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{steven.tel,barthelemy.heyrman,dginhac}@u-bourgogne.fr

Abstract. High dynamic range (HDR) imaging is still a challenging task
in modern digital photography. Recent research proposes solutions that
provide high-quality acquisition but at the cost of a very large number
of operations and a slow inference time that prevent the implementa-
tion of these solutions on lightweight real-time systems. In this paper,
we propose CEN-HDR, a new computationally efficient neural network
by providing a novel architecture based on a light attention mechanism
and sub-pixel convolution operations for real-time HDR imaging. We
also provide an efficient training scheme by applying network compres-
sion using knowledge distillation. We performed extensive qualitative
and quantitative comparisons to show that our approach produces com-
petitive results in image quality while being faster than state-of-the-art
solutions, allowing it to be practically deployed under real-time con-
straints. Experimental results show our method obtains a score of 43.04
µ-PSNR on the Kalantari2017 dataset with a framerate of 33 FPS us-
ing a Macbook M1 NPU. The proposed network will be available at
https://github.com/steven-tel/CEN-HDR

Keywords: High Dynamic Range Imaging, Efficient computational pho-
tography

1 Introduction

In the last decades, applications based on computer vision have become increas-
ingly important in everyday life. Currently, many research works are conducted
to propose more reliable algorithms in areas such as object detection, action
recognition, or scene understanding. However, the accuracy of these algorithms
depends largely on the quality of the acquired images. Most standard cameras
are unable to faithfully reproduce the illuminations range of a natural scene,
as the limitations of their sensors generate a loss of structural or textural in-
formation in under-exposed and over-exposed regions of the acquired scene. To
tackle this challenge, sensors with a higher dynamic range (HDR) have been
proposed [17,26] to capture more intensity levels of the scene illumination, but
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these solutions are expensive, preventing high dynamic range acquisition from
being readily available.

Towards making HDR imaging practical and accessible, software solutions
were proposed, based on the emergence of deep learning in computer vision
applications. They acquire one Low Dynamic Range (LDR) image and try to
expends its dynamic range thanks to a generative adversarial network [12,37,8].
Although these methods produce images with a higher illumination range, they
have limitations in extending the dynamic of the input image to the dynamic
of the acquired scene. A more effective approach is to acquire multiple LDR
images with different exposure times and merge them into one final HDR image.
Traditional computer vision algorithms [3] allow the acquisition of good-quality
static scenes when there is no camera or object motion between images with
different exposure times. However, in a lot of use cases, images are captured in
a rapid sequence from a hand-held device resulting in inevitable misalignments
between low dynamic range shots. Therefore scenes with motions introduce new
challenges as ghost-like artifacts for large motion regions or loss of details in
occluded regions. Following recent advances in the field of deep learning, sev-
eral methods based on Convolutional Neural Network (CNN) were proposed to
spatially align input frames to a reference one before merging them into a final
HDR image.

State-of-the-art deep learning solutions for multi-frame merging HDR [34,13]
tend to be based on a previously proposed method[30] and add additional pro-
cessing to increase the accuracy of the HDR merging system. As a consequence,
the computational cost and execution time are significantly increased, preventing
these solutions to be used in lightweight systems and/or in real-time applications.
Then, the primary goal of HDR imaging software solutions, which was to make
HDR imaging more widely available compared to hardware solutions, is therefore
not being achieved at all. Therefore, in this paper, we propose a Computation-
ally Efficient neural Network for High Dynamic Range imaging (CEN-HDR).
CEN-HDR is based on an encoder-decoder neural network architecture for gen-
erating ghost-free HDR images from scenes with large foreground and camera
movements. Unlike previously published solutions, we decided to develop a new
approach keeping in mind the constraint of inference time and computational
cost.

1. We propose CEN-HDR a novel efficient convolutional neural network based
on a new attention mechanism and sub-pixel convolution that overcomes
ghost-like artifacts and occluded regions while keeping a low computational
cost, allowing our solution to be implemented in real-time on a lightweight
system.

2. We demonstrate the efficiency of network compression for the realization of
CEN-HDR by applying a knowledge distillation scheme.

3. We perform extensive experiments to determine the best trade-off between
accuracy and inference cost with the main objective to demonstrate the
relevance of CEN-HDR.
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2 Related Works

We briefly summarize existing HDR merging approaches into two categories:
deep learning-based architectures and efficient learning-based architectures. In
the first category, the proposed methods aim to achieve better quality in HDR
imaging without taking inference cost into account. Approaches belonging to
the second category seek to optimize the compromise between the quality of
the generated images and the computation cost. This leads to the use of new
operators in the proposed deep learning architectures.

Encoder

Encoder

Encoder

Attention
module

Attention
module

+ +

Element-wise
product Concatenation + SumConvolution PixelShuffle

Fig. 1. Architecture of the proposed CEN-HDR solution. The spatial size of input
features is divided by 2 at the encoding step. The attention module allows registering
non-reference features to the reference ones. The full spatial size is recovered thanks
to the pixel shuffle operation.

2.1 Deep learning based HDR merging

Using multiple input images for HDR generation leads to the need to align the
features of the LDR images to the reference image. The first common method for
feature registration is by computing the motion between inputs features using
an optical flow algorithm. Multiple studies [31,7,22] used Liu[11] optical flow
algorithm. In Kalantari et al.[7], the input images are aligned by selecting the
image with better pixels as a reference and computing the optical flow between
this reference and other input LDR images. Then, the warped images are fed to
a supervised convolutional neural network (CNN) to merge them into an HDR
image. However, since the optical flow algorithm initially assumes that the input
images have the same exposure time, trying to warp the different exposures with
occluded regions can result in artifacts in the final HDR image. To address this
issue, DeepHDR[28] proposes an image translation network able to hallucinate
information in the occluded regions without the need for optical flow. Moreover,
many solutions have been developed to correct the ghost effect introduced by
the misalignment of the input images. In AHDRNet [30] an attention module is
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proposed to emphasize the alignment of the input images to the reference image.
Input images are then merged using several dilated residual dense blocks. The
high performance of the AHDRNet network led it to be used as a base network
for other methods. For example, ADNet [13] follows the same main architecture
that AHDRNet but adds a Pyramidal alignment module based on deformable
convolution allowing a better representation of the extracted features but in the
counterpart of a larger number of operations.

2.2 Efficient learning-based HDR merging architectures

To our best knowledge, the first architecture which aims to be efficient was pro-
posed by Prabhakar et al.[21] by processing low-resolution images and upscaling
the result to the original full resolution thanks to a bilateral guided upsam-
pling module. Recently, the HDR community tends to focus more on efficient
HDR image generation[20] and no longer only aims at improving the image qual-
ity but also at significantly limiting the number of processing operations. This
results in efficient solutions such as GSANet [9] that propose efficient ways to
process gamma projections of input images with spatial and channel attention
blocks to increase image quality while limiting the number of parameters. Yu et
al.[36] introduce a multi-frequency lightweight encoding module to extract fea-
tures and a progressive dilated u-shape block for features merging. Moreover, the
different standard convolution operations are replaced by depth-wise separable
convolution operations firstly proposed in [2], they are composed of a depth-wise
convolution followed by a pointwise convolution which allows more efficient use
of model parameters. Another efficient method, proposed by Yan et al.[33] is
a lightweight network based on an u-net[23] like encoder-decoder architecture,
allowing for spatially reduced processed features. While these solutions focus on
the number of performed operations, their inference time still remains too long
to be considered as real-time solutions.

3 Proposed Method

We consider three LDR images Ii ∈ R3×H×W with their respective exposure
times ti as inputs. The generated HDR image is spatially aligned with the cen-
tral LDR frame I2 selected as the reference image. To make our solution more
robust to exposure difference between inputs, the respective projection of each
LDR input frame into the HDR domain is calculated using the gamma encoding
function described in Eq. 1, following previous works [13,18,30]:

.

Hi =
Iγi
ti
, γ = 2, 2 (1)

Where Hi ∈ R3×H×W is the gamma-projected input. Then, each input is con-
catenated with their respective gamma-projection to obtain Li ∈ R6×H×W :

Li = Ii ⊕Hi (2)
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where ⊕ represents the concatenation operation. Li will then be fed to our
proposed merging network whose architecture is detailed in Fig. 1.

3.1 Feature encoding

Using high-resolution images as inputs presents an additional challenge in the
design of a real-time HDR merging network. To solve such a problem, previous
works [29,33] propose to use a U-net[23] like architecture to reduce the spatial
size of the features processed by the merging network. However, a too large
reduction of the spatial dimensions causes the extraction of coarse features that
degrade the final result. So, we decide to limit the spatial reduction to 2 by using
an encoder block composed of 2 sequential convolutions as described in Eq. 3.

Fi = convE1
(convE2

(Li)) (3)

where Fi ∈ R32×H
2 ×W

2 is the features map extracted from the encoder for each
LDR input. convE1

and convE2
are 3x3-convolution layers extracting respectively

16 and 32 features map. The spatial size is divided by 2 setting a stride of 2 for
conv2.
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Fig. 2. Illustration of the attention module composed of 2 branches, respectively re-
sponsible for spatial attention and channel attention. A sigmoid activation function is
used to keep the value between 0 and 1.

3.2 Attention module

The final generated HDR image must be aligned with the reference image. To
address this requirement [30] demonstrates the effectiveness of using a spatial
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attention module after the encoding step. Since then, many spatial and channel
attention modules have been proposed in the literature which can be integrated
into networks to improve their performance. According to the inference cost
study done in Table 5, we propose the Spatial-Channel Reference Attention
Module (SCRAM) a slightly modified version of the Bottleneck Attention Module
(BAM) proposed in [19]. Indeed while BAM aims to generate a mask of its
input feature maps, in our case we want to generate attention maps from the
concatenation of reference and non-reference features, these attention maps are
then applied to non-reference features only resulting in a reduction of the number
of feature maps in the proposed attention module. Moreover, batch normalization
is not applied in SCRAM. The detailed structure of SCRAM is illustrated in
Fig. 2.

The non-reference features Fi̸=2 are concatenated with the features of the
reference image:

Xi = Fi ⊕ F2=ref , i ̸= 2 (4)

where Xi ∈ R64×H
2 ×W

2 is the input of SCRAM and ⊕ is the concatenation
operator.

Following [19], SCRAM is composed of two branches respectively responsible
for the spatial and channel features alignment of the non-reference images to the
reference ones:

Ai = σ(s(Xi) + c(Xi)), i ̸= 2 (5)

where s is the spatial attention branch and c is the channel attention branch.
The sum of produced features by each branch passes through σ, a sigmoid acti-
vation function to keep the output values between 0 and 1.

Spatial attention: The objective of the spatial branch is to produce an atten-
tion map allowing to keep the most relevant information for the spatial alignment
of the non-reference images to the reference one. To limit the computation, we
first reduce the number of features map by 3 using a pointwise convolution. With
the objective to extract more global features while keeping the same computa-
tion, we then make the receptive field larger by employing 3 dilated convolutions
[35] layers with a factor of dilatation set to 2. The final attention map of size
(1, H,W ) is produced by using a pointwise convolution and then expanded across
the channel dimension to obtain AS ∈ R32×H×W .

Channel attention: This branch aims to perform a channel-wise feature re-
calibration. We first squeeze the spatial dimension by applying a global average
pooling which sums out the spatial information to obtain the features vector
of size (64, 1, 1). A multilayer perceptron with three hidden layers is then used
in purpose to estimate cross-channel attention. The last activation size is set
to 32 to fit the number of channels of the non-reference features Fi. Finally,
the resulting vector map is spatially expanded to obtain the final feature map
AC ∈ R32×H×W .
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The Attention features Ai are then used to weight the non-reference features
Fi:

F ′
i = Fi ⊗Ai, i ̸= 2 (6)

where ⊗ is the element-wise product and F ′
i is the aligned non-reference features.

For the reference features we set F ′
2 = F2.

3.3 Features merging

While most of the computation is usually done in the merging block [13,18,30],
we propose a novel efficient feature merging block that first focuses on merging
the non-references features. Each feature map F ′

i produced by the encoder goes
through a convolution layer:

Mi = convM1
(F ′

i ) (7)

Where convM1 is a 3x3-convolution producing Mi ∈ R64×H
2 ×W

2 . Then we focus
on merging the non-reference features maps by concatenating them and feeding
the result features in a convolution layer:

Mnon-ref = convM2
(M1 ⊕M3) (8)

where convM2 is a 3x3-convolution andMnon-ref ∈ R64×H
2 ×W

2 is the non-reference
merged features.

As we emphasize the reference features throughout all our network, here we
merge our reference features with the non-reference Mnon−ref only by adding
them together to limit the number of features map processed later:

M = convM4
(convM3

(M2 +Mnon−ref )) (9)

where convM3 and convM4 are 3x3-convolutions producing each 64 features map

and M ∈ R64×H
2 ×W

2 contains features from all LDR input images.

3.4 Features decoding

The role of the decoder is to produce the final HDR image from the features
produced by the merger block. At the encoding stage, we divided the spatial
dimensions by 2. While the original spatial size is usually recovered using bilinear
upsampling or transposed convolution[14] operation, we propose to use the pixel
shuffle operation first proposed in [25], it is presented as an efficient sub-pixel
convolution with a stride of 1/r where r is the upscale factor. In our case, we
set r = 2. As illustrated in Fig. 3, the pixel shuffle layer rearranges elements in
a tensor of shape (C × r2, H,W ) to a tensor of shape (C,H × r,W × r):

D = PixelShuffle(M) (10)

where D ∈ R16×H×W is the resulting upscaled features.
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pixel shuffle

Fig. 3. Illustration of the pixel rearrangement by the pixel shuffle layer for an upscale
factor set to r = 2 and an input shape of (4, 4, 4). In the proposed solution, the input
shape is (64, H

2
, W

2
), the produced output size is (16, H,W ).

The final HDR image is obtained by following the Eq 11.

HDR = σ(convD(D + S2)) (11)

where S2 is the reference features extracted by the first convolution layer of our
network convE1 to stabilize the training of our network. Finally, we generate the
final HDR image using a 3x3-convolution layer, followed by a Sigmoid activation
function.

4 Experimental Settings

4.1 Datasets

The CEN-HDR network has been trained using the dataset provided by [7] com-
posed of 74 training samples and 15 test samples. Each sample represents the
acquisition of a dynamic scene caused by large foreground or camera motions
and is composed of three input LDR images (with EV of -2.00, 0.00, +2.00 or
-3.00, 0.00, +3.00) and a reference HDR image aligned with the medium ex-
posure image. The network has also been separately trained and tested using
the dataset from the NTIRE[20] dataset, where the 3 LDR images are syntheti-
cally generated from the HDR images provided by [4]. The dataset is composed
of 1500 training samples, 60 validation samples, and 201 testing samples. The
ground-truth images for the testing sample are not provided.

4.2 Loss function

Following previous works [7,30], the images have been mapped from the linear
HDR domain to the LDR domain before evaluating the loss function. In order
to train the network, the tone-mapping function has to be differentiable around
zero, so, the µ-law function is defined as follows:

T (H) =
log(1 + µH)

log(1 + µ)
, µ = 5000 (12)
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Tonemapped prediction from our solutionLDR inputs LDR patches

Sen et al. Kalantari et al. DeepHDR AHDRNet HDR-GAN Our GT

Fig. 4. Qualitative comparison of the proposed CEN-HDR solution with other HDR
merging methods. The cropped patch demonstrates that the proposed efficient network
has equivalent capabilities to the state-of-the-art methods to correct the ghost effect
due to the large movement in the scene.

where H is the linear HDR image and µ the amount of compression.

To make an efficient network, a network compression method defined as
knowledge distillation proposed in [5] has been used. By using knowledge distil-
lation, we assume that the capacity of a large network is not fully exploited, so
the objective is to transfer the knowledge of this large teacher network to our
lighter network as described in the Eq. 13.

L = α× L(T, TGT ) + (1− α)× L(T, TTeacher) (13)

where L is the L1 loss function. T is the tone mapped prediction of our network,
TGT the tone mapped ground truth provided in the dataset and TTeacher the
tone mapped prediction of the large teacher network. we use the HDR-GAN [18]
model as the teacher. α is a trade-off parameter set to 0.2. Moreover, the method
proposed by [7] to produce the training dataset focuses mainly on foreground
motion. It does not allow the generation of reliable ground-truth images for
chaotic motions in the background, such as the movement of tree leaves due
to wind, which results in a ground truth image with blurred features that do
not reflect reality. This has the effect of producing a greater error when the
predicted image contains sharper features than in the ground truth image. Using
also a predicted image from a teacher model allows for dealing with this data
misalignment. The comparison of the performance obtained between training
done with knowledge distillation and without is made in Table. 1.
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4.3 Implementation details

The CEN-HDR network has been trained using cropped patches of size 256×256
pixels with a stride of 128 and evaluated on the full-resolution test images.
During training, random augmentations are applied on the cropped patch such
as horizontal symmetry and rotation of 90, 180, or 270 degrees. Training has
been done using the Adam optimizer with a batch size of 8. The learning rate
is initially set to 10−4, keep fixed for 80 epochs, and decreased by 0.8 every 20
epochs after. The training lasts for 500 epochs.

Runtime (s)

µ-
PS

N
R CEN-HDR (our)

HDR-GAN

AHDRNet

NHDRRNet

DeepHDR

Fidelity vs Runtime

Fig. 5. Comparison of the proposed CEN-HDR solution with other HDR merging
methods. The X-axis represents the mean runtime using the M1 NPU with an input
size of 1280x720 pixels. The Y-axis is the fidelity score on the test images from [7]
dataset. The best solutions tend to be in the upper left corner. The radius of circles
represents the number of operations, the smaller the better.

Table 1. Comparison of the proposed CEN-HDR architecture performances with and
without knowledge distillation. In the first case, the network is trained with the HDR
ground-truth proposed in [7]. In the second case, we also use the prediction of HDR-
GAN [18] as label (Eq. 13). In both cases, the network is trained for 500 epochs using
the l1 criterion.

Training method µ-PSNR PSNR µ-SSIM SSIM HDR-VDP2

w/o knowledge distillation 40.8983 40.0298 0.9772 0.9926 62.17
with knowledge distillation 43.0470 40.5335 0.9908 0.9956 64.34
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5 Experimental Results

Table 2. Quantitative comparison with lightweight state-of-the-art methods on the
Kalantari2017[7] test samples. PSNR and SSIM are calculated in the linear domain
while µ-PSNR and µ-SSIM are calculated after µ-law tone mapping (Eq. 12). For
compared methods, the results are from [18]. PU-PSNR and PU-SSIM are calculated
applying the encoding function proposed in [16].

Method µ-PSNR PU-PSNR PSNR µ-SSIM PU-SSIM SSIM HDR-VDP2

Sen et al.[24] 40.80 32.47 38.11 0.9808 0.9775 0.9721 59.38
Hu et al.[6] 35.79 − 30.76 0.9717 − 0.9503 57.05
Kalantari et al.[7] 42.67 33.82 41.23 0.9888 0.9832 0.9846 65.05
DeepHDR[28] 41.65 31.36 40.88 0.9860 0.9815 0.9858 64.90
NHDRRNet[32] 42.41 − − 0.9887 − − 61.21
AHDRNet[30] 43.61 33.94 41.03 0.9900 0.9855 0.9702 64.61
HDRGAN[18] 43.92 34.04 41.57 0.9905 0.9851 0.9865 65.45
CEN-HDR(our) 43.05 33.23 40.53 0.9908 0.9821 0.9856 64.34

5.1 Fidelity performance

In Table 2 and Fig. 4, the proposed CEN-HDR solution is compared against
seven lightweight state-of-the-art methods: [24] and [6] are based on input patch
registration methods. [7] is based on a sequential CNN, the inputs need first to be
aligned thanks to an optical flow algorithm. For [28], the background of each LDR
input is aligned by homography before being fed to an encoder-decoder-based
CNN. [32] proposes an encoder-decoder architecture with a non-local attention
module. [30] is a CNN based on an attention block for features registration and
on multiple dilated residual dense blocks for merging. [18] is the first GAN-based
approach for HDR merging with a deep supervised HDR method. Quantitative
evaluation is done using objective metrics. The standard peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) are computed both directly in the
linear domain and after tone mapping by applying the µ-law function (Eq. 12).
The HDR-VDP2[15] metric predicts the quality degradation with the respect to
the reference image. We set the diagonal display size to 24 inches and the viewing
distance to 0.5 meter. In addition, PU-PSNR and PU-SSIM are calculated by
applying the encoding function proposed in [16] with a peak luminance set to
4000.

In Fig. 6, we present the results for 3 test scenes of the NTIRE[20] dataset.
While the network can produce images with a high dynamic range, we notice
that the high sensor noise present in the input images is not fully corrected in
the dark areas of the output HDR images. Moreover, the motion blur introduced
in the dataset produces less sharp characteristics in the output image.
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In Table 6 we study the effect of the attention module on the performance
of proposed HDR deghosting architecture. SCRAM-C and SCRAM-S respec-
tively correspond to the SCRAM module composed only of the channel atten-
tion branch and the spatial attention branch. The proposed SCRAM allows to
achieve a similar quality as the spatial attention module proposed in AHDR-
Net[28], while Table 5 shows that the inference cost of SCRAM is lower.

5.2 Efficiency comparison

As we want to propose an efficient HDR generation method, in Table 3 we
compare the computation cost and the inference time of our network with state-
of-the-art HDR networks that achieve similar performance on quality metrics.

The number of operations and parameters are measured using the script
provided by the NTIRE[20] challenge. To evaluate runtimes, all the compared
networks are executed on the Neural Processing Unit (NPU) of a MacBook
Pro (2021) powered with an M1 chip. The time shown is the average for 500
inference runs after a warm-up of 50 runs. The input size is set to 1280 × 720
pixels. The gamma-projection of LDR inputs (Eq. 1) and the tone mapping of
the HDR output are included in the inference time measurement. Note that the
background alignment of inputs frame using homography for [28] is not included.

Table 3. Inference cost comparison of the proposed CEN-HDR solution against state-
of-the-art lightweight deep learning-based methods. The number of operations and
parameters are measured using the script provided by the NTIRE[20] challenge. To
measure the inference time, all the compared networks are executed on an M1 NPU.
The input size is set to 1280× 720 pixels.

Method Num. of params. Num. of op. (GMAccs) Runtime(s) FPS

DeepHDR[28] 14618755 843.16 0.1075 9.30
AHDRNet[30] 1441283 1334.95 0.4571 2.18
NHDRRNet[32] 7672649 166.11 0.0431 23.20
HDR-GAN[18] 2631011 479.78 0.2414 4.14
CEN-HDR(our) 282883 78.36 0.0277 36.38

Table 4 compares the number of parameters and operations of the proposed
CEN-HDR solution with recent efficient methods [9,33,36]. The input size is set
to 1900 × 1060 pixels corresponding to the size of the inputs from the dataset
proposed by [20]. For compared methods [9,33,36] the measurements are provided
by the NTIRE[20] challenge. We could not compare the inference time of the
CEN-HDR solution with these three architectures as they were recently proposed
and their implementation is not yet available.

Fig. 5 compares the trade-off between fidelity to the ground truth label and
runtime of the proposed CEN-HDR solution with other HDR merging methods.
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The X-axis represents the mean runtime using an M1 NPU with an input size
of 1280x720 pixels. The Y-axis is the fidelity score on the test images from [7]
dataset. The best solutions tend to be in the upper left corner. The radius of
circles represents the number of operations. Our solution is shown as the best
solution for real-time HDR merging with a high-fidelity score.

Table 4. Inference cost comparison of the proposed CEN-HDR solution versus recent
efficient merging networks. The number of operations and parameters for [9,33,36] and
our solution are computed following the method described in [20].The input size is set
to 1900× 1060 pixels.

Method Num. of params. Num. of op. (GMAccs)

GSANet[9] 80650 199.39
Yan et al.[33] 18899000 156.12
Yu et al.[36] 1013250 199.88
CEN-HDR(our) 282883 128.78

Table 5. Inference cost comparison of attention modules. Spatial and Channel atten-
tion modules are studied by feeding a tensor of size (1, H

4
, W

4
) corresponding to the

concatenation of the reference and non-reference tensors after the encoding step.

Method Attention type params. GMAccs Runtime(s)
Spatial Channel

AHDRNet attention [30] ✓ 55392 20.772 0.0085
EPSANet[38] ✓ 42560 15.768 0.0111
SK attention [10] ✓ 125984 43.104 0.0155
Double attention[1] ✓ ✓ 33216 12.456 0.0101
CBAM[27] ✓ ✓ 22689 7.525 0.0734
BAM[19] ✓ ✓ 17348 5.008 0.0060

6 Conclusions

In this paper, we propose CEN-HDR, a novel computationally efficient HDR
merging network able to correct the ghost effect caused by large object motions
in the scene and camera motion. The proposed lightweight network architec-
ture effectively succeeds in generating real-time HDR images with a dynamic
range close to that of the original scene. By integrating the knowledge distilla-
tion methods in our training scheme, we demonstrate that the majority of the
representation capabilities of a large HDR merging network can be transferred
into a lighter network, opening the door to real-time HDR embedded systems.



14 S. Tel et al.

Table 6. Effect of the attention module on the performance of proposed HDR deghost-
ing network. SCRAM-C and SCRAM-S respectively correspond to the SCRAM module
composed only of the channel attention branch and the spatial attention branch.

Method µ-PSNR PSNR µ-SSIM SSIM

Without attention module 42.12 39.95 0.9850 0.9823
AHDRNet[30] attention module 42.94 40.49 0.9903 0.9852
SCRAM-C 42.32 40.14 0.9854 0.9829
SCRAM-S 42.89 40.41 0.9884 0.9835
SCRAM 43.05 40.53 0.9908 0.9856

LDR inputs Tonemapped prediction from our solution LDR patches

Fig. 6. Qualitative results of the proposed CEN-HDR solution on samples from the
NTIRE[20] challenge dataset. The ground truth images are not provided. We notice
that the high sensor noise present in the input images is not fully corrected in the dark
areas of the output HDR images. Moreover, the motion blur introduced in the dataset
produces less sharp characteristics in the output image.
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