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ABSTRACT

Controller applications in OpenFlow cannot be trivially aug-
mented to support the various high availability (or failure
recovery) models of server applications. Recent work on
OpenFlow has largely assumed static replica configurations
or has relied on controller developers to embed high avail-
ability support in their design. Instead, we present Rule-
Bricks, a system for flexibly embedding high availability
support in existing OpenFlow policies. RuleBricks intro-
duces three key primitives: drop, insert, and reduce. We de-
scribe how these primitives can express various flow assign-
ment and backup policies, demonstrating the one offered by
the Chord protocol. We have implemented RuleBricks and
the Chord assignment policy. Using simulation, we compare
RuleBricks against a typical tree-based approach. We show
that RuleBricks maintains linear scalability with the number
of replicas on the Chord ring.
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1. INTRODUCTION

The flexibility of OpenFlow [8] should simplify support-
ing high availability models of server applications. Today,
new breeds of network controllers are showcasing the poten-
tial of OpenFlow (e.g., load balancers [5,13], random host
mutations [6], record and replay debugging [14], and appli-
cation acceleration [12]). However, tools to help encode or
reason about high availability are scarce, despite the emer-
gence of higher level language constructs like Frenetic [4]
and Pyretic [9].

This paper focuses on one primary question: how can high
availability (HA) policies be added to OpenFlow’s forward-
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Figure 1: Assumed environment

ing rules? We assume an environment that consists of mul-
tiple server replicas connected to an OpenFlow-enabled net-
work fabric (Figure 1). Additionally, the number of replicas
can grow or shrink, as expected by today’s cloud deploy-
ments [1]. Network support for HA, in general, requires
that if a switch forwards a particular flow to specific replica,
when the replica fails, then that flow is reassigned to a des-
ignated backup.® That said, we specifically focus on the
challenges that arise in an elastic environment:

e Planning for failure. Without adequate planning, the
load from a dying replica may be spread unequally among
the surviving replicas.

e Limiting flow reassignment. Flow reassignment in-
troduces overhead in terms of reprogramming switches
and any affinity violations (e.g., migrating flow-related
state [10]).

e Limiting rule explosion. As replicas are created and
destroyed, the number of rules required to specify flow
assignments may become fragmented. If flow assignments
cease to resemble the natural hierarchy of the IP address
space, wildcard rules cannot be used to reduce the rule
set.

We introduce a system, called RuleBricks, that can ef-
fectively embed a wide variety of HA policies into existing
OpenFlow forwarding rules. RuleBricks augments a con-
troller’s forwarding rule set, which we refer to as the active

"We, thus, further assume a system is in place that en-
ables the reassignment of flows to new replicas without cor-
rupting session state (for example, by implementing the
Split/Merge [10] abstraction).
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Figure 2: RuleBricks Overview

rule set, with a backup plan. The backup plan consists of
the rules that get activated when one or more replicas die.
In this paper, we focus on how the backup plan is created
in a robust and efficient way.

Our work exploits two features in OpenFlow: (1) the hi-
erarchical structure of OpenFlow’s wildcard rules and (2)
precedence rule execution. Conceptually, RuleBricks repre-
sents OpenFlow’s forwarding rules as bricks covering the 1P
address space. Each brick directly maps to a single Open-
Flow forwarding rule.? At the heart of RuleBricks are three
brick primitives: drop, insert, and reduce. As the name im-
plies, the drop primitive adds new bricks (active forwarding
policies) on top of existing ones. The insert primitive adds
new bricks directly underneath an existing policy to form a
backup plan. Finally, the reduce primitive is a set of Tetris-
like rule transformations that shrink the number of rules in
the active and backup plans.

We demonstrate the expressiveness of RuleBricks by en-
coding the assignment policy introduced in the Chord [11]
protocol, a popular distributed hash table (DHT) implemen-
tation. We show how RuleBricks can effectively encode the
addition of both nodes and virtual nodes in a Chord ring.
We also describe how the system reacts to failure.

We have implemented RuleBricks in Python. We have
also implemented two variations of the Chord assignment
policy: one that adheres to the hierarchical structure (rigid
brick sizes) imposed by OpenFlow’s prefix-based wildcard
rules and one that implements flexible brick sizes. Using
simulation, we measure the efficacy of RuleBricks on Open-
Flow’s rule table size and compare it against a typical tree-
based approach. We show how RuleBricks maintains linear
scalability with the number of replicas on the Chord ring
and offers approximately 50% reduction in the active rule
set when compared to a naive tree-based implementation.

This paper is structured as follows. Section 2 details the
design of RuleBricks. In Section 3, we show how RuleBricks
can be used to encode Chord’s assignment policy. In Sec-
tion 4, we evaluate and discuss the efficacy of our system.
Section 5 describes related work and Section 6 concludes.

2. RULEBRICKS

At the core of RuleBricks is a data structure that encodes
both active and backup flow assignments to replicas in an
elastic application. In this section, we describe the key char-
acteristics of this structure in terms of its three primitives:
drop, insert, and reduce.

2For simplicity, and without loss of generality, we only con-
sider rules that match on source IP address.
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Figure 3: Example of the drop primitive

2.1 Drop: Encoding Active Rules

RuleBricks represents the flow assignment over the IP ad-
dress space as a set of colored bricks. As depicted in Fig-
ure 2, each brick corresponds to a segment of the address
space that can be identified using a prefix-based wildcard
rule. The length of the prefix determines the width of the
brick. All flows with source IP in the address range covered
by a brick will be forwarded to the same replica; the color
of the brick indicates which replica. Additionally, bricks can
stack. The flow assignment is determined by the color of the
top-most bricks. Stacked bricks correspond to overlapping
rules, with the precedence encoded in the stacking order.?

Rules from exposed bricks at the top of the structure make
up the active rule set (Figure 2). This is because flows will
match their rules before the rules from any underlying (cov-
ered) brick. Therefore, the modification or addition of ac-
tive rules consists of dropping new bricks onto the top of the
structure, shown in Figure 3. Dropping new bricks effec-
tively transfers the flows in the corresponding parts of the
address space to the specified replica. In Figure 3, flow b,
assigned to the black replica in Figure 2, is now assigned
to a new replica (white). Alternatively, dropping bricks of
existing colors redistributes the parts of the address space
each replica covers (and likely the load on each replica).

The number of bricks required to achieve coverage of the
entire address space—and therefore the number of rules
that must be installed—is affected by the width of each
brick. Larger bricks introduce stronger limits on the num-
ber of rules. For example, the widest brick is 32 bits wide
and covers all IP-addresses; only one brick of this type—
corresponding to the * rule—is required to achieve coverage.
An 8 bit wide brick covers all addresses from a particular
/24 network. For a brick to be represented in a single rule,
the prefix-based wildcard rules—Ilike those in OpenFlow—
restrict the flexibility when selecting brick size and align-
ment. In particular, bricks must conform to a binary tree
structure. For example, any 8 bit wide brick must be aligned
to the “all zeroes” address in some /24 network.

2.2 Insert: Encoding Backup Rules

Any brick that is fully or partially covered by another
brick is part of the backup plan. As shown in Figure 4,
when a replica fails, all bricks bearing the color of the dying
replica effectively become invisible. The underlying bricks
are exposed and therefore become part of the active rule
set. Any flows that previously fell on now-invisible bricks
are reassigned to the underlying brick. In Figure 4, flows

3A more formal description is possible using set notation
and set theory; however, we leave this for future work.
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a, d, and e are all reassigned to the black replica when the
grey replica is removed.

To plan for flow reassignment in case a replica fails,* addi-
tional layers of bricks can be introduced underneath bricks
using the insert primitive. For example, in Figure 5, a white
brick is inserted underneath a grey brick. In this case, if grey
were to fail, flow a would be assigned to the white replica,
while flows d and e would be assigned to the black replica.
By inserting the white brick, better balance is achieved post-
failure than in the scenario depicted in Figure 4.

We believe this structure enables the expression of non-
trivial plans for flow assignment in the face of failure in an
elastic workload. By selecting widths and colors of bricks,
and dropping or inserting them appropriately, a network
controller can navigate the tradeoff between load balancing
objectives, number of flow reassignments, and rule explosion.
We discuss an example policy structure in detail in Section 3.

2.3 Reduce: Towards Efficient Encoding

RuleBricks implements a reduce primitive to help elimi-
nate redundancy in the brick structure that stems from repli-
cas coming and going in an elastic application. The reduce
primitive is built from two brick transformations, depicted
in Figure 6. Two horizontal bricks of the same color can be
defragmented, or merged together into a larger brick. De-
fragment can only be performed on bricks whose wildcard
rules are identical except for the least significant bit of the
prefix. In other words, defragmented bricks cannot violate
the binary tree property discussed in Section 2.1. Two ver-
tical bricks of the same color can be deduplicated, in which
the underlying brick is removed. Deduplication does not af-
fect the policy, because the top brick will always be exposed
before a brick of the same color below it.

Counter to intuition, the inverse of each transformation
(fragment and duplicate in Figure 6) are also useful for the
reduce primitive. For example, Figure 7 depicts a simple ex-
ample in which a sequence of fragmentation, deduplication,

4Again, we assume the appropriate state management or
icati i W i .
replication processes are in place for flow reassignment

141

defragment

U

fragment

m deduplicate
101* %_

duplicate

i

101*
101*
101*

Figure 6: Reduce transformations

1.Fragment:

| 1* | [ 11x  ][z01*][100%]
*

2 .Deduplicate: 3 .Defragment:

[ 11+ |[zo1*][z00*] | 1%

|
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and defragmentation are applied to reduce redundancy in
the rule structure. Examples can also be constructed in
which duplication ultimately leads to a reduction in the rule
structure.

We are exploring algorithms to automatically apply the
two transformations to an arbitrary rule structure. To date,
we have implemented an algorithm that heuristically defrag-
ments as many rules as possible, introducing duplication if
necessary. Then the algorithm deduplicates bricks, start-
ing with the bricks with the least exposure. Developing an
optimal algorithm is a subject of future work.

3. CHORD: AN EXAMPLE POLICY

To demonstrate how RuleBricks can be used to plan for
failure, we next describe the encoding of an example flow as-
signment policy. Specifically, we encode a scheme similar to
that popularized by distributed hash tables (e.g., Chord [11])
and adapted in systems like Dynamo [2].

3.1 Background

In a distributed hash table (e.g., Chord), participating
nodes are each assigned a random identifier in a 32-bit iden-
tifier space. The id space is thought of as a ring. Objects
are stored in the DHT by one (or more) of the participat-
ing nodes. To select the node in which an object should be
stored, a hash function is computed over the object. The re-
sulting hash results in a location on the id space ring. The
object is stored at the node with the closest id clockwise
around the ring (the successor) from the hash location.

If a node is removed, all objects that were mapped to
that node will be naturally mapped to the node’s successor.
Similarly, when a new node is added, some of the objects



mapped to the new node’s successor will now be mapped to
the new node, since the new node shrinks the address space
covered by its successor.

Balanced load is achieved by introducing multiple “virtual
nodes,” each with its own random identifier on the ring, for
each participating node. This reduces the probability that
any one node will store objects for a disproportionately large
subset of the id space and enables load from a failing node to
be spread across multiple surviving nodes. The properties
of virtual nodes and the design for nodes that come and
go make the Chord policy attractive for flow assignment
between replicas in an elastic environment.

3.2 Encoding

Figure 8 depicts the encoding of a Chord-like policy in
RuleBricks. As in Chord, each replica is responsible for ob-
jects that map to a portion of the address space. In this
case, objects are flows, and the address space is the hier-
archical IP address space.® When only one replica (white)
is in the system, one brick is dropped to cover the entire
address space (Figure 8(a)).

When a new replica (black) is created, it is assigned a
random identifier on the ring. To encode a Chord-like pol-
icy, any active flows with the black replica id as a direct
successor should be mapped to the black replica. Further-
more, if either replica were to fail, the other replica should
inherit all flows. In the example in Figure 8(b), the black
replica is assigned the address with the prefix 01, followed
by zeroes. For active flows, all addresses prefixed with 00
are reassigned by dropping a black 00* brick. The backup
rules for the case in which black fails are automatically cov-
ered because the white brick is underneath. An additional
black brick is inserted underneath the white brick to provide
backup rules in case white fails.

Figure 8(c) shows the arrival of another replica (grey) in
the system. This time, two active bricks (100% and 01%)
are dropped. With these rules, the grey replica becomes
responsible for part of the address space covered by white,
with automatic backup back to white. Two backup bricks
(00* and *) are also inserted, to ensure that the Chord-like
policy will be enforced if black fails.

Virtual nodes are implemented identically to new replicas,
except they share a color with other virtual nodes for the
same replica. Figure 8(d) shows the addition of a white
virtual node. One active brick (01*) is dropped and two
backup bricks are inserted (00* and *). Figure 8(e) shows
the result of reducing the structure by performing a sequence
of operations from Figure 6.

The number of bricks required to specify an arbitrary ad-
dress range can vary greatly because of the restriction that
bricks must be able to represented as part of a binary tree.
An address range that can be represented using bricks of
larger sizes (closer to the root of the binary tree) will re-
quire fewer rules. In the next section, we evaluate brick size
and its effect on the rule set size for Chord-like policies.

4. EVALUATION AND DISCUSSION

We have implemented RuleBricks in Python. As a flow
assignment policy, we have implemented two variants of the

®Hash-based rules are not yet standard in OpenFlow. The
implications of a non-uniform mapping of flows in the ad-
dress space are discussed in Section 4.
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Figure 8: Encoding Chord nodes in RuleBricks. (a),
(b), and (c) introduce three replicas; (d) introduces
a virtual node; (e) shows rules after reduce.

Chord example described in Section 3. The first variant
allows any point on the chord ring to be chosen as the id of a
virtual node. This variant, called variable-sized RuleBricks,
results in bricks of odd sizes that may not align well with
the hierarchical structure imposed by prefix-based wildcard
rules. The second variant exploits RuleBricks by limiting the
minimum brick size based on the number of replicas in the
system. Limiting the brick size effectively limits the choice
of virtual node id in Chord. The resulting rules fit well into
the hierarchical structure imposed by prefix-based wildcard
rules, resulting in predictable scaling in the rule set. We
refer to this variant as fized-sized RuleBricks.

Linear scalability in the number of active rules when using
fixed-sized RuleBricks is demonstrated in Figure 9. This fig-
ure shows the number of rules used to partition the address
space between replicas using 16 virtual nodes per replica.
To demonstrate the role of rule reduction in RuleBricks, we
compare the number of rules to a naive tree-based strategy.
Like the fixed-sized RuleBricks scenario, in the tree-based
strategy, every virtual node covers part of the address space
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using a rule corresponding a fixed level of the tree, depending
on the number of replicas. By applying the rule reduction
transformations described in Section 2.3, RuleBricks saves
51% of the rules on average.

To demonstrate how using fixed-sized RuleBricks yields a
predictable number of active rules, we experiment with 10
replicas with 4 virtual nodes each. Figure 10 shows the num-
ber of active rules to support the Chord-like flow assignment
as a function of the number of bits in the address space. The
use of fixed-sized RuleBricks decouples the number of active
rules from the address space size. Variable-sized RuleBricks
suffers, both in number of active rules and variability (the
error bars depict the average, maximum, minimum for 10
trials). To cover the 32-bit range of IPv4 addresses, the ac-
tive rule set may become infeasible to program into switches.

It should be noted that, in both of these strategies, the
number of rules in the system are independent from the
number of flows in the system. However, the effectiveness of
the address space partition depends on the distribution of
flows in the system.

Fixed-sized RuleBricks result in a smaller, more pre-
dictable active rule set. However, a manageable rule set
is not without consequence. As shown in Figure 11, fixed-
sized RuleBricks guarantee a degree of balance in the address
space partitioning due to their adherence to the hierarchical
structure imposed by prefix-based wildcard rules. This is
optimal only when flows are uniformly distributed through-
out the address space. Not surprisingly, for highly-skewed
address space distributions, the more flexible variable-sized
RuleBricks achieve better load balancing.

5. RELATED WORK

While high availability is a well established research area,
its implication on Software Defined Networks (SDN) and
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OpenFlow has been limited to implementing highly available
controllers [7]. This paper looks at HA from a different
perspective. We investigate how OpenFlow can support HA
policies of end applications.

Broadly, there are two areas of related work. The first
studies the use of OpenFlow to implement middlebox func-
tionality, like load balancers [5,13] or random host muta-
tions [6]. Load balancers are interesting because they dis-
tribute flow assignments across server replicas. Wang et
al. [13] focus on exploiting the wildcard prefix characteristics
of OpenFlow to minimize flow rules. RuleBricks focuses on
the construction of arbitrary HA policies, while similarly try-
ing to exploit OpenFlow’s wildcards (and precedence rules)
to minimize flow rules.

The second area looks at creating high level language
constructs to simplify the programmability (encoding) of
network policies. Examples of such languages include Fre-
netic [4], its extension, Pyretic [9], and Hierarchical Flow
Tables [3]. In particular, Pyretic, which focuses on the com-
posability of SDNs, offers a compelling approach to building
network policies. Unlike RuleBricks, it does not focus on of-
fering a simple approach to encode backup plans, especially
in existing forwarding policies.

6. CONCLUSION

Planning for failure is as important as planning for elastic-
ity in today’s network environments. RuleBricks addresses
the need for failure-planning in OpenFlow networks through
an expressive brick-based data structure. To date, we have
implemented the Chord assignment policy and begun to ex-
plore the implications of brick size and the reduce primitive.
As more flow assignment policies are implemented in Rule-
Bricks, we expect RuleBricks to: (1) expose the potential for
rule explosion through brick-size restrictions, and (2) offer a
“toolbox” of transformations from which optimal active rule
sets and backup plans can be automatically derived. Ulti-
mately, we hope RuleBricks leads to the use of increasingly
flexible and scalable flow assignment policies.
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