell (cellulose waste) and cell/glycidyl methacrylate-g-

composite showed bands at 1187 cm-1 and 2983 cm-1 because of the stretching of C-O and C-H 

bonds respectively. Moreover, the band at 3223 cm-1 was observed due to the O-H stretching of 

cellulose. The presence of intramolecular hydrogen bonding in cellulose was confirmed after the 

appearance of the band at 3495 cm-1. Grafting of the cell via gamma radiations was confirmed by 

the appearance and disappearance of some peaks. A broad and intense peak in between the 3570-

3050 cm-1 range explained the formation of hydrogen bonds between non-substituted -OH groups 

and amino groups. With the help of scanning electron microscopy, the monographs of cellulose 

waste and cell/glycidyl methacrylate-g-composite were analysed. The pure cell was consisting of 

elementary fibres which were helical in shape and had less cellulosic polysaccharides whereas, in 

cell/glycidyl methacrylate-g-composite middle lamella was observed, which was present due to 

the grafting of thin layers of elementary cellulosic fibres. The thermal analysis for cellular waste 

and cell/glycidyl methacrylate-g-composite was investigated under a nitrogen atmosphere. The 

three-step decomposition of pure cell and cell/glycidyl methacrylate-g-composite was observed. 

Weight loss of about 20 % for cell/glycidyl methacrylate-g-composite and about 8 % for the pure 

cell was observed in the first step of decomposition under the range of 50-230 ºC temperature and 

this was because of loss of water and CO2 in the initial stage. In the second stage of decomposition, 

about 57% of weight loss was noticed within the range of 230-350 ºC which was because of the 

thermal degradation of cross-linked cellulosic chains. However, in the last step weight loss got 

increased within the increase in temperature from 400ºC to 450ºC for both cellulosic waste and 

glycidyl methacrylate -g-composite. From here it was concluded that pure cellulose showed higher 

mass loss than the prepared grafted composite material. Hence grafting enhanced the thermal 

stability of the polysaccharide structures. To sum up, researchers have introduced the radiation-

induced grafting method, where no additive is needed for initiation. Importantly, cellulose is 

extracted from agricultural waste, which makes this approach non-toxic, biodegradable, 

biocompatible and easier to available. Another best part of their research is the optimization of the 

sample which is a key to get superior and steadier product quality. 



28

3.3. Cellulose-based hydrogel for heavy metal ions adsorption 

Godiya et al., fabricated the carboxymethyl cellulose based polyacrylamide hydrogel composite 

for Cu(II) Cd(II) and Pb(II) ions removal from aqueous solution [155], maximum adsorption 

efficiency were 227.2 mg g-1 (Cu(II)), 256.4 mg g-1 (Cd(II)) and 312.5 mg g-1 (Pb(II)), adsorption 

experimental data followed the pseudo-second-order kinetics and Langmuir isotherm model.

Singh et al., synthesized the cellulose-based aluminum oxide/ graphene oxide hydrogel for 

removal of fluoride ion from waste water [156], aluminum oxide nanoparticle was fabricated via 

a green method utilizing wastes generated during oil extraction from Syzygium aromaticum 

(clove) and graphene oxide was chemically fabricated using pencil lead, reported adsorption 

tendency was 5.34 mg g-1 in 2 hours at pH 5, experimental data best fitted for Langmuir isotherm 

model with 0.95 correlation coefficient value and pseudo second order kinetics model with 0.99 

correlation coefficient value. 

Wang et al. prepared the biodegradable cellulose-based collagen hydrogel beads, in 2013. The 

hydrogel beads were synthesized through reconstitution from 1-butyl, 3-methylimidazolium 

chloride solution [141]. There was a notable comparison between the removal efficiency of 

cellulose-based collagen hydrogel beads and cellulose-based hydrogel beads for Cu (II) ions. 

Figure 7 shows the surface and cross-section morphology of pure cellulose hydrogel beads and 

cellulose-based collagen hydrogel beads (mass ratio of cellulose & collagen: 1:1, 1:2 and 1:3). The 

surface and cross-section of the pure cellulose hydrogel beads showed a dense and smooth surface 

(Figure 7f,g). Then, adding the collagen microparticles to the hydrogel led to the porous and rigid 

surface (Figure 7h,i) and the porosity was continuously increasing with the increase in the number 

of collagen microparticles (Figure 7j-m). Thus, the SEM images clearly explained the mass ratio 

of collagen microparticles affecting the porosity of the prepared cellulose hydrogel.  
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Figure 8. FTIR spectrum of (a) cellulose, collagen and cellulose-based collagen (cellulose & 

collagen is 1:1) hydrogel beads, (b) cellulose-based collagen (1:2) hydrogel beads (CCHB2), 

cellulose-based collagen (1:3) hydrogel beads (CCHB3) and Cu (II) ion adsorbed hydrogel beads 

[141]. Reprinted with permission from [141]. Copyright 2013 Elsevier, (c) possible mechanism 

for preparation of cellulose grafted polyacrylamide/hydroxyapatite hydrogel composite [142]. 

Reprinted with permission from [142]. Copyright 2013 Elsevier.

The FTIR spectrum of collagen, cellulose and cellulose-based collagen (cellulose & collagen: 1:1) 

hydrogel beads (Figure 8a) showed broad peaks at 3399 and 3413 cm-1 were confirmed cellulose 

hydroxyl groups and amide group in collagen respectively. The broad peak of cellulose-based 

collagen (cellulose & collagen: 1:1) hydrogel beads (CCHB1) was due to the hydrogen bond at 

3433 cm-1. In the composite, the peak was broad and got shifted to a higher wavenumber and the 

peaks at 1536 and 1447 cm-1 were because of amide groups of collagen. The FTIR spectrum of 

cellulose-based collagen (1:2) hydrogel beads (CCHB2), cellulose-based collagen (1:3) hydrogel 

beads (CCHB3) and Cu (II) ion adsorbed hydrogels are represented in the Figure 8b. Because of 

the stretching vibration of O-H and N-H groups, CCHB2 and CCHB3 were represented a peak 

around 3430 cm-1 but after adsorption peak was shifted to a higher frequency. The shifting of peaks 

has been also described as the removal of Cu (II) ions in the prepared hydrogel. After adsorption, 
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O-H and N-H group peak was at around 3435 cm-1. Peaks at 1550 and 1384 cm-1 were due to N-

H bending and C-N stretching in the CCHB2. In this study, researchers have prepared a blend ratio 

of collagen and cellulose, hence, cellulose cannot only be used as a backbone for hydrogel but also 

can be utilized as supporting material for the enhancement of the mechanical strength of hydrogel. 

Wang et al., (2017) synthesised sugarcane cellulose supported bio-adsorbent for the elimination of 

heavy metals. The prepared bio-adsorbent was extremely efficient and environmentally sustainable 

[139]. Cellulose supported bio-adsorbent was utilized for removal of Cu (II), Zn (II) and Pb (II) 

metals ions and reported maximum adsorption tendency were 446.2, 363.3 and 558.9 mg g-1

respectively. Carboxymethylcellulose and sugarcane bagasse cellulose were cross-linked with the 

help of epichlorohydrin, epichlorohydrin used as the crosslinking agent. The three-dimensional 

porous structure was shown by sugarcane cellulose-based bio-adsorbent. In another work, by 

suspension polymerization technique, cellulose-based polyacrylamide/hydroxyapatite composite 

was synthesized [142]. The prepared sample was examined for the effects on the adsorption while 

changing the time, pH, and concentration of Cu (II) ion solution. The maximum swelling and 

elimination capacity for Cu (II) metal ions was 5197 % per gram of hydrogel and 175 mg g-1

respectively. Figure 8c shows the potential mechanism for the fabrication of cellulose-g-

polyacrylamide/hydroxyapatite. Hydroxyapatite was used for the crosslinking of OH-, amide 

groups of cellulose and acrylamide respectively. The cellulose as backbone and potassium 

persulphate as initiator was utilized for the preparation of cellulose grafted hydrogel composite 

(Figure 8c).  
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Figure 9. FTIR spectrum of (a) S1 (hydroxyapatite, Na2HPO4 (0.09 mol L-1) and CaCl2 (0.15mol 

L-1)), S2 (hydroxyapatite, Na2HPO4 (0.18 mol L-1) and CaCl2 (0.31mol L-1)), S3 (hydroxyapatite, 

Na2HPO4 (0.54 mol L-1) and CaCl2 (0.92 mol L-1)) and (b) S0 (without hydroxyapatite), pure 

cellulose and hydroxyapatite [142]. Reprinted with permission from [142]. Copyright 2013 

Elsevier, (c) possible mechanism for fabrication of cellulose supported polyethylene imine 

hydrogel composite [140]. Reprinted with permission from [140]. Copyright 2016 Springer. 

The FTIR spectrums of pure cellulose, hydroxyapatite, and cellulose-g-polyacrylamide hydrogel 

(S0) (Figure 9b) and different concentrations of hydroxyapatite in the cellulose-g-polyacrylamide 

hydrogel (S1-S3) (Figure 9a) are given in Figure 9. The broadband between 3000 and 3700 cm-1

was due to hydroxyl groups stretching of cellulose, hydroxyapatite and water [157]. The broadband 

at 896-1235 cm-1 was because of C-O-C, a bridge stretching of polysaccharides. The phosphate 

groups present in the hydroxyapatite showed two different peaks at 602 and 566 cm-1. After adding 

the hydroxyapatite in the hydrogel composite, the intensity of both peaks sharply increased, shown 

in the spectrum S1-S3. Peaks at 3570 cm-1 and 633 cm-1 confirmed the OH stretching/vibration and 

OH released respectively, these peaks were present in the pure hydroxyapatite as well in prepared 

hydrogels composite. Hence, cellulose-based hydrogels can be modified with carbonyl, amino and 

sulfo groups to improve adsorption. Cellulose can be modified into cellulose xanthate which is a 
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novel approach to create super absorbing material. In cellulose xanthate, sulphide groups are 

responsible for more active sites for adsorption. 

Ahmed et al., synthesized the cellulose supported hydrogel by grafting acrylamide with the help 

of glutaraldehyde as a crosslinker [143]. The prepared cellulose-based hydrogel was utilized for 

adsorption of Cu (II) and Cr (VI) from an aqueous solution. Reported higher adsorption 

percentages were 90.12 % and 94.2 % respectively. The grafting of acrylamide onto cellulose 

pulps with the help of potassium persulphate (initiator) and HCl (catalyst) followed by crosslinking 

and hydrolysis. Non-treated (pulp I) was decomposed in two steps but the other side treated (pulp 

(I) grafted acrylamide) was decomposed in three steps. In first decomposition step initial 

disintegration temperature (IDT) for treated (pulp (I) grafted acrylamide) and non-treated (pulp I) 

were detected 41.54 and 40.91oC respectively. And final disintegration temperatures (FDT) were 

detected at 101.48 and 88.9 oC respectively. In the second step of decomposition, initial 

temperatures were 195.13 and 201.3oC and the final temperature was 323.68 and 394.55 oC 

respectively. Maximum weight losses in the second step were 14.70% and 85.93% respectively 

[158]. And maximum weight loss of treated (pulp (I) grafted acrylamide) in the third step was 

39.35%. Zhao et al. fabricated carboxymethylated cellulose-based chitosan physical hydrogel by 

using the irradiation method [144]. Chitosan was mixed with carboxymethylated cellulose solution 

with the help of irradiation technique and after adding the chitosan, the removal tendency of the 

physical hydrogel was sharply enhanced. Mainly the prepared sample was utilized for the 

elimination of Cu (II), Cd (II) and Zn (II). The prepared hydrogel was shown excellent adsorption 

potential for heavy metal ions. It is a cost-effective approach in which cellulose is extracted from 

agricultural waste to create adsorbents for water refining applications. The uptake percentage for 

Cr (VI) was greater than Cu (II) which means Cr (VI) has smaller ionic radius than Cu (II) and it 

has more accessibility to attach with functional groups lying inside the matrix of the adsorbent. It 

also revealed from this study that the more the presence of carboxylic acid groups, the more will 

be the adsorption rate. The calculation of maximum equilibrium swelling of prepared samples by 

optimising the different parameters is a necessary part that provides more information needed to 

choose the best among alternatives. 

Ge et al., prepared cellulose-based polyethyleneimine composite using cellulose as the backbone 

[140]. The polyethyleneimine was grafted onto cellulose with the help of an alkali/urea aqueous 



33

solvent in a step method. The prepared sample was used for the elimination of Cu (II) ions and 

higher removal efficiency was up to 285.7 mg g-1. The synthesized composite was also utilized for 

adsorption of Pb (II), Cr (III), Ni (II) and Zn (II) ions and their removal efficiency were up to 

248.2, 30.4, 112.2 and 148.4 mg g-1 respectively. The potential mechanism for the fabrication of 

cellulose-based polyethylene imine composite hydrogel is presented in Figure 9c. The cellulose 

and polyethyleneimine were grafted using epichlorohydrin as a crosslinking agent. The stability 

and deformation resisting property of synthesized samples (cellulose hydrogel, cellulose-based 

polyethylene imine hydrogel composite) were compared as shown in Figure 10a,b. The 

mechanical property was enhanced with the incorporation of polyethyleneimine to cellulose 

hydrogel. Furthermore, Figure 10c,d shows the comparison between SEM images of the cellulose-

based hydrogel (2 wt%) and cellulose-based polyethylene imine hydrogel composite (cellulose 2 

wt % and polyethyleneimine 5 wt %). The cellulose hydrogel had a porous structure with pore 

sizes ranging from 30 to 150 nm (Figure 10c). The pore size was decreased to 10-50 nm after 

adding the polyethyleneimine into the cellulose chain (Figure 10d) because the polyethyleneimine 

molecule filled the interparticle space of the cellulose chain.  

Figure 10. Representation of mechanical property of (a) cellulose based hydrogel (2 wt%) and (b)

cellulose-based polyethylene imine hydrogel composite (cellulose 2 wt % and polyethylene imine 

5 wt %) [140]. Reprinted with permission from [140]. Copyright 2016 Springer, SEM images of 
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(c) cellulose supported hydrogel (2 wt %) and (d) cellulose-based polyethylene imine hydrogel 

composite (cellulose 2 wt % and polyethylene imine 5 wt %) [140]. Reprinted with permission 

from [140]. Copyright 2016 Springer. 

Importantly, after adding the polyethyleneimine molecule into the cellulose chain, the removal 

tendency of hydrogel composite was sharply enhanced. In conclusion, a precooled alkali media 

was taken to synthesize hydrogel composite in which cellulose is selected as a skeleton and 

polyethyleneimine as a functional group. When compared to cellulose hydrogel, composite 

hydrogel demonstrated greater deformation resistance and stability after being modified with 

polyethyleneimine. Moreover, the adsorption capacity and equilibrium time varied with 

polyethyleneimine content. The best adsorption activity was reported at 20 % polyethyleneimine 

content for Cu (II).   

Figure 11. (a) Preparation of the carboxyl methylcellulose and chitosan supported nanostructured 

sorbent [136]. Reprinted with permission from [136]. Copyright 2020 Elsevier, (b) proposed 

adsorption mechanism for Cr(VI) and Cd(II) [136]. Reprinted with permission from [136]. 

Copyright 2020 Elsevier. 
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Li et al., synthesized carboxymethyl cellulose and chitosan supported nanostructured sorbents 

[136]. In this study, sodium carboxymethyl cellulose (CMC) was doped in the chitosan (CS) and 

dopamine (DA) self-polymerized material with help of glutaraldehyde as a cross-linker. The 

prepared carboxymethyl cellulose and chitosan supported nanostructured sorbents were utilized 

for the adsorption of Cr (VI) and Cd (II) with the reported removal tendency of 470.0 mg g-1 and 

347.0 mg g-1 respectively. Figure 11a,b show the preparation mechanism of the carboxyl 

methylcellulose and chitosan supported nanostructured sorbent and proposed adsorption 

mechanism for Cr(VI) and Cd(II). 

Figure 12. Proposed adsorption mechanism for Cr(VI) by synthesised adsorbent [133].  

In another work, Liang et al., prepared a novel cellulose supported adsorbent with functional 

groups of quaternary ammonium and amino for adsorption of Cr (VI) from aqueous solution [133]. 

The reported higher removal tendency was 490.3 mg g-1 for Cr (VI) ions. Figure 12 describes the 

proposed adsorption mechanism for Cr(VI) by the synthesised adsorbent.

Liu et al. modified the cellulose beads by using TEMPO-mediated oxidation and bonded with Fe 

(III) for the preparation of Fe(III)-complexed carboxylated cellulose beads [134]. The prepared 

beads were used for the removal of bromide ions with the highest removal tendency of 1.22 mg g-

1.  
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Figure 13. Representation of preparation process and adsorption of Br- by using Fe(III)-complexed 

carboxylated cellulose beads [134]. Reprinted with permission from [134]. Copyright 2020 

Elsevier. 

Figure 13 explains the preparation process of the adsorbent and adsorption mechanism of bromide 

ions. Wu et al., synthesized the novel cellulose supported adsorbent by using microcrystalline 

cellulose, tetraethylenepentamine, bis(carboxymethyl) tri thiocarbonate and epichlorohydrin 

(crosslinker) [135]. The prepared adsorbent was used for adsorption of Cu (II), Pb (II) and Cr (VI). 

The diagram explained the preparation mechanism for synthesized cellulose supported adsorbent 

(Figure14). Figure 15 shows the proposed adsorption mechanism for heavy metals (Cu (II), Pb 

(II) and Cr (VI)). Cellulose is poorly soluble in common solvents like water. 
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Figure 14. Figure shows the synthesis of cellulose-based adsorbent [135]. Reprinted with 

permission from [135]. Copyright 2020 Elsevier. 
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Figure 15. Show the proposed adsorption mechanism for Cu(II), Pb(II) and Cr(VI) [135]. 

Reprinted with permission from [135]. Copyright 2020 Elsevier.

 A cellulose derivative called SCMC can be introduced as a dopant to create biopolymer beads for 

adsorption. This is another scientific field in which the use of derivatives proved as the better 

choice for the groundwork of super adsorbents. Saber-Samandari et al., synthesized carboxymethyl 

cellulose-based poly (acrylic acid)/bentonite composite membrane [131]. In this study, poly 

(acrylic acid) was grafted onto the carboxymethyl cellulose with the help of N, N’-

methylenebisacrylamide (crosslinker) and nanocomposite membrane were synthesized using silica 

gel as an inorganic supporter and bentonite as the multifunctional crosslinker. The prepared 

nanocomposite membranes were utilized for the elimination of heavy metal (Cd (II)) and organic 

dye (Crystal violet). The maximum removal capacities for Cd (II) and crystal violet dye were 781 

mg g-1 and 546 mg g-1. 
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Figure 16. (a) Schematic representation for fabrication of carboxymethyl cellulose based poly 

(acrylic acid)/bentonite composite membrane [131]. Reprinted with permission from [131]. 

Copyright 2016 Elsevier, (b) FTIR spectrum of prepared grafted nanocomposite membranes. M0 

(bentonite = 0), M2 (bentonite = 0.02 gm), M6 (bentonite = 0.06 gm) and M10 bentonite = 0.1 

gm) [131]. Reprinted with permission from [131]. Copyright 2016 Elsevier, (c) SEM images of 

prepared nanocomposite membranes M0 (bentonite = 0), M2 (bentonite = 0.02 gm), M6 (bentonite 

= 0.06 gm) and M10 bentonite = 0.1 gm) [131]. Reprinted with permission from [131]. Copyright 

2016 Elsevier. 

Figure 16a shows a potential mechanism for prepared carboxymethyl cellulose-based poly(acrylic 

acid) composite, carboxymethyl cellulose-based bentonite composite and carboxymethyl 

cellulose-based poly (acrylic acid)/bentonite composite membrane. Carboxymethyl cellulose-

based poly(acrylic acid) composite was prepared using acrylic acid as monomer and N, N’-

methylenebisacrylamide as the crosslinking agent. Carboxymethyl cellulose-based bentonite 

composite was synthesized using silica gel and bentonite. Carboxymethyl cellulose-based poly 

(acrylic acid)/bentonite composite membrane was fabricated using glutaraldehyde as the cross-

linking agent through solvent evaporation (Figure 16a).   
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The FTIR spectrum of prepared grafted nanocomposite membranes is represented in Figure 16b. 

The broad peak of hydroxyl groups at 3500 cm-1 was shifted to 3450cm-1, due to hydrogen bonding 

between -OH groups of carboxymethyl cellulose, silica gel, acrylic acid and bentonite. The peaks 

at 1082 and 2924 cm-1 were confirmed the C-O-C in carboxymethyl cellulose and C-H stretching 

vibration in carboxymethyl cellulose-based poly(acrylic acid) composite respectively. The peaks 

at 1600-1700 cm-1 corresponded to the stretching vibration in O-Si-O (silica gel) and Si-O-Si 

(bentonite). The stretching and bending vibration in Si-O (bentonite) were attributed to peaks at 

1028 and 519 cm-1 respectively. After adding the bentonite in the samples, the surface smoothness 

got diminished and small slab-like shapes were observed. The absence of bentonite in the M0 

sample led to granular shapes which were because of silica gel (Figure 16c). Bentonite has 

excellent adsorption properties, due to its high stability under reducing and oxidizing conditions, 

low water solubility, high surface area, better ease of use and low price tag. Because of these 

incomparable properties, bentonite can be used as an effective modifier in the case of creating 

biopolymer-based hydrogels for the active adsorption process.  

The ion selectivity of an adsorbent depends upon the size of the ion and functional groups attached 

to the surface. Specifically, the C=N group on the adsorbent surface is responsible for the high 

selectivity of Hg2+ [159]. C=N behave as a soft basic ligand for interaction with soft acid Hg2+ as 

per acid-base theory. Furthermore, the chemical hardness of Hg2+ is much lower than that of Cd2+, 

so the soft base binds preferentially to Hg2+. Cellulose-based adsorbent performance is mostly 

determined by the wastewater's properties [160]. Mainly, adsorption processes depend upon the 

pH of the adsorbate solution. For instance, various amino-modified cellulose-based hydrogels are 

suggested to be promising metal and other pollution adsorbents. The amino groups, which have 

limited effectiveness in pollutants absorption at low pH ranges because of amino groups 

protonation. Aside from pH, other variables like contact time, initial concentration, temperature, 

adsorbent dose, etc. can affect the adsorption process. It is challenging to predict the prospective 

uses of cellulose-based adsorbents in wastewater treatment and their removal effectiveness in real 

industrial effluents due to the lack of full-scale investigations. A few cellulosic materials have 

demonstrated their ability to remove pollutants without any changes, however, their removal 

capabilities can be enhanced by chemical modifications, degree of modification and chemical 

activation affecting the adsorption in the great way [161]. 
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3.4. Regeneration of cellulose-based hydrogels   

Regeneration of cellulose adsorbent is essential to recover its original adsorption capability. It 

permits the recovery of cellulose adsorbent by removing the pollutants and returning the cellulose 

adsorbent to the process of adsorption [162]. The pollutants (organic and inorganic) can be 

efficiently extracted from the pollutant loaded cellulose adsorbent with the help of dilute acids 

(like diluted hydrochloric, nitric and sulfuric acids) [163]. Desorption can be accomplished by 

employing an acidic solution, sorption process is extremely sensitive to pH, change in the pH can 

reverse the sorption [70]. Tan et al., prepared the hydrogel made up of N-isopropylacrylamide, 

acrylic acid and carboxymethyl cellulose for U(VI) removal [164], desorption of U(VI) was 

monitored by immersing hydrogel in 0.1 mol L-1 of HNO3 solution at various temperatures, UV-

spectrophotometry was used to determine the remaining U(VI) concentration in solution, after five 

cycles of adsorption-desorption, the experiments demonstrated that the resolution rate remained at 

around 77.74%. [164].    

3.5. Biodegradation of cellulose-based hydrogels

The potential of hydrogels to degrade in both aerobic and anaerobic environments is known to be 

the most influential property. Many methods have been used to change the chemical and physical 

properties of natural polymers with different monomers appropriate for specific industrial 

applications. Feng et al. was synthesized the superabsorbent polymer with the help of cellulose 

from flax shive, potassium persulphate, N, N’-methylenebisacrylamide and microwave irradiation 

[165]. The prepared sample had good biodegradability by the soil composting method. The 

superabsorbent polymer was biologically degraded up to 40 % in 54 days at 40 °C. In another 

work, using yeast as a foaming agent, a novel polyvinyl alcohol/carboxymethyl cellulose/yeast 

double degradable hydrogel was synthesized [166]. The addition of yeast encouraged the hydrogel 

biodegradability and improved the degradation rate of polyvinyl alcohol in the prepared hydrogel 

with the highest degradation rate of 45 ± 2.8%. So, due to biocompatibility and biodegradability, 

cellulose-based hydrogels are a promising material for several industrial as well as biomedical 

applications [167].  
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3.6 Photocatalytic activities of cellulose-based nanostructured photocatalyst 

Photocatalysts are another important class of materials that are being used for water remediation 

applications[168–172]. The use of nanostructured photocatalyst in co-junction with cellulose-

based materials supports the creation of novel bio-hybrid materials for a variety of applications, 

notably renewable energy and water purification. The biocompatibility and strong hydrophilicity 

of cellulose result in good compatibility [173], the presence of electron-rich hydroxyl groups in 

cellulose contributes to photocatalyst interaction. Because of the synergistic behaviour of specific 

cellulose supported hydrogels and photocatalyst nanoparticles, the creation of bio-hybrid 

nanostructured is gaining a lot of attention [59,174]. Table 3 represents the recently developed 

cellulose supported photocatalyst composited and their utilization in wastewater remediation. 

Table 3. Photocatalytic activity of cellulose supported photocatalyst composites. 

Sr. No. Composite Pollutant Removal % Reaction 

Time 

References

1. Cellulose/Graphene 
oxide/TiO2 hydrogel 

photocatalyst 

Methylene blue 93% 120 min [175] 

2. Cellulose/ β-FeOOH 
composite hydrogel 

Methylene blue 99.89% 30 min [176] 

3. Ag/AgCl@Al-
carboxymethyl 

cellulose composite 

Rhodamine B 98% 60 min [177] 

4. AgCl@Fe- 
carboxymethyl 

cellulose composite 

Rhodamine B 87% 60 min [177] 

5. ZnFe2O4@methyl 
cellulose composite 

Metronidazole 92.65% and 
71.12% in 

synthetic and 
real samples 

- [178] 
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4. Conclusion and future perspectives 

On earth, Cellulose is the utmost abundant organic polymer and is one of the key component of 

plant cell walls that provides strength to plant cell walls [179-181]. The applications of cellulose 

in everyday life are growing extensively replacing synthetic materials. In particular, cellulosic 

biomass-based sustainable hydrogels have earned significant care in the area of contaminated 

water remediation because of their exceptional characteristics like high adsorption tendency, rapid 

kinetics, and reusability. Aside from these characteristics, hydrogels fabricated from cellulose have 

low mechanical stability. The used technique for the fabrication of hydrogels fabricated from 

cellulose is crucial in resolving mechanical stability. This review represents the recent 

development in hydrogels fabricated from cellulose for wastewater remediation, which includes 

the comparative study of different hydrogels fabricated from cellulose to remove toxins from 

aqueous solutions. The present discussion can provide novel ideas in the area of hydrogels 

fabricated from cellulose for wastewater remediation. The following are the gaps that must be 

addressed in future works: 

 Modification of cellulose and hydrogels fabricated from cellulose should be exploited to 

improve the adsorption capability and adsorption rate. 

 Necessary to investigate the efficiency of hydrogels fabricated from cellulose for the 

treatment of industrial pollutants containing different contaminants. 

 The economic sustainability of adsorbents is determined by the reusability of hydrogels, 

detailed research on the regeneration capabilities of hydrogels fabricated from cellulose in 

different cycles should be conducted to determine their reusability.  

 The majority of the research focused on treatments of lab-based wastewater rather than 

genuine industrial wastewater. 

 Most significant limitation throughout the research works is lack of clarity and poor 

information on the adsorption mechanism. More experimental and theoretical study are 

needed to understand adsorption mechanisms that can potentially unlock and find the 

most effective technique. 

 It is critical to investigate the possibility of increasing the mechanical durability of 

cellulose-based hydrogels by increasing self-healing ability. 

 Key parameters, planned formulation and optimum synthesis can overcome problems and 

inadequacies such as lower resistivity and mechanical strength. 
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