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Summary

In modern statistical applications, the dimension of covariates can be much larger than the sample 

size. In the context of linear models, correlation screening (Fan and Lv, 2008) has been shown to 

reduce the dimension of such data effectively while achieving the sure screening property, i.e., all 

of the active variables can be retained with high probability. However, screening based on the 

Pearson correlation does not perform well when applied to contaminated covariates and/or 

censored outcomes. In this paper, we study censored rank independence screening of high-

dimensional survival data. The proposed method is robust to predictors that contain outliers, works 

for a general class of survival models, and enjoys the sure screening property. Simulations and an 

analysis of real data demonstrate that the proposed method performs competitively on survival 

data sets of moderate size and high-dimensional predictors, even when these are contaminated.
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1. Introduction

Our study was motivated by a breast cancer data (van Houwelingen et al., 2006) that 

contains expression profiles of 24885 candidate genes for 295 patients with breast cancer. 

The primary interest was to find genes that are predictive for the overall survival time of 

breast cancer patients. In addition to their dimensionality being large, some predictors are 

not normally distributed and contain outliers; see the Supplementary Material. These 

© 2007 Biometrika Trust

NIH Public Access
Author Manuscript
Biometrika. Author manuscript; available in PMC 2015 February 05.

Published in final edited form as:
Biometrika. 2014 ; 101(4): 799–814. doi:10.1093/biomet/asu047.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



phenomena are common in microarray data. High dimensionality and the existence of 

outliers make variable selection for censored survival data challenging.

There are numerous studies in the literature regarding variable selection for regression 

problems with and without censoring. Recently, many studies have focused on penalized 

methods, such as the lasso (Tibshirani, 1996), the smoothly clipped absolute deviation (Fan 

& Li, 2001), the Dantzig selector (Candes & Tao, 2007), and their variants. These methods 

have been thoroughly studied for variable selection with high-dimensional data (e.g., Bickel 

et al., 2009; Meinshausen & Yu, 2009; van de Geer, 2008). Studies of variable selection for 

survival outcomes include penalized partial likelihood (Fan & Li, 2002; Tibshirani, 1997; 

Zhang & Lu, 2007), penalized estimating equations (Johnson, 2008; Johnson et al., 2008), 

and other approaches that can be used for simultaneous variable selection and estimation. 

Generally, the associated optimization problems may be solved quickly for moderate to 

large p, such as p being hundreds or thousands. However, for very large p, such as is 

encountered in microarray data, these methods remain computationally demanding.

A computationally simple method for very high-dimensional data that can work well in 

practice is sure independence screening, which was demonstrated in the classical regression 

context in Fan & Lv (2008). In this method, the outcome variable is regressed on each 

covariate separately. Sure independence screening recruits the features that have the best 

marginal utility. In the context of least-squares regression for a linear model, this 

corresponds to the largest marginal absolute Pearson correlation between the response and 

the predictor. Fan & Lv (2008) showed that this method has a sure screening property: with 

probability very close to 1, the method can retain all of the important features in the model. 

It can also be derived from an empirical likelihood point of view (Hall et al., 2009). 

Correlation screening is a crude yet effective way to decrease the dimensionality of data. 

However, the Pearson correlation might not work well for censored survival data because it 

cannot be estimated reliably, especially when the censoring rate is high. In addition, its 

performance can be ruined by outliers in predictors because correlation is not a robust 

measure for association. Such outliers cause trouble for theoretical studies of screening 

methods, most of which require tail probability conditions for the covariates.

Variable screening methods for high-dimensional survival data are mostly based on the 

partial-likelihood of the Cox model. For example, Tibshirani (2009) used a lasso 

penalization approach for pre-screening. Zhao & Li (2012) proposed a screening method 

based on standardized marginal maximum partial likelihood estimators. However, in 

practice, the true models often remain unknown, and it is unclear if these methods will work 

well under model misspecification. Gorst-Rasmussen & Scheike (2013) proposed a model-

free screening statistic: the feature aberration at survival times. For each covariate, this new 

statistic is equivalent to the numerator of the marginal log-rank test. These screening 

methods might be influenced by outliers in predictors.

In this paper, we propose a censored rank independence screening method for high-

dimensional survival data. The rank statistic we consider can be viewed as an inverse 

probability-of-censoring weighted Kendall’s τ (Kendall, 1962). Our proposed method has 

several advantages. First, it is robust against the existence of outliers. This robustness is 
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inherited from Kendall’s τ coefficient (Sen, 1968). Second, it is a non model-based method, 

so it works for a wide class of survival models. In contrast to Pearson’s correlation, 

Kendall’s τ is invariant under monotonic transformations of responses and predictors. This 

invariance allows our method to discover any nonlinear relationships between the response 

and predictors. Third, the proposed method has technical improvements over some other 

high-dimensional methods, as the proposed screening utility is a U-statistic with a bounded 

kernel function, which enables us to obtain the sure screening property without requiring tail 

probability conditions.

2. Censored Rank Independence Screening

Let T denote the event time of interest, C denote the censoring time, and X = (X(1), …, X(p))′ 

denote the p-dimensional vector of covariates. Further, define V = min(T, C) and Δ = I(T ≤ 

C). where I(·) denotes the indicator function. The observed data are independent and 

identically distributed copies of W = (X, V, Δ) and are denoted by Wi = (Xi, Vi, Δi) for i = 1, 

…, n, where Xi = (X1i, …, Xpi)′. Throughout the paper, it is assumed that the censoring time, 

C, is independent of the event time, T, and the covariates, X. Let  = {1, …, p} and Xℬ = 

{X(j) : j ∈ ℬ} for a set ℬ ⊂ . Let ℳ⋆ denote the index set of the active variables:

Our goal is to select the set of active variables, Xℳ⋆, where ℳ⋆ ⊂ .

We consider the following inverse probability-of-censoring weighted marginal rank 

correlation utility,

where Ŝ(·) is the Kaplan–Meier estimator of S(t) = pr(C ≥ t). We define 0/0 = 0 to make τ̂k 

well-defined. For a prespecified γn, we select the set

as active variables. In this way, the dimension of the covariates used in the model can be 

reduced to a value much smaller than n.

Let τk = pr(Xki > Xkj, Ti > Tj) − 1/4. It can be shown that

and it follows that τ̂k provides a consistent estimate of τk. Without assuming any particular 

model structure, such as the proportional hazards model, the set selected by the proposed 
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censored rank independence screening comprises the variables that have strong marginal 

rank correlation with the failure time. In the next section we show that the proposed method 

enjoys the sure screening property under general conditions.

3. Sure Screening Property

Let {Ci, Vi, Xki} (i = 1, 2) be independent and identically distributed copies of {C, V, X(k)}, 

for k = 1, …, p. The following conditions are required:

A. there exists a ν > 0 such that pr(C = ν) > 0 and pr(C > ν) = 0;

B. mink∈ℳ⋆ |pr(Xk1 > Xk2, T1 > T2) − 1/4| ≥ c0n−κ for some 0 < κ < 1/2 and c0 > 0.

Condition A, adopted from Peng & Fine (2009), is a technical condition that simplifies the 

derivation of asymptotic properties. Because Condition A is satisfied in many clinical 

settings, it is widely used in the literature. Condition B is a key assumption to ensure the 

sure screening property, even without assuming specific model forms. This indicates that to 

ensure the sure screening property, the minimal marginal rank correlation between the active 

variables and the response variable should exceed a certain threshold.

Theorem 1. Under Condition A, for any positive constants c5 ≤ c6, when 

, 

there exist constants c1, c2, and c4 such that

where ‖ · ‖∞ is the L∞ norm, and D is a constant introduced in Lemma 1 of the Appendix. 

Moreover, when Condition B holds, taking γn = c7n−κ with c7 ≤ c0/2 leads to

where s is the number of variables in ℳ⋆.

The first result of Theorem 1 leads to the conditions whereby the sure screening property of 

our method is ensured. Specifically, as n goes to infinity, the maximum dimensionality is p 

= o{exp(n1−2κ)}, for κ ∈ (0, 1/2). This limit is of the same order as that obtained in Fan and 

Lv (2008) for correlation learning in the linear model set-up, and it is stronger than the result 

obtained in Fan et al. (2010). Because no tail probability conditions for covariates are 

needed, the conditions for the sure screening property are more relaxed than those in Fan & 

Lv (2008) and Fan et al. (2010). Therefore, our method generally allows heavy tailed 

covariates. Moreover, the method is robust to model misspecification because no model 

assumptions are required for the sure screening property to hold. In the next section, we 

apply the proposed method to a general class of transformation models, under which a set of 

sufficient conditions for showing Condition B will be provided and the size of the set ℳ̂ can 

be controlled.
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The threshold, γn, controls how many covariates pass screening. To ensure the sure 

screening property, γn can be taken as any value that is smaller than the minimum signal, 

provided the minimum signal is distinguishable from the estimation noise. Model selection 

consistency, i.e., pr(ℳ̂ = ℳ⋆) = 1 − o(1), can be achieved if there is a gap between signal 

variables and noise variables. In our case, a sufficient condition for model selection 

consistency is that Xℳ⋆ and  are independent. Then

4. Selection of the important set

In applications, it is common practice to select a prefixed number of top-ranked variables for 

follow-up study. The prefixed number may reflect researchers’ prior knowledge of the 

number of susceptible predictors, or budget limitations (Kuo & Zaykin, 2011; Skol et al., 

2006). Another commonly used procedure is to set the size of M̂ to a number less than the 

sample size, so that follow-up regression analysis can be performed in a p < n scenario (Fan 

and Lv, 2008). Data-driven procedures for selecting the size of the important set based on 

screening statistics are appealing but relatively limited. Zhao and Li (2012) proposed a 

principled selection method based on controlling false positive rate, but it can be 

conservative for screening purposes because controlling the false positive rate at a low level 

can lead to large false negative error.

We propose to estimate the size of the important set using a technique developed in the 

multiple testing literature. Specifically, consider the hypotheses H0k : τk = 0 and Hak : τk ≠ 0 

(k = 1, …, p). Under H0k, we can show that n1/2τ̂
k converges in distribution to a mean-zero 

normal random variable, and its asymptotic variance can be consistently estimated using U-

statistic techniques similar to those studied in Fine et al. (1998). Let  denote the estimated 

asymptotic variance of τ̂
k. Then, the p-value for testing H0k can be computed as qk = 2{1 − 

Φ(|τ̂k|/σ̂
k)}, where Φ(·) is the standard normal cumulative distribution function. Order the p-

values as q(1) ≤ ⋯ ≤ q(p). Let | | denote the size of a set . The proportion of true signals 

is π = |ℳ*|/p. For a large number of independently tested hypotheses, Meinshausen et al. 

(2006) showed that π can be consistently estimated by

(1)

However, for general dependent test statistics, such as our proposed censored rank screening 

statistics τ̂k’s, the consistency of π̂ is usually unclear. In this paper, we use π̂ as an estimator 

of π and set |ℳ̂| = π̂p. We study the empirical performance of this estimator in Section 6.

5. Application to a general class of transformation models

Although the sure screening property of our method does not depend on the specific 

modeling form, the active set, ℳ⋆, is not easily specified without assuming a model 

structure. To benefit from aspects of both the model-based and the model-free approaches, it 

is helpful to consider a wide class of models that contains the underlying true model. Here, 
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we consider a general class of transformation models, under which the active set, ℳ⋆, can 

be easily specified, and the sure screening property will hold.

Specifically, the general class of transformation models is given by

(2)

where H(·) is an increasing transformation function, m(·) is monotone in each element of X, 

and ε is independent of X and has a continuous distribution function. Under model (2), the 

conditional survival function takes the form

(3)

where Sε(·) is the survival function of ε. This class of transformation models includes many 

popular survival models as special cases. For example, when H(·) is unknown, Sε(·) is 

specified, and m(X) = β′X, model (2) becomes the linear transformation model (Clayton & 

Cuzick, 1985). This model includes the proportional hazards and proportional odds models 

as special cases. When H is the log transformation, Sε(·) is unspecified, and m(X) = β′X, 

model (2) becomes the accelerated failure time model (Kalbfleisch & Prentice, 2002). Other 

examples of transformation models include the odds-rate, inverse Gaussian and log-normal 

families (Kosorok et al., 2004; Scharfstein et al., 1998).

For transformation models with m(X) = β′X, it is clear that ℳ⋆ = {j ∈  : βj ≠ 0}, where β = 

(β1, …, βp)′. In general, ℳ⋆ can be defined as the smallest subset of  such that m(·) is 

only a function of covariates in ℳ⋆, i.e., the transformation models can be equivalently 

written as H(T) = m(Xℳ⋆) + ε. Define sn = |ℳ⋆|, the number of active variables in ℳ⋆, and 

.

For k ∈ ℳ⋆, define mk(x) = E{m(x, Xℳ⋆/k)}, where the expectation is taken with respect to 

the joint distribution of covariates in ℳ⋆/k with X(k) fixed at x. Without loss of generality, 

X(k) is assumed to have mean 0 and variance 1. The following conditions are sufficient to 

show Condition B for a general class of transformation models.

C1 For any k ∈ ℳ⋆, the conditional density function of H(T1) − H(T2) − {mk(Xk1) − 

mk(Xk2)} given mk(Xk1) − mk(Xk2) is unimodal and symmetric around zero.

C2 For any k ∈ ℳ⋆, there exist positive constants σ1 and σ2 such that the variance 

of mk(Xk1) is uniformly bounded above by , and the conditional variance of 

H(T1) − H(T2) − {mk(Xk1) − mk(Xk2)} given mk(Xk1) − mk(Xk2) is uniformly 

bounded above by .

C3 For any k ∈ ℳ⋆, there exists a positive constant, d0, that is independent of p 

such that mink E{|mk(X(k)) − Emk(X(k))|} ≥ d0n−κ/2 for 0 < κ < 1/2.

Proposition 1. If Conditions C1–C3 hold, then Condition B holds for some c0 > 0.

As m(·) is monotone in each element of ℳ⋆, mk(x) is monotone in x. As a marginal 

projection of m(·) onto the univariate dimension of Xk, mk(x) is utilized as a parsimonious 

way to pass along the monotonicity from the joint model to the marginal model. As 
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technical conditions, C1 and C2 can be checked empirically. Condition C3 states that the 

least absolute deviation of mk(X(k)) in the active set, ℳ⋆, can serve as the measurement of 

detectable signals for transformation models.

Next, we show that the size of set ℳ̂ can be controlled for linear transformation models 

with m(X) = β′X. This result is similar in rationale to the result of Theorem 5 in Fan and 

Song (2010). The following condition, C4, is needed.

C4 For k ∈ ℳ⋆, the conditional density function of H(T1) − H(T2) − (Xk1 − 

Xk2)EX(k)Y given Xk1 − Xk2 is unimodal and symmetric around zero.

Theorem 2. Under Conditions A and C1–C4, when var{H(T)} = O(1), for γn = c7n−κ, there 

exist positive constants c1, c2, and c4 such that

where Σ is the covariance matrix of X and λmax(Σ) is its largest eigenvalue.

Taking the choice of γn as in Theorem 1, if the largest eigenvalue of the covariance matrix 

of X = O(nτ) is of polynomial order for some τ > 0, then the size of ℳ̂ is also of polynomial 

order O(n2κ+τ) according to Theorem 2. This indicates that the size of the selected set can 

indeed be effectively controlled.

6. Simulation Studies

We conducted simulations to evaluate the empirical performance of the proposed censored 

rank independence screening method. For comparison, we considered three alternative 

methods: feature aberration at survival times screening (Gorst-Rasmussen & Scheike, 2013), 

partial likelihood ratio screening, and correlation screening. For partial likelihood ratio 

screening, we fit a marginal Cox model for each covariate and constructed the 

corresponding partial likelihood ratio statistic versus the no covariates model. This method 

is asymptotically equivalent to the screening method proposed by Zhao & Li (2012). For 

correlation screening, we used uncensored data to compute the marginal correlation between 

event time and covariate using an inverse probability-of-censoring weighted method. This 

generalizes standard sure independence screening for linear regression to survival data.

The failure time, Ti, was generated from the class of linear transformation models

where H(t) = log{0.5(e2t − 1)}, and Xi is a p-dimensional vector of covariates. We set n = 

100, 300 and p = 5000, 10000. The covariates, Xi, were generated from a multivariate 

normal distribution with mean 0, variance 1, and a first order autoregressive structure, i.e., 

corr(Xij, Xik) = 0.5|j−k| (j, k = 1, …, p). We considered two scenarios for the true regression 

coefficients: Scenario 1,  and Scenario 2,
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Scenario 2 is more challenging than Scenario 1 because there are several active variables 

with relatively small effects. We considered three error distributions: the standard extreme 

value distribution, which corresponds to a proportional hazards model; the standard logistic 

distribution, which corresponds to a proportional odds model; and the standard normal 

distribution, which corresponds to a normal transformation model. The censoring time was 

generated from a uniform distribution on [0, c], where the constant, c, was chosen to achieve 

censoring proportions of 15% and 40%. For each setting, we conducted 100 simulation runs. 

The simulation results for normal covariates are given in the Supplementary Material. Based 

on the results, the selection performances of the proposed method and partial likelihood ratio 

screening were comparable for the Scenario 1 settings and for the 15% censoring rate setting 

in Scenario 2. The performance of partial likelihood ratio screening was slightly better than 

the proposed method for Scenario 2 when the censoring rate was high, i.e., 40%. Generally, 

correlation screening performed poorly relative to both the proposed method and partial 

likelihood ratio screening. Correlation screening became very poor for Scenario 2 when the 

censoring rate was high.

To study the performances when the covariates might be contaminated by outliers, we added 

outliers to the covariates. All other settings were unchanged. Specifically, with a probability 

of 0.1, each covariate was replaced by a random variable generated from a t distribution. 

Again, we conducted 100 simulation runs. For Scenario 1, we report the average number of 

active variables contained in the top 4, 10, 20, 30, 40, and 50 selected variables, denoted by 

true positive; the true number was 4. For Scenario 2, we report the corresponding number in 

the top 15, 30, 45, 60, 75, 90, 120, and 150 selected variables, and the true number was 15. 

The results for the proportional hazards model under Scenarios 1 and 2 are summarized in 

Figures 1 and 2, respectively. Results for the proportional odds model are similar, and are 

provided in the Supplementary Material.

Under all settings, the selection performance of the proposed method was very similar to 

that when the covariates did not contain outliers, so it is robust to outliers in covariates. In 

addition, the selection performance improved when the sample size increased and the 

censoring rate decreased, though the performances when p = 5000 and p = 10000 were 

similar. For most settings, the performance of the proposed method was superior to both 

partial likelihood ratio screening and the feature aberration at survival times statistic. 

However, these three methods had comparable performances when n = 100 and the 

censoring rate was 40% in Scenario 2. Generally, partial likelihood ratio screening and 

feature aberration at survival times screening had comparable performances. In addition, the 

censoring proportion had less effect on their performances than on the performance of the 

proposed method. This behavior is expected because the proposed method uses the inverse 

probability-of-censoring weighted technique to address censoring, which might lose some 

efficiency when the censoring proportion is high. As was the case for normal covariates, 

correlation screening had the poorest selection performance.
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Next, we examine the performance of the method proposed in Section 4 for selecting the 

number of important predictors. We considered n = 100 and 300, and p = 5000. The average 

numbers of selected predictors over 100 simulations are given in Table 1. The average 

numbers of selected predictors are much larger for Scenario 2 and censoring rate of 40%, 

which is expected because the signal is much weaker under Scenario 2 and the censoring 

rate is higher. In addition, with n = 300, the selected sets cover all the true signals in almost 

all the simulation runs for Scenario 1 under both models and censoring rates, while for 

Scenario 2, they cover almost half of the true signals on average. For smaller sample size of 

100, the average numbers of selected true signals decrease, and the magnitude of decrease is 

relatively large for 40% censoring rate and Scenario 2.

Although the independent censoring condition was imposed for theoretical development, it 

can be relaxed in practice. We conducted simulations using a censoring distribution that 

depended on covariates. Specifically, the censoring times were generated from an 

exponential distribution with mean c exp(X1 − X8), with c chosen to achieve censoring rates 

of 15% and 40%. All other settings were unchanged from the previous simulations. Here, we 

only considered the proportional hazards model under Scenario 2 with n = 100, 300 and p = 

5000. The simulation results are given in the Supplementary Material. Although the Kaplan–

Meier estimator is not consistent for the survival distribution of the censoring time, the 

proposed method continued to perform competitively in this limited simulation study. In 

addition, we conducted simulations to examine the performance of the proposed and 

competing methods under a censoring rate of 70%. The simulation results are given in the 

Supplementary Material. In summary, the proposed method showed comparable 

performance under the heavy censoring case. The performance of the proposed method 

became slightly worse than partial likelihood ratio screening and the feature aberration at 

survival times screening. This behavior is expected because the proposed method uses the 

inverse probability-of-censoring weighted technique to address censoring, which might lose 

some efficiency when the censoring proportion is high.

7. Application to breast cancer data

We applied our proposed rank independence screening method to the analysis of survival 

from a breast cancer study (van Houwelingen et al., 2006), with 295 female patients with 

primary invasive breast carcinoma. For each patient, the expressions of 24885 genes were 

profiled on cDNA arrays from all tumors. A set of 4919 candidate genes were selected after 

initial screening using the Rosetta error model (van’t Veer et al., 2002). The primary 

endpoint of interest was the overall survival time. Of the 295 patients, 216 had censored 

responses, giving a 73% censoring rate. A main goal of the study was to identify genes that 

are associated with the overall survival of breast cancer patients. As discussed in §1, gene 

expression profiles commonly contain outliers. For the breast cancer data, we identified 

potential outliers in the gene expressions. Specifically, for the jth gene of subject i, we 

calculated a modified z-statistic: zij = 0.6745|Xji − mj|/νj, where mj and νj are the median and 

median absolute deviation of the jth gene expression profiles over the 295 subjects. If zij > 

3.5, the data point was claimed to be an outlier. This criterion was suggested by Iglewicz & 

Hoaglin (1993) for outlier detection and has been widely used in the literature. Based on this 
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rule, of the 4919 genes, 3488 contained at least 1 outlier, 582 contained at least 10 outliers, 

and 58 contained at least 30 outliers.

To check the covariate-independent censoring assumption, we fit a marginal Cox 

proportional hazards model for each individual predictor. Out of 4919 genes, 368 genes have 

significant coefficients, with p-values less than 0.05. After Bonferroni correction, only one 

gene is significantly related to censoring times. For the 368 significant genes, we replaced 

the Kaplan–Meier estimator of the censoring survival function by the estimated conditional 

survival function from the fitted proportional hazards model and recalculated the 

corresponding screening statistics. We found that the rankings of the screening statistics are 

nearly unchanged. Therefore, in our data application, we used the Kaplan–Meier estimator 

for the censoring survival function.

We used the proposed method to analyze both the original data and the data with outliers 

removed. For comparison, we also include the selection results obtained using partial 

likelihood ratio screening and correlation screening. We used our method to estimate the 

number of important predictors based on the original data. The estimated size of the 

important set is 492. We report the symbols of the top 20 selected genes in Table 2. For the 

original data, none of the top 20 genes selected by correlation screening were selected by 

either partial likelihood ratio screening or the proposed method. However, several genes 

were selected by both partial likelihood ratio screening and the proposed method: 3 of the 

top 10 genes and 13 of the top 20 genes. For the data with outliers removed, only 1 of the 

top 20 genes selected by correlation screening was also selected by partial likelihood ratio 

screening. For each method, we compared the top 20 genes selected from the original data to 

the top 20 selected genes obtained from the data with outliers removed. The two sets of 

genes selected using partial likelihood ratio screening were completely different. However, 

the two sets selected by the proposed method had 18 genes in common, with a similar order. 

These results imply that partial likelihood ratio screening and the proposed method might 

give more reliable selection results than correlation screening; and the proposed method is 

robust to outliers in covariates, but partial likelihood ratio screening is not.

8. Discussion

In our method, censoring times are assumed to be independent of failure times and 

predictors, which may be too restrictive in some applications. This assumption can be 

relaxed to a certain extent. For example, as considered in He et al. (2013) for quantile-

adaptive variable screening, we may assume that Ti and Ci are conditionally independent 

given a single predictor. Then, the survival function, S(t), of censoring times can be replaced 

by the conditional survival function S(t | Xij) = pr(Ci ≥ t | Xij), which can be consistently 

estimated by the local Kaplan–Meier estimator (Gonzalez-Manteiga & Cadarso-Suarez, 

1994). Alternatively, we may build a semi-parametric survival model for censoring times, 

for example, a proportional hazards model with lasso selection of important predictors, and 

compute the model-based conditional survival function for censoring times. The sure 

screening property of the associated statistics needs to be further investigated.
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Appendix

Proof of the sure screening property

The following Lemmas are used to prove the sure screening property of τ̂k.

Lemma 1. (Bitouze et al., 1999, Theorem 1) Let  and  be independent 

sequences of independently identically distributed nonnegative random variables with 

distribution functions F and G, respectively. Let F̂n be the Kaplan–Meier estimator of the 

distribution function F. There exists a positive constant, D, such that for any positive 

constant λ,

Lemma 2. (Hoeffding, 1963) Let g = g(x1, …, xm) be a symmetric kernel of the U-statistic, 

U, with a ≤ h(x1, …, xm) ≤ b. For any t > 0 and m ≤ n, we have

Lemma 3. For any c > 0, when , where c1 = (1 − δ)2 { (2c + 1)1/2(c + 1)−1/2 − 1}2 

,

(A1)

Moreover, for any 0 < l < 1.12, when ,

(A2)

where .

Proof of Lemma 3. To show Lemma 3, we claim the following result, giving its proof at the 

end: for t ∈ (0, 21/2 − 1), |Ŝ−2(Vi) − S−2(Vi)| ≥ cS−2(Vi) implies |Ŝ(Vi) − S(Vi)| ≥ tS(Vi), where 
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c = {(t + 1)2 − 1}/{2 − (t + 1)2}. This claim further implies that ‖Ŝ − S‖∞ ≥ t‖S‖∞. 

Therefore,

(A3)

Let G(·) denote the cumulative distribution function of T, i.e., G(t) = pr(T ≤ t). By Condition 

A, 1 − δ < |1 − G(Vi)| < 1, for i = 1, …, n. Therefore, by Lemma 1, we have

(A4)

When , (A4) is further bounded by 2.5 

.

For 0 < c < 1, i.e., 0 < t < (3/2)1/2 − 1, because

from the above calculations, for ,

The desired result (A2) now follows from the union bound of probability and by setting l = 

5t.

We now show the result given at the beginning of the proof. Take A = Ŝ(Vi) and B = S(Vi). 

Let a = (t + 1)2 − 1. Therefore, c = 1/(1 − a) − 1. Because

we have A−2 − B−2 ≤ −{1/(1 − a) − 1}B−2, or ≥ {1/(1 − a) − 1}B−2. For t ∈ (0, 21/2 − 1), i.e., 

a ∈ (0, 1), we have 1 − 1/(1 + a) < 1/(1 − a) − 1. It follows that A−2 − B−2 ≤ −{1 − 1/(1 + 

a)}B−2, or ≥ {1/(1 − a) − 1}B−2, which is equivalent to |A − B| ≥ tB.
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Proof of Theorem 1. Rewrite τ̂k = 2{n(n − 1)}−1 ∑i<j g(Wi, Wj) − 1/4, where

is the symmetric kernel of τ̂k. Therefore, τ̂
k is a U-statistic.

Let Unf = 2{n(n − 1)}−1 ∑i<j f(Xi, Xj) denote the empirical function for U-statistics. After 

some algebra, we have τ̂k − τk = Ik1 + Ik2, where

and

We bound Ik1 and Ik2 piece by piece. In particular, Ik1 can be bounded from above as

(A5)

By the triangle inequality, (A5) can be further bounded above as
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To bound Ik11, recall that

By Condition A, we have

For any c3 > 0, by Lemma 2, there exist c3 and  such that

(A6)

By Lemma 3, letting c = 1 in (A1), when ,

(A7)

It follows from (A6) and (A7) that for any c3 > 0, when 

, there exist c1 and c4 such that

(A8)

Because |E{ΔjS(Vj)
−2I(Xki > Xkj, Vi > Vj)}| ≤ 1, it follows from (A2) that for any c5 > 0 and 

c5n−κ < 1.12, when , there exists c2 > 0 such that

(A9)

By the triangle inequality, it now follows from (A6), (A8), and (A9) that for any c3, c5 > 0, 

when 

, 

there exist c1, c2, and c4 such that

The first result follows by letting c6 = 2c3 + c5.

For the second part, note that on the event
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by Condition B, we have |τ̂k| ≥ c0n−κ/2, for all k ∈ ℳ⋆. Therefore, by the choice of νn, we 

have ℳ⋆ ⊂ ℳ̂
νn. The result now follows from a simple union bound:

This completes the proof.

Verification of Condition B for a general class of transformation models

Proof of Proposition 1. Recall that τk = pr(Xk1 > Xk2, T1 > T2) − 1/4. Next we will show that 

|τk| ≥ c0n−κ for some c0 > 0, if k ∈ ℳ⋆. For k ∈ ℳ⋆, we have

where FΔεk|Δmk
 (·) is the conditional cumulative distribution function of Δεk = H(T1) − H(T2) 

− {mk(Xk1) − mk(Xk2)} given Δmk = mk(Xk1) − mk(Xk2). Because mk(·) is a monotone 

function, mk(Xk2) − mk(Xk1) is either greater than or less than zero for all Xk1 > Xk2. This 

implies that 1 − FΔεk|Δmk
{mk(Xk2) − mk(Xk1)} is either greater or less than 1/2 due to 

Condition C1. Therefore, τk is either greater or less than zero for k ∈ ℳ⋆. In the following, 

we further establish the lower bound of |τk|.

Without loss of generality, assume mk(·) is monotone increasing. Note that τk can be 

equivalently written as

According to Corollary 3 in Sellke & Sellke (1997), for a random variable X with mean 

zero, variance σ2, and unimodal symmetric distribution, pr(|X| ≥ t) ≤ 31/2σ/(t + 31/2σ). By 

Condition C1, we have
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This expression leads to

for M > 0. By Chebyshev’s inequality and C2, the second term can be further bounded 

below as

Let . Then, M ≥ 31/2σ2 when n is large. We have τk ≥ c0n−κ, where 

. Similarly, if mk(·) is monotone decreasing, we can show that τk ≤ −c0n−κ. 

Therefore, |τk| ≥ c0n−κ for any k ∈ ℳ⋆. Condition B is then proved.

Proof of Theorem 2. To show Theorem 2, we note that for any c8 > 0, if |EX(k)Y| > c8n−κ, 

then |τk| > c0n−κ for some c0 > 0. The proof of this statement is similar to that in Proposition 

1, hence we omit the details.

Because var{H(T)} = O(1), we have that 

. 

Therefore, the number of {k : τk > c0n−κ} = {k : |EX(k)H(T)| > c8n−κ} = O{n2κλmax(Σ)}. 

Because the number of {k : |τ̂k| > 2c0n−κ} is no bigger than the number of {k : |τk| > c0n−κ} 

on the set, {max1≤k≤p |τ̂k − τk| ≤ c0n−κ}. By taking c8 = c7/2,

The conclusion follows from the tail probability in Theorem 1. This completes the proof.
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Fig. 1. 
Average numbers of active variables contained in the top 4, 10, 20, 30, 40, and 50 selected 

variables for the proportional hazards model under Scenario 1. Solid circles denote the 

results obtained using the proposed method; triangles denote feature aberration at survival 

times screening, squares denote partial likelihood ratio screening; and diamonds denote 

correlation screening. For each method, the upper line is for case of 15% censoring, and the 

lower line is for case of 40% censoring.
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Fig. 2. 
The average numbers of active variables contained in the top 15, 30, 45, 60, 75, 90, 120, and 

150 selected variables for the proportional hazards model under Scenario 2. Solid circles 

denote the results obtained using the proposed method; triangles denote feature aberration at 

survival times screening, squares denote partial likelihood ratio screening; and diamonds 

denote correlation screening. For each method, the upper line is for case of 15% censoring, 

and the lower line is for case of 40% censoring.
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