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Census and evaluation of p53 target genes
M Fischer1,2,3

The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and

is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53’s tumor

suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are

simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct

p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from

individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-

throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and

the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA

repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are

identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have

been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that

p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account

the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
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INTRODUCTION

The tumor suppressor p53 and its encoding genes are the most
studied protein and gene in literature, with a total of more than
80 000 entries in PubMed. p53 was mistakenly discovered almost
four decades ago as an oncogene that is overexpressed in cancer,
and has since become known as the most important tumor
suppressor, and ‘the guardian of the genome’.1,2 This is evidenced
by reports that TP53, the gene that encodes for p53, is the most
frequently mutated gene in cancer.3 p53 is activated in response
to stress signals—DNA damage, oncogene activation, ribosomal
stress and hypoxia4 —and leads to growth suppression by
inducing cell cycle arrest or cell death. The prevailing function
of the p53 tumor suppressor is the transcriptional control of target
genes that regulate numerous cellular processes, including cell
cycle and apoptosis.5,6 Typically, p53 binds to the target genes as
a tetramer, which comprises two dimers that each binds a
decameric half-site with the consensus sequence RRRCWWGYYY
(R = A/G, W = A/T, Y = C/T).7–10 The discovery of the first p53
target genes, including CDKN1A (p21, CIP1, WAF1),11,12 GADD45A13

and MDM2,14,15 inspired numerous researchers to identify addi-
tional genes that mediate the tumor suppressor function. Recent
genome-wide analyses have identified from one hundred16 up to
thousands17 of potential p53 target genes.
The aim of the present survey is to compile an updated list of

p53 target genes from individual gene analyses and high-
throughput studies that will serve as a resource, and to evaluate
the regulation of these genes based on the frequency of their
identification in independent studies. Results from a recent meta-
analysis of 20 genome-wide p53 gene expression profiles, and 15
p53 binding profiles, document that many p53 target genes are

regulated across cell types as well as treatments.18 Moreover, a
comparison of binding studies shows that functional p53 binding
is independent of cell type and treatment.19 In the present survey,
a p53 target gene is defined as a protein-coding gene that is
differentially regulated following p53 activation or inactivation,
and that is bound by p53 near the gene locus.

SURVEY OF 346 TARGET GENES DERIVED FROM 319

INDIVIDUAL GENE STUDIES

Similar to the discovery of the first p53 target genes, many
additional p53 targets have been identified in studies that focused
on one up to a few individual genes. The criterion of a target gene
that is bound as well as regulated by p53 is met by 346 genes
described in 319 such ‘individual gene studies’ (Supplementary
Table S1). Taking into consideration that some of these studies
investigated several target genes, and that some target genes
were reported in more than one study, a total of 399 gene-study
pairs were found (Supplementary Table S1). More than one study
on a target gene was included in the list if it provided information
on the p53-dependent regulation that added to or was different
from what was reported in the initial study. The 319 individual
studies were published between 1992 and 2016, with a maximum
of 26 studies published in 2006 (Figure 1a). Of the 346 genes,
246 were reported as activated by p53, 91 as repressed and 9 as
both activated and repressed (Figure 1b). The 319 studies (399
gene-study pairs) investigated 358 human genes, 47 mouse
genes, 5 rat genes and 1 bovine gene (Figure 1c). When a study
investigated gene regulation in multiple species, the human data
was focused.
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p53 most frequently binds in the promoter region
(5′-untranslated region (UTR) and upstream) of genes. Introns
(particularly intron 1) also frequently harbor p53 binding sites,
whereas p53 seldom binds to the coding region (Figure 1d).
Precise location of the p53 binding site has been reported for 266
of the 399 gene-study pairs. In general, the number of p53 binding
events decreases with increasing distance from the transcriptional
start site (TSS). Proximal p53 binding—that is, within 1 kb from the
TSS—occurs most frequently, whereas distal binding—at 410 kb
from the TSS—is rarely reported (Figure 1e). It is important to
note, however, that studies on individual genes are biased for
analyzing promoters. The most common technique used to
identify p53 binding is chromatin immunoprecipitation followed
by end point PCR (ChIP-epPCR), which was applied 208 times.
Electromobility shift assays (applied 152 times) and ChIP followed
by real-time PCR (ChIP-qPCR, applied 83 times) have also been
frequently used. Other techniques such as the McKay immuno-
blots (McKay IB, applied six times) and DNA affinity purifications
(applied three times) are rarely used (Figure 1f). Use of the ChIP
technique replaced use of electromobility shift assay over time,
but the outdated ChIP-epPCR has not yet been fully replaced by
ChIP-qPCR (Figure 1g).

SURVEY OF 3509 TARGET GENES DERIVED FROM 16 HIGH-

THROUGHPUT DATA SETS

In recent years, genome-wide analyses aimed at identifying p53
target genes have each identified shared candidates, as well as
those that are unique.16,18,20–30 In these analyses, candidate p53
target genes were uncovered by integrating p53-dependent gene
expression profiles with p53 binding profiles. As mentioned
above, genes that are regulated and bound by p53 are considered
to be candidate p53 target genes. Given that three studies
harbored two data sets each,20,22,26 16 data sets were extracted
from 13 genome-wide studies of p53 target genes,16,18,20–30

yielding a total of 3509 candidate p53 target genes in the 16 data
sets (Supplementary Table S2). From 12116 to 134126 candidate
p53 target genes were documented in the individual data sets.
Notably, the majority of genes (2261 out of 3509; 64.4%) was
identified exclusively in one data set (Figure 2a). Only two genes—
CDKN1A11,12 and RRM2B31—were identified in all 16 data sets.
This is particularly surprising, given that some data sets were
derived from the same combination of cell type and treatment
(HCT116 cells treated with 5-FU16,29 and MCF-7 cells treated with
Nutlin-3a21,25), and indicates that the individual data sets harbor
numerous false positives and false negatives. Table 1 displays the

Figure 1. Survey of 346 target genes derived from 319 individual gene studies. (a) The number of studies reporting individual p53 target
genes published in a particular year. (b) Genes were reported as activated, repressed or both activated and repressed by p53. (c) Experiments
were carried out in cells from human, mouse, rat or bovine. Some studies used cells from more than one species. (d) Binding of p53 is located
in different parts of the gene. (e) p53 binding sites are located in varying distances from the TSS. Some genes display multiple p53 binding
sites. (f) Various methods have been used to identify p53 binding sites. Some studies used more than one method. (g) The number of
publications that used a particular method to identify p53 binding compared with the publication year. Some studies used multiple methods.
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top 116 genes that are identified as p53-activated targets in at
least six data sets. In addition to CDKN1A and RRM2B, well-known
p53 target genes were identified in the majority of data
sets, including MDM2,14,15 GDF15,32 SUSD6 (TMPS, DRAGO,
KIAA0247),33,34 GADD45A,13 PLK3,35 BTG2,36 TIGAR (C12orf5),35,37

TNFRSF10B,38,39 PPM1D,40 BAX,41–43 AEN,44 PLK2,45 SESN1,46

FAS47–49 and KITLG50 (Supplementary Table S2). Well-known p53
target genes that did not meet the criteria of a published p53
target (this occurred usually because p53 gene binding was not
investigated; see above) included SFN (14-3-3 sigma),51 SESN2,52

TNFRSF10C39 and TNFRSF10D,39 and these genes were identified in
multiple data sets as well. Thus, the number of data sets that agree
on a gene being a p53 target represents a ranking of confidence,
which is supported by recent meta-analysis results.18 Genes that
were identified only in a small number of data sets are more likely
to be false positives.
When p53 target genes are grouped into those that are

activated by or repressed by p53, it is evident that the majority of
data sets exclusively identified target genes that are activated by
p53. In contrast, target genes that are repressed by p53 were
not commonly identified (Figures 2b and c). This finding is in
agreement with the current model that describes p53 solely as a
transcriptional activator, and not as repressor.53

TARGET GENE ACTIVATION BY P53

The p53 tumor suppressor binds target genes through p53
response elements (REs) that comprise two decameric half-sites
with the consensus sequence RRRCWWGYYY, separated by a
spacer of 0–13 bp. In addition, results from multiple studies
suggest that p53 can bind and transactivate target genes through
noncanonical binding sites, particularly through half-sites.22,54–56

A recent comparison of multiple genome-wide p53 binding
studies, however, showed that spacers and half-sites have no role
in functional p53 binding.19

Activation of p53 is induced by cell stress including DNA damage,
oncogene activation, ribosomal stress or hypoxia.4 DNA damage, for
example, initiates a series of p53 pulses that ultimately lead to target

gene activation.57 The p53 transcription factor uses two transacti-
vation domains to drive gene expression58 and the transactivation
of target genes requires cooperative interaction between the p53
molecules at DNA REs.23,59 Target genes were reported to be
activated by p53 with varying kinetics through stimulus- and
promoter-specific recruitment of transcription initiation compo-
nents and polymerase II.60–63 Genome-wide data, however, do not
support promoter-specific activities of p53, but instead suggest
unsophisticated p53 binding.19

P53 BINDING: LOCATION, LOCATION, LOCATION

How differences in the location of p53 binding, relative to the TSS of
a given gene, influence the gene’s regulation is not known. To
identify p53 target genes, the genome-wide studies have used
thresholds for p53 binding that range from 5 kb22 to 100 kb16

relative to the TSS, but the general consensus is that the number of
p53 binding events declines with increasing distance from the TSS.
Analysis of the 346 reported p53 target genes shows that

binding to most p53 target genes occurs within 1 kb of the
TSS (Figure 1e), which is in agreement with results from a previ-
ous smaller census of p53 target genes that reported a decline
in transactivation potential with distance from the TSS.5

This observation is further supported by the control of gene
transcription largely through proximal promoters.64 A recent
genome-wide meta-analysis also found that proximal p53 binding,
within 2.5 kb from the TSS, strongly correlates with transactivation
of p53 target genes.18 Of note, the meta-analysis data provides
evidence that distal p53 binding also correlates with target gene
activation, although to a lesser degree.18 And, long-distance
transactivation is reportedly mediated by the binding of p53 to
enhancers.30,65,66 Finally, gene downregulation through distal
enhancer interference by p53 binding has been reported for
mouse embryonic stem cells,17 but is not supported by data from
humans.18,19

The finding that p53 binding occurs at intronic sites (Figure 1d)
indicates that p53 can promote alternative transcription initiation,
which leads to the formation of transcripts that differ in the length

Figure 2. Survey of 3509 target genes derived from 16 high-throughput data sets. (a) The number of potential p53 targets is compared with
the number of data sets that commonly identify them. (b) The number of genes is displayed that is identified by an increasing number of data
sets as being directly activated by p53. (c) The number of genes is displayed that is identified by an increasing number of data sets as being
directly repressed by p53.
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of their 5′-UTR, or their first exon. In case of MDM2, for example,
p53 binding to the first intron leads to the formation of transcripts
that differ from the constitutionally expressed MDM2 isoform.67,68

Thus, alternate transcription initiation enables p53 to induce
transcripts that may differ in their function from the longest
isoforms.

TRANSCRIPTIONAL DOWNREGULATION BY P53

Numerous mechanisms have been proposed for mediating gene
downregulation in response to p53 activation69–72 (Figure 3).
In 1993, p53 was first reported to bind to coactivators, including
the TATA-box binding protein,73,74 the CCAAT-box binding factor
(NF-Y)75 and specificity protein 1 (Sp1) that binds to GC-boxes,76

and to interfere with their transactivator function. While many
additional coactivators are believed to be blocked by p53, NF-Y77

and Sp178,79 are the coactivators most commonly linked to p53-
dependent gene downregulation through a mechanism of p53
interference. Note, however, that interference of p53 with
coactivators is not supported by results of genome-wide
analyses:53 phylogenetically conserved TATA-boxes, CCAAT-
boxes and GC-boxes are not enriched among genes that are
downregulated in response to p53 activation.
The most commonly reported model for p53-dependent gene

downregulation involves the direct binding of p53 to the target
gene promoter (Supplementary Table S1). In these cases, p53

binds either through a consensus p53 RE,80,81 a head-to-tail
oriented p53 RE,82–84 a p53 RE with changed dinucleotide core85

or by piggy-backing on coactivators, such as NF-Y86 or Sp1.87,88

Reports of direct repression of many target genes by p53,
however, have been contradicted in the literature (Table 2). The
current model describes p53 solely as a transcriptional activator
and not as repressor,53 and is supported by multiple genome-wide
analyses.18,19,23,24,89 The survey presented here also shows little
conformity among potential p53 repressed targets (Figure 2c).
In 1997, the cyclin-dependent kinase (CDK) inhibitor p21

(CDKN1A) was initially documented to be necessary for p53-
dependent downregulation of the cell cycle genes CDK1 (Cdc2)
and Cyclin A2.90,91 Following these reports, numerous cell cycle
genes were found to be downregulated via the p53-p21
pathway.92–97 From cell cycle research, we know that CDKs are
crucial for inactivation of repressor complexes formed by the
pocket proteins RB, p107 and p130, and by the E2F transcription
factors. Consistent with this notion, p130 and E2F4 are recruited to
cell cycle gene promoters when p21 is activated by p53.98,99

RB, too, is important for p53-dependent downregulation of
multiple genes.100–103 The pocket proteins p107 and p130, together
with E2F4, are members of the multiprotein repressor complex
DREAM that binds cell cycle genes during quiescence.104–106

Further, the DREAM complex is stabilized and recruited to target
gene promoters when p21 is activated by p53.107–114 However,
how DREAM and RB coordinate their efforts to mediate p53-

Table 1. Top 116 genes identified as activated p53 targets in at least 6 out of 16 genome-wide data sets

Gene
symbol

Literature No. of genome-wide data
sets

Gene
symbol

Literature No. of genome-wide data
sets

Gene
symbol

Literature No. of genome-wide data
sets

CDKN1A 11,12 16 HSPA4L 9 PLCL2 7
RRM2B 31 16 ISCU 54 9 PRKAB1 35,201 7
MDM2 14,15 15 PHLDA3 233 9 PTP4A1 234 7
GDF15 32 14 SERPINB5 235 9 SPATA18 236 7
SUSD6 33,34 14 SLC12A4 9 TGFA 161 7
BTG2 36 13 TRAF4 179 9 TLR3 237 7
DDB2 165 13 TRIM22 223 9 ZNF219 7
GADD45A 13 13 CCDC90B 8 ZNF337 7
PLK3 35 13 CES2 238 8 ZNF79 160 7
TIGAR 35,37 13 DYRK3 8 ARHGEF3 6
RPS27L 239,240 12 FAM13C 8 CD82 241 6
TNFRSF10B 38,39 12 FAM198B 8 CDIP1 242 6
TRIAP1 189 12 FAM212B 8 CERS5 6
ZMAT3 243 12 KITLG 50 8 CSF1 244 6
BAX 41–43 11 NADSYN1 8 DUSP14 6
BLOC1S2 11 NTPCR 8 EPS8L2 6
PGF 160 11 ORAI3 8 FAM210B 6
POLH 170 11 SESN2 52 8 FUCA1 160,196 6
PPM1D 40 11 SLC30A1 8 GRHL3 6
PSTPIP2 11 TM7SF3 8 HHAT 6
SULF2 245 11 TMEM68 8 IER5 246 6
XPC 166 11 WDR63 8 IGDCC4 6
AEN 44 10 ZNF561 8 IKBIP 6
ANKRA2 10 ACER2 7 LAPTM5 6
FAS 47–49 10 ANXA4 7 MAST4 6
GPR87 247 10 APOBEC3C 7 MICALL1 6
NINJ1 160 10 ASCC3 7 PADI4 248 6
PLK2 45 10 ASTN2 7 PANK1 199,200 6
SERTAD1 10 ATF3 249 7 PMAIP1 182 6
SESN1 46 10 BBC3 181 7 PRDM1 250 6
TP53I3 251,252 10 CPE 7 RAP2B 253 6
TP53INP1 254 10 DCP1B 7 RNF19B 6
ABCA12 255 9 EDA2R 256 7 RRAD 257 6
CCNG1 219 9 ENC1 7 SAC3D1 6
CMBL 9 EPHA2 258 7 SYTL1 6
CYFIP2 259 9 FDXR 202 7 TNFRSF10D 39 6
DRAM1 209 9 FOSL1 7 TSPAN11 6
FBXO22 240 9 LIF 260 7 VWCE 6
FBXW7 159 9 PGPEP1 7
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dependent gene downregulation is not fully understood.
Genome-wide analyses show that most genes downregulated by
p53 are cell cycle genes115 and targets of the DREAM complex.18

Recent results from p21-knockout cells show that, in general, p21
is required for p53-dependent gene downregulation.18,116 Collec-
tively, these results indicate that p21 not only mediates p53-
dependent downregulation of cell cycle genes but also identifies
p21 as being part of most, if not all, pathways that mediate gene
downregulation by p53.
E2F7 is a p53 target gene117 and encodes a transcriptional

regulator of cell cycle genes,118 and its role in mediating
p53-dependent downregulation is unclear: Carvajal et al.117

reported that E2F7 and p21 are required for p53-dependent
downregulation of G1/S cell cycle genes; Schlereth et al.,59

however, found that E2F7 but not p21 was required for mediating
downregulation of G1/S genes, and Benson et al.119 revealed that
E2F7 likely is not involved in p53-mediated downregulation of cell
cycle genes. Notably, genome-wide data supports the possibility
that E2F7, in conjunction with DREAM and RB, downregulates
G1/S cell cycle genes in response to p53 activation.53

Several noncoding RNAs were reported to mediate p53-
dependent gene regulation—these include microRNAs120 and
long noncoding RNAs,121 such as TUG1,122,123 miR-34,124 lincRNA-
p21,125 PANDA126 and PINT.127 Nonetheless, results based on
different experimental approaches have limited consistency. For
example, results of experiments that used overexpression or
knockdown of miR-34 or lincRNA-p21124,125 barely overlapped with
those that used knockout mice.128,129 In the case of lincRNA-p21,
the low stability and low copy numbers found make it unlikely
that lincRNA-p21 directly regulates many target genes.129 Further-
more, many lincRNA-p21 target genes identified in mice125 are not

regulated by p53 in humans.53 Given that gene downregulation
by p53 is governed by p21 in general,18,116 it remains open for
future investigations how noncoding RNAs coordinate their efforts
with p21, to mediate gene downregulation by p53. One such
mechanism was suggested for lincRNA-p21, which supports p21
upregulation in response to p53 activation.129

EVALUATING REPRODUCIBILITY

Table 2 shows the contradictions and limited reproducibility found
in the literature on p53-dependently repressed genes. Individual
gene studies and genome-wide analyses report potential targets
that are directly repressed by p53, and that are likely to be false
positives (Supplementary Table S1 and Figure 2c). Reproducibility
issues, however, are not limited to reports on directly repressed
p53 target genes: of 242 protein-coding genes that are reportedly
directly activated by p53 (Supplementary Table S1), only 150
(62.0%) have been identified in at least one out of 16 genome-
wide data sets (Supplementary Table S2). These 16 genome-wide
data sets cover a broad range of cell types and treatments,
and recent findings indicate that p53 binds target genes
independent of cell type and treatment.19 However, 92 of the
genes that are reportedly directly activated p53 targets are not
supported by any of the 16 genome-wide data sets, including
BNIP3L,130 ESR1,131 FDFT1, FDPS, LDLR,132 PARK2,133 POMC,134

SHBG,135 Toll-like receptors 2, 4, 5, 8 and 10136 and ULK1 and
ULK2137 (Supplementary Table S2). The reason behind this lack of
reproducibility is unclear, but it points to a need for caution in
interpreting research findings that have not been reproduced
by independent approaches and by a number of investigators.
It is well known that research findings can have limited

Figure 3. Mechanisms of p53-mediated transcription control. (a) Mechanisms involving direct target gene activation by p53 and indirect
repression through p53-p21-DREAM/RB are supported by genome-wide data. (b) Mechanisms involving the sequestration of coactivators or
direct target gene repression by p53 are not supported by genome-wide data.
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reproducibility,138 and while some of these false findings are
caused by chance, many others may be the consequences of
prevailing biases.138 The survey of 319 studies on individual genes
together shows that p53 target gene research still relies on the
error-prone ChIP-epPCR methodology, which may promote false
findings (Figure 1g). Notably, the ChIP technique in general can
produce false findings. Transcription factors undergo fast turnover
at non-functional binding sites that can be fixated during ChIP
protocol, thereby leading to false-positive hits,139 and ChIP signals
vary in general relative to formaldehyde crosslinking time.140,141 In
addition, sometimes polyclonal antibody batches are used that do

not contain the same antibody. To predict functional sites that
lead to target gene activation, recent approaches now rely on
ranking p53 binding sites based on multiple genome-wide data
sets.18,19,56

Here, p53 target genes are ranked by the number of data sets
that report them as potential p53 target genes. The data sets
include 16 genome-wide data sets and one literature-based
data set, as described above (Supplementary Table S2). To be
considered as high-confidence p53 target gene, a protein-coding
gene was required to be identified as a p53-activated target in at
least three of the 17 data sets, which ensures identification by at
least two independent approaches. These criteria were met by 343
genes (Supplementary Table S3). Such an integrative approach
identifies target genes that may have been missed in some data
sets but have been identified in several others, and displays genes
that are identified only in a small number of data sets and have a
higher likelihood of being false positives.

FUNCTION OF HIGH-CONFIDENCE P53 TARGET GENES

To identify biological processes that are enriched among direct
p53 target genes, a gene ontology (GO) term enrichment analysis
was performed of the 343 genes that were considered as high-
confidence p53 targets. As expected, GO terms associated with
cell cycle arrest, apoptosis and metabolism, processes that are
central to the p53 response and tumor suppression, are highly
enriched for these target genes (Supplementary Table S4). Taken
together, high-confidence p53 target genes function in multiple
processes that include, but are not limited to, cell cycle arrest, DNA
repair, apoptosis, metabolism, autophagy, translation control and
feedback mechanisms (Figure 4).

Cell cycle arrest

P53 uses cell cycle checkpoints to induce G1/S142,143 and G2/M cell
cycle arrest.144 CDKN1A (p21, WAF1, CIP1) was among the first p53
target genes11,12 to be identified and is now recognized as an
encoder for a major cell cycle checkpoint control protein.145

Indeed, p21 is required for p53-mediated G1/S146–148 and also for
G2/M cell cycle arrest.149 P21 functions primarily by binding to and
inhibiting CDKs, and in addition, p21 halts the cell cycle by
blocking PCNA, which is required for DNA replication.150,151

Importantly, inhibition of CDKs leads to stabilization and activation
of RB, and of the RB-related DREAM complex. As for p21, RB is also
required for cell cycle arrest.100,152 Stabilization of the DREAM
complex and its recruitment to target gene promoters leads to
indirect p53-mediated downregulation of cell cycle genes such as
CDK1, Cyclin A and B, CDC25C, MYBL2 (B-MYB), PLK1 and hundreds
more, all of which are required for cell cycle progression.18,108,114

Taken together, p21 is sufficient to induce cell cycle arrest.153 The
p53 target genes BTG236,154,155 and GADD45A13,156 can also induce
G1/S and G2/M cell cycle arrest, respectively. SFN (14-3-3 sigma)
encodes for a protein that removes cell cycle proteins from the
nucleus and is also required for the G2/M arrest.51,157 FBXW7
ubiquitin ligase is a component of the SCF complex and mediates
degradation of several cell cycle proteins,158 and its β-isoform is
induced by p53.159 Notably, p53 also activates PGF,160 TGFA161 and
KITLG50 that encode for growth factors that can stimulate cell
proliferation.

DNA repair

Given that p53 is activated in response to DNA damage, it is not
surprising that several of its target genes encode for DNA repair
proteins.162,163 Although the p53-mediated DNA damage
response appears not to be part of p53’s function as tumor
suppressor,164 it does support cell viability. The p53 target genes
DDB2165 and XPC166 encode for proteins related to nucleotide
excision repair. RRM2B encodes for a ribonucleotide reductase that

Table 2. Genes reported as being directly repressed by p53, and

contradictory findings

Gene Reports of direct
repression

Reported contradictions

ABCB1 (MDR1) 82 Activated, not repressed261

Not bound or regulated by p5353

ANLN 262 Repression requires p107/p130263

BCL2 190,191 Not bound or regulated by p5353

BIRC5 (Survivin) 264–267 Not bound by p5392,107,268

Repression requires p2192,93,107

Repression requires p107/p130263

BNIP3 269 Not bound or regulated by p5353

CCNB1 270,271 Not bound by p5353,108

Repression requires
p2153,92,94,100,108

Repression requires p107/p130263

CCNB2 86 Repression requires p2195,101,109

Repression requires p107/p130263

CD44 83 Not bound by p5353

Not regulated by p5353,272

CDC20 273 Not bound by p5353

Repression requires p2193,96

Repression requires p107/p130263

CDC25B 274 Repression requires p2195

CDC25C 275,276 Not bound by p53107

Repression requires p2192,107

Repression requires p107/p130263

CDK1 (CDC2) 86,276 Not bound by p5353

Repression requires
p2153,90,92,94,98,100,101

Repression requires p107/p130263

CKS2 277 Repression requires p107/p130263

CRYZ 262,278 Not bound or regulated by p5353

ECT2 279 Repression requires p107/p130263

HSPA8 262,278 Not bound or regulated by p5353

ID2 280 Not bound or regulated by p5353

LASP1 281 Not bound or regulated by p5353

MAD1L1 278,282 Not bound by p5353

Repression requires p2193,102

Repression requires p107/p130263

ME1 80 Not bound or regulated by p5353

ME2 80 Not bound or regulated by p5353

ME3 80 Not bound or regulated by p5353

NEK2 283 Not bound by p5353

Repression requires p2153,93

PCNA 284 Activated, not repressed169,285

PLK1 286,287 Not bound by p53107

Repression requires p2197,107

Repression requires p107/p130263

POLD1 288 Not bound by p53108

Repression requires p2192,108

PRC1 289 Repression requires p2193

Repression requires p107/p130263

PTK2 (FAK) 290 Not bound or regulated by p5353

RAD51 173 Repression requires p2194

SCD 262 Repression requires p21291

TPT1 (TCTP) 84 Not bound or regulated by p5353
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fuels DNA repair by supplying precursors, and is targeted by p53.31

And, although PCNA is a crucial component of the replication fork
during the cell cycle, it also functions in DNA repair.167 Therefore,
the regulation of PCNA is cell cycle-dependent,168 and is activated
by p53.169 Through the activation of POLH, p53 specifically recruits
a DNA polymerase that can accurately replicate damaged
DNA.170,171

Many genes that encode DNA repair proteins are cell cycle-
regulated and are downregulated by p53 through the p53-p21-
DREAM pathway. Although several DNA repair genes, including
MSH2,172 RAD51173 and RECQL4,87 were thought to be direct p53
targets, it has become evident that they are indirectly repressed
through the DREAM complex.18,108,114 Also, genes encoding for
proteins of the Fanconi anemia DNA repair pathway are indirectly
downregulated by p53 through p21 and DREAM.174 Interestingly,
some cell cycle genes, including PCNA, POLH and AEN, are
targeted by both DREAM and p53: in these cases, the transcrip-
tional activator p53 opposes the repressive DREAM complex,
leading to target gene activation.18 The DNA repair genes
PMS2 and MLH1 were also believed to be p53-activated
targets,175 but meta-analysis data show this unlikely to be the
case18 (Supplementary Table S2).

Apoptosis

Apoptosis, both intrinsic and extrinsic, is induced via p53 target
genes.176,177 The extrinsic apoptosis signaling pathway is largely
controlled by the tumor necrosis factor (TNF) receptor family.
TNF receptors include the p53-induced targets FAS47–49 and
TNFRSF10A–D;38,39 these can be activated by external stimuli
such as binding with FASL or TNF-α, thereby leading to
caspase-dependent apoptosis.178 The gene that encodes for
the TNF receptor-associated protein 4 (TRAF4) is also a p53
target.179 Additional apoptosis-inducing transmembrane proteins

are encoded by the p53 targets PERP180 and SUSD6 (TMPS;
KIAA0247).33 On the other hand, the intrinsic apoptosis pathway is
regulated by the BCL-2 family of proteins, which control the
release of cytochrome c from the mitochondria. Several proapop-
totic BCL-2 family members, including BAX,41–43 BBC3 (PUMA)181

and PMAIP1 (NOXA),182 are activated by p53. When released from
the mitochondria, cytochrome c binds to APAF1 and procaspase 9
to form the apoptosome. APAF1 is activated by p53 too.183–185 The
p53 target gene AEN encodes for an apoptosis-enhancing
nuclease that further supports apoptosis through digestion of
double-stranded DNA.44 Apoptosis also can be activated by
ceramide,186 and p53 appears to directly upregulate the ceramide
synthase-encoding genes CERS5 (Table 1) and CERS6187 and to
induce ceramide production.188 Although many p53 target genes
encode for apoptosis-promoting proteins, the p53 target TRIAP1
encodes for an inhibitor of apoptosis.189 Additional BCL-2 family
members reported as p53 targets include BCL2190,191 and BID192

—

but these are not directly regulated by p53 according to
meta-analysis data18 (Supplementary Table S2). AIFM1 (AIF;
apoptosis-inducing factor), also proposed as a p53 target,193

appears not to be regulated by p53.

Metabolism

Target genes directly regulated by p53 participate in multiple
metabolic pathways.194,195 The TP53-induced glycolysis and
apoptosis regulator, encoded by p53 target gene TIGAR
(C12orf5), functions in glycolysis by degrading fructose-2,6-
bisphosphate, and thereby opposing the Warburg effect.37 The
carbohydrate fucose is degraded through a fucosidase that is
encoded by the p53 target FUCA1.196 GLS2 catalyzes the
hydrolysis of glutamine to glutamate and ammonia and is
encoded by a direct p53 target gene.197,198 PANK1 is a p53 target,
which encodes for a key regulatory enzyme in the biosynthesis of

Figure 4. p53 directly activates target genes that mediate various functions. Proteins encoded by p53 target genes function in multiple
processes that include, but are not limited to, cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, translation control and feedback
mechanisms.
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coenzyme A.199,200 PRKAB1 is also targeted by p53 and encodes for
AMP-activated protein kinase beta-1 subunit, which is involved in
phosphorylation and inactivation of acetyl-coenzyme A carbox-
ylase and β-hydroxy β-methylglutaryl-coenzyme A reductase, key
enzymes involved in regulating de novo biosynthesis of fatty acids
and cholesterol.201 The p53 target FDXR encodes a mitochondrial
flavoprotein that initiates electron transport for cytochromes P450,
which receive electrons from NADPH.202

Several additional genes, including SCO2,203 PARK2 (Parkin),133

LPIN1,204 CPT1C,205 SLC2A3 (GLUT3),206 SLC2A4 (GLUT4)207 and ME1,
ME2 and ME3,80 are involved in metabolism and are believed to be
directly regulated by p53. However, according to meta-analysis
data these genes are not regulated by p53 in humans18

(Supplementary Table S2).

Autophagy

Autophagy is another cellular program that is triggered by cell
stress and p53.195,208 The p53 target gene DRAM1 encodes a
lysosomal membrane protein that is required for the induction of
autophagy by p53.209 AMPK, which p53 activates by direct
activation of PRKAB1, blocks the mammalian target of rapamycin
(mTOR) pathway, and leads to autophagy.201,210 P53 can further
block mTOR activity through its direct target genes SESN1 and
SESN2.211 And, although ULK1 and ULK2, which encode
autophagy-activating kinases, were thought to be regulated by
p53,137 their regulation by p53 is not supported by meta-analysis
data18 (Supplementary Table S2).

Translation control

Protein biosynthesis and mRNA translation are both influenced by
p53. When cells undergo stress and p53 becomes active, mRNA
translation and protein biosynthesis is repressed, to inhibit cell
growth. Induction of p53 leads to downregulation of rRNA
genes212,213 and of genes that are required for import and export
of ribosomal proteins from the nucleus.214 In addition, p53 uses
two direct target genes, SESN1 and SESN2, to block mTOR and to
repress mRNA translation.211,215

Feedback regulation

Through activation of its target genes, p53 activates several
feedback loops, both positive and negative.216 The best known
feedback loop uses MDM2, a p53 target gene that encodes a
ubiquitin ligase, which mediates degradation of p53.14,15,217

MDM2 function is supported through cyclin G1, which activates
MDM2 through dephosphorylation218 and CCNG1 is a p53 target
itself.219 PPM1D (WIP1) is also a p53 target and encodes for a
phosphatase that confers a negative feedback loop through p53
dephosphorylation and cell cycle checkpoint abrogation.40,220,221

Members of the TRIM protein family, such as PML (TRIM19)222 and
TRIM22,223 are transcriptionally activated by p53 and have been
shown to alter the p53 response.224

Through p21, p53 is engaged in additional feedback loops. CDK
inhibition by p21 leads to the activation of RB and suppression of
activating E2Fs. E2F1 signals positive and negative feedback
to p53.225 E2F1 can induce ARF, which blocks MDM2-mediated
p53 degradation,226 and it can also induce SIRT1, which impairs
p53 function through deacetylation.227

Additional genes believed to be involved in feedback loops as
p53 targets include SIAH1,228 RCHY1 (Pirh2)229 and RFWD2
(COP1),230 but these are not regulated by p53 according to
meta-analysis data18 (Supplementary Table S2).

OUTLOOK

For a number of decades, the study of p53 led to increasingly
complex models of its function: ‘If genius is the ability to reduce

the complicated to the simple, then the study of p53 makes fools
of us all’.231 However, recent meta-analysis approaches that
enabled comparisons of multiple genome-wide data sets of p53
binding and gene regulation, have started to simplify our
understanding of p53 function:

● The transcription factor p53 itself is solely an activator of
transcription.53,232

● Gene downregulation by p53 is indirect and requires p21.18,116

● Functional p53 binding sites are independent of cell type and
treatment.19

● Most functional p53 binding sites are found in proximal
promoters18 (Figure 1e).

● Functional p53 binding sites consist of two decameric half-sites,
and likely do not contain spacers in between.19,56

● Noncanonical binding sites, including half-sites, appear to be
non-functional.19

● P53 mostly acts alone to activate target genes, and does not
depend on cofactors binding to the same promoter.19

● The number of true p53 target genes is limited, and likely does
not exceed a few hundred18 (Figure 2a and Supplementary
Tables S2 and S3).

Given recent advances in our understanding of p53 function,
one can envision that genome-wide data integration approaches
will answer additional questions and clarify further obscurities.
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