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Abstract

We present Census, a platform for building large-scale

distributed applications. Census provides a membership

service and a multicast mechanism. The membership ser-

vice provides every node with a consistent view of the sys-

tem membership, which may be global or partitioned into

location-based regions. Census distributes membership

updates with low overhead, propagates changes promptly,

and is resilient to both crashes and Byzantine failures. We

believe that Census is the first system to provide a consis-

tent membership abstraction at very large scale, greatly

simplifying the design of applications built atop large

deployments such as multi-site data centers.

Census builds on a novel multicast mechanism that is

closely integrated with the membership service. It orga-

nizes nodes into a reliable overlay composed of multiple

distribution trees, using network coordinates to minimize

latency. Unlike other multicast systems, it avoids the cost

of using distributed algorithms to construct and maintain

trees. Instead, each node independently produces the

same trees from the consistent membership view. Census

uses this multicast mechanism to distribute membership

updates, along with application-provided messages.

We evaluate the platform under simulation and on a

real-world deployment on PlanetLab. We find that it

imposes minimal bandwidth overhead, is able to react

quickly to node failures and changes in the system mem-

bership, and can scale to substantial size.

1 Introduction

Today’s increasingly large-scale distributed systems must

adapt to dynamic membership, providing efficient and

reliable service despite churn and failures. Such systems

typically incorporate or rely on some sort of membership

service, which provides the application with information

about the nodes in the system. The current shift toward

cloud computing and large multi-site data centers provides

further motivation for a system designed to manage node

membership at this large scale.

Many membership services exist, with varying seman-

tics. Some, such as those based on virtual synchrony, pro-

vide strict semantics, ensuring that each node sees a con-

sistent view of the system membership, but operate only at

small scales [3, 14, 37]. Because maintaining consistency

and global membership knowledge is often perceived as

prohibitively expensive, many recently proposed systems

provide weaker semantics. These systems provide greater

scalability, but make no guarantees about members having

consistent views [16, 17], and some provide only partial

views of system membership [36, 23, 32].

We argue that it is both feasible and useful to maintain

consistent views of system membership even in large-

scale distributed systems. We present Census, a new

platform for constructing such applications, consisting

of a membership management system and a novel multi-

cast mechanism. The membership management system

follows the virtual synchrony paradigm: the system di-

vides time into epochs, and all nodes in the same epoch

have identical views of system membership. This glob-

ally consistent membership view represents a powerful

abstraction that simplifies the design of applications built

atop our platform. In addition to eliminating the need for

applications to build their own system for detecting and

tracking membership changes, globally consistent views

can simplify application protocol design.

Census is designed to work at large scale, even with

highly-dynamic membership, and to tolerate both crashes

and Byzantine failures. It uses three main techniques to

achieve these goals.

First, Census uses a locality-based hierarchical organi-

zation. Nodes are grouped into regions according to their

network coordinates. Even in small systems, this hierar-

chical structure is used to reduce the costs of aggregating

reports of membership changes. For systems so large that

it is infeasible to maintain a global membership view, we

provide a partial knowledge deployment option, where

nodes know the full membership of their own region but

only a few representative nodes from each other region.



Second, Census uses a novel multicast mechanism that

is closely intertwined with the membership management

service. The membership service relies on the multi-

cast mechanism to distribute update notifications, and

the multicast system constructs its distribution trees us-

ing node and location information from the membership

service. The overlay topology, made up of redundant

interior-disjoint trees, is similar to other systems [7, 40].

However, the trees are constructed in a very different way:

each node independently carries out a deterministic tree

construction algorithm when it receives a membership

update. This eliminates the need for complex and poten-

tially expensive distributed tree-building protocols, yet

it produces efficient tree structures and allows the trees

to change frequently to improve fault-tolerance. We also

take advantage of global membership and location infor-

mation to keep bandwidth overhead to a minimum by

ensuring that each node receives no redundant data, while

keeping latency low even if there are failures.

Finally, Census provides fault-tolerance. Unlike sys-

tems that require running an agreement protocol among

all nodes in the system [30, 20], Census uses only a small

subset of randomly-chosen nodes, greatly reducing the

costs of membership management while still providing

correctness with high probability. In most cases, we use

lightweight quorum protocols to avoid the overhead of

full state machine replication. We also discuss several

new issues that arise in a Byzantine environment.

Census exposes the region abstraction and multicast

mechanism to applications as additional services. Regions

can be a useful organizing technique for applications.

For example, a cooperative caching system might use

regions to determine which nodes share their caches. The

multicast system provides essential functionality for many

applications that require membership knowledge, since a

membership change may trigger a system reconfiguration

(e.g. changing responsible nodes in a distributed storage

system) that must be announced to all nodes.

Our evaluation of Census, under simulation and in a

real-world deployment on PlanetLab, indicates that it

imposes low bandwidth overhead per node (typically less

than 1 KB/s even in very large systems), reacts quickly to

node failures and system membership changes, and can

scale to substantial size (over 100,000 nodes even in a

high-churn environment).

The remainder of this paper is organized as follows.

We define our assumptions in Section 2. Sections 3–5

describe Census’s architecture, multicast mechanism, and

fault-tolerance strategy in detail. Section 6 presents per-

formance results based on both theoretical analysis and a

deployment on PlanetLab. We sketch some ways appli-

cations can use the platform in Section 7, discuss related

work in Section 8, and conclude in Section 9.

2 Model and Assumptions

Census is intended to be used in an asynchronous network

like the Internet, in which messages may be corrupted,

lost or reordered. We assume that messages sent repeat-

edly will eventually be delivered. We also assume nodes

have loosely synchronized clock rates, such that they can

approximately detect the receipt of messages at regular

intervals. Loosely synchronized clock rates are easy to

guarantee in practice, unlike loosely synchronized clocks.

Every node in our platform has an IP address, a unique

random ID, and network coordinates. Tolerating Byzan-

tine failures adds a few more requirements. Each node

must have a public key, and its unique ID is assigned by

taking a collision-resistant hash of the public key. Fur-

thermore, we require admission control to prevent Sybil

attacks [13], so each joining node must present a certifi-

cate signed by a trusted authority vouching for its identity.

All nodes have coordinates provided by a network co-

ordinate system such as Vivaldi [11]. We describe the

system in terms of a two-dimensional coordinate system

plus height, analogous to the last-hop network delay. This

follows the model used in Vivaldi, but our system could

easily be modified to use a different coordinate space.

We assume coordinates reflect network latency, but their

accuracy affects only performance, not correctness.

Traditional network coordinate systems do not function

well in a Byzantine environment since malicious nodes

can influence the coordinates of honest nodes [38]. We

have developed a protocol [39] that ensures that honest

nodes’ coordinates accurately reflect their locations by

using a group of landmark nodes, some of which are

permitted to be faulty. Another approach is described

in [34]. These techniques do not provide any guarantees

about the accuracy of a Byzantine node’s coordinates, and

we do not assume any such guarantees.

3 Platform Architecture

Our system moves through a sequence of epochs, num-

bered sequentially. Each epoch has a particular mem-

bership view. One of the members acts as the leader.

Nodes inform the leader of membership events (nodes

joining or leaving) and the leader collects this informa-

tion for the duration of the epoch. The epoch length is

a parameter whose setting depends on application needs

and assumptions about the environment; for example, our

experiments use 30s epochs. Users may opt to place the

leader on a fixed node, or select a new leader each epoch

based on the system membership and epoch number.

At the end of an epoch, the leader creates an item con-

taining the membership changes and next epoch number,

and multicasts this information as described in Section 4.

The item can also include data provided by the applica-

tion. The leader makes an upcall to the application code

at its node to obtain this data and includes it in the item.



In addition, the system can perform additional multicasts

within an epoch to propagate application data if desired.

When a node receives an item, it updates its view of

the membership to reflect the latest joins and departures,

then enters the next epoch. It can only process the item

if it knows the system state of the previous epoch; nodes

keep a few recent items in a log to enable nodes that are

slightly behind to obtain missing information.

Our system ensures consistency: all nodes in the same

epoch have identical views of the membership. The mul-

ticast mechanism delivers items quickly and reliably, so

that nodes are likely to be in the same epoch at the same

time. Messages include the epoch number at the point

they were sent, to ensure they are routed and processed

with respect to the correct membership view. Applications

that require consistency also include the current epoch

number in application messages, only processing mes-

sages when the sender and receiver agree on the epoch.

In this section, we describe how the system is organized.

We begin in Section 3.1 with a simplified version with

only a simple region. In Section 3.2, we introduce the

multi-region structure, which improves scalability even

though all nodes still know the membership of the entire

system. Finally, in Section 3.3, we describe an optional

extension to the system for extremely large or dynamic

environments, where each node has full membership in-

formation only for its own region.

3.1 Single-Region Deployment

In a one-region system, all membership events are pro-

cessed directly by the leader. The leader gathers notifica-

tions of node joins and departures throughout the epoch,

then aggregates them into an item and multicasts the item

to the rest of the system, starting the next epoch.

To join the system, a node sends a message identifying

itself to the leader, providing its network coordinates and

identity certificate (if tolerating Byzantine faults). The

leader verifies the certificate, adds the node to a list of new

joiners, and informs the new node of the epoch number

and a few current members. The new node obtains the

current membership from one of these nodes, reducing

the load on the leader.

To remove a node, a departure request is sent to the

leader identifying the node to be removed. A node can

leave the system gracefully by requesting its own removal

(in a Byzantine environment, this request must be signed).

Nodes that do not fail gracefully are reported by other

nodes; Section 5 describes this process. If the request is

valid, the leader adds the node to a list of departers.

Nodes include their coordinates in the join request, en-

suring that all nodes see a consistent view of each other’s

coordinates. Node locations can change over time, how-

ever, and coordinates should continue to reflect network

proximity. Each node monitors its coordinates and reports

changes, which are propagated in the next item. To avoid

instability, nodes report only major location changes, us-

ing a threshold.

3.2 Multi-Region Deployment

Even at relatively high churn, with low available band-

width and CPU resources, our analysis indicates that the

single-region structure scales to beyond 10,000 nodes.

As the system grows, however, the request load on the

leader, and the overhead in computing distribution trees,

increases. To accommodate larger systems, we provide a

structure in which the membership is divided into regions

based on proximity. Each region has a region ID and ev-

ery node belongs to exactly one region. Even in relatively

small systems, the multi-region structure is useful to re-

duce load on the leader, and to provide the application

with locality-based regions.

In a multi-region system each region has its own local

leader, which can change each epoch. This region leader

collects joins and departures for nodes in its region. To-

wards the end of the epoch, it sends a report listing these

membership events to the global leader, and the leader

propagates this information in the next item. Any mem-

bership events that are received too late to be included in

the report are forwarded to the next epoch’s leader.

Even though all nodes still know the entire system

membership, this architecture is more scalable. It offloads

work from the global leader in two ways. First, the leader

processes fewer messages, since it only handles aggregate

information about joins and departures. Second, it can

offload some cryptographic verification tasks, such as

checking a joining node’s certificate, to the region leaders.

Moreover, using regions also reduces the CPU costs of

our multicast algorithm, as Section 4 describes: nodes

need not compute full distribution trees for other regions.

To join the system, a node contacts any member of the

system (discovered out-of-band) and sends its coordinates.

The member redirects the joining node to the leader of the

region whose centroid is closest to the joining node. When

a node’s location changes, it may find that a different

region is a better fit for it. When this happens, the node

uses a move request to inform the new region’s leader that

it is leaving another region. This request is sent to the

global leader and propagated in the next item.

3.2.1 Region Dynamics: Splitting and Merging

Initially, the system has only one region. New regions

are formed by splitting existing regions when they grow

too large. Similarly, regions that grow too small can be

removed by merging them into other regions.

The global leader tracks the sizes of regions and when

one of them exceeds a split threshold, it tells that region

to split by including a split request in the next item. This

request identifies the region that should split, and provides



the ID to used be for the newly formed region. When a

region’s size falls below a merge threshold, the leader

selects a neighboring region for it to merge into, and

inserts a merge request containing the two region IDs

in the next item. The merge threshold is substantially

smaller than the split threshold, to avoid oscillation.

Whenever a node processes an item containing a split

or merge request, it carries out the split or merge compu-

tation. For a split, it computes the centroid and the widest

axis, then splits the region into two parts. The part to the

north or west retains the region ID, and the other part is

assigned the new ID. For a merge, nodes from one region

are added to the membership of the second region. As

soon as this item is received, nodes consider themselves

members of their new region.

3.3 Partial Knowledge

Even with the multi-region structure, scalability is ulti-

mately limited by the need for every membership event

in an epoch to be broadcast in the next item. The band-

width costs of doing so are proportional to the number

of nodes and the churn rate. For most systems, this cost

is reasonable; our analysis in Section 6.1 shows, for ex-

ample, that for systems with 100,000 nodes, even with

a very short average node lifetime (30 minutes), average

bandwidth overhead remains under 5 KB/s. However, for

extremely large, dynamic, and/or bandwidth-constrained

environments, the updates may grow too large.

For such systems, we provide a partial knowledge de-

ployment option. Here, nodes have complete knowledge

of the members of their own region, but know only sum-

mary information about other regions. We still provide

consistency, however: in a particular epoch, every node in

a region has the same view of the region, and every node

in the system has the same view of all region summaries.

In this system, region leaders send the global leader

only a summary of the membership changes in the last

epoch, rather than the full report of all joins and depar-

tures. The summary identifies the region leader for the

next epoch, provides the size and centroid of the region,

and identifies some region members that act as its global

representatives. The global leader includes this message

in the next item, propagating it to all nodes in the system.

As we will discuss in Section 4, the representatives are

used to build distribution trees. In addition, the represen-

tatives take care of propagating the full report, containing

the joins and leaves, to nodes in their region; this way

nodes in the region can compute the region membership.

The region leader sends the report to the representatives at

the same time it sends the summary to the global leader.

3.3.1 Splitting and Merging with Partial Knowledge

Splits and merges are operations involving the member-

ship of multiple regions, so they are more complex in a

partial knowledge deployment where nodes do not know

the membership of other regions. We extend the proto-

cols to transfer the necessary membership information

between the regions involved.

When a region s is merged into neighboring region t,
members of both regions need to learn the membership

of the other. The representatives of s and t communicate

to exchange this information, then propagate it on the

tree for their region. The leader for t sends the global

leader a summary for the combined region, and nodes in s
consider themselves members of t as soon as they receive

the item containing this summary.

A split cannot take place immediately because nodes

outside the region need to know the summary information

(centroid, representatives, etc.) for the newly-formed

regions and cannot compute it themselves. When the

region’s leader receives a split request, it processes joins

and leaves normally for the remainder of the epoch. At

the end of the epoch, it carries out the split computation,

and produces two summaries, one for each new region.

These summaries are distributed in the next item, and the

split takes effect in the next epoch.

4 Multicast

This section describes our multicast mechanism, which

is used to disseminate membership updates and applica-

tion data. The goals of the design are ensuring reliable

delivery despite node failures and minimizing bandwidth

overhead. Achieving low latency and a fair distribution

of forwarding load are also design considerations.

Census’s multicast mechanism uses multiple distribu-

tion trees, like many other multicast systems. However,

our trees are constructed in a different way, taking advan-

tage of the fact that membership information is available

at all nodes. Trees are constructed on-the-fly using a de-

terministic algorithm on the system membership: as soon

as a node receives the membership information for an

epoch from one of its parents, it can construct the distri-

bution tree, and thereby determine which nodes are its

children. Because the algorithm is deterministic, each

node computes exactly the same trees.

This use of global membership state stands in contrast

to most multicast systems, which instead try to minimize

the amount of state kept by each node. Having global

membership information allows us to run what is essen-

tially a centralized tree construction algorithm at each

node, rather than a more complex distributed algorithm.

Our trees are constructed anew each epoch, ignoring

their structure from the previous epoch. This may seem

surprising, in light of the conventional wisdom that “sta-

bility of the routing trees is very important to achieve

workable, reliable routing” [2]. However, this statement

applies to multicast protocols that require executing costly

protocols to change the tree structure, and may experi-
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Figure 1: Distribution trees for a 3-color deployment. All

nodes are members of each tree, but an internal node in

only one. For example, the red nodes r1–r3 are interior

nodes in the red tree, and leaves in the other two.

ence oscillatory or transitory behavior during significant

adjustments. Our approach allows the trees to be recom-

puted with no costs other than those of maintaining the

membership information. Changing the trees can also

improve fault-tolerance and load distribution because dif-

ferent nodes are located at or near the root of the tree [24].

4.1 Multiple-Tree Overlay

A multicast overlay consisting of a single tree is insuffi-

cient to ensure reliability and fair load distribution: the

small group of interior nodes bears all the forwarding load

while the leaves bear none, and an interior node failure

leads to loss of data at all its descendants. Instead, Cen-

sus uses multiple trees, as in SplitStream [7], to spread

forwarding load more evenly and enhance reliability.

Our overlay consists of a set of trees, typically between

4 and 16. The trees are interior-node-disjoint: each node

is an interior node in at most one tree. We refer to each

tree by a color, with each node in the system also assigned

a color. The interior of the red tree is composed com-

pletely of red nodes, ensuring our disjointness constraint.

The nodes of other colors form the leaves of the red tree,

and the red nodes are leaf nodes in all other trees. Using

an even distribution of node colors and a fan-out equal to

the number of trees provides load-balancing: each node

forwards only as many messages as it receives. Figure 1

illustrates the distribution trees in a 3-color system.

The membership update in each item must be sent in

full along each tree, since it is used to construct the trees.

The application data in an item, however, is split into

a number of erasure-coded fragments, each of which is

forwarded across a different tree. This provides redun-

dancy while imposing minimal bandwidth overhead on

the system. With n trees, we use m of n erasure coding,

so that all nodes are able to reconstruct the original data

even with failures in n − m of the trees. This leads to

a bandwidth overhead for application data of close to
n/m, with overhead of n for the replicated membership

update. However, as Section 4.4 describes, we are able

to eliminate nearly all of this overhead under normal cir-

cumstances by suppressing redundant information.

We employ a simple reconstruction optimization that

provides a substantial improvement in reliability. If a node

does not receive the fragment it is supposed to forward,

it can regenerate and forward the fragment once it has

received m other fragments. This localizes a failure in a

given tree to nodes where an ancestor in the current tree

failed, and where each parent along the path to the root

has experienced a failure in at least n − m trees.

In the case of more than n − m failures, a node may

request missing fragments from nodes chosen randomly

from its membership view. Section 6.2.1 shows such

requests are unnecessary with up to 20% failed nodes.

4.2 Building Trees within a Region

In this section, we describe the algorithm Census uses

to build trees. The algorithm must be a deterministic

function of the system membership. We use a relatively

straightforward algorithm that our experiments show is

both computationally efficient and effective at offering

low-latency paths, but more sophisticated algorithms are

possible at the cost of additional complexity. We first

describe how the tree is built in a one-region system;

Section 4.3 extends this to multiple regions.

The first step is to color each node, i.e. assign it to a

tree. This is accomplished by sorting nodes in the region

by their ID, then coloring them round-robin, giving an

even distribution of colors. Each node then computes all

trees, but sends data only on its own tree.

The algorithm uses a hierarchical decomposition of the

network coordinate space to exploit node locality. We

describe how we build the red tree; other trees are built

similarly. The tree is built by recursively subdividing

the coordinate space into F sub-regions (where F is the

fan-out, typically equal to the number of trees). This is

performed by repeatedly splitting sub-regions through the

centroid, across their widest axis. One red node from

each sub-region is chosen to be a child of the root, and

the process continues within each sub-region for the sub-

tree rooted at each child, fewer than F red nodes remain

in each sub-region. Figure 2 illustrates the hierarchical

decomposition of regions into trees for a fan-out of 4.

Once all red nodes are in the tree, we add the nodes of

other colors as leaves. We iterate over the other-colored

nodes in ID order, adding them to the red node with free

capacity that minimizes the distance to the root via that

parent. Our implementation allows nodes to have a fan-

out of up to 2F when joining leaf nodes to the internal

trees, allowing us to better place nodes that are in a sub-

region where there is a concentration of a particular color.

As mentioned in Section 2, we use coordinates consist-

ing of two dimensions plus a height vector [11]. Height is



Figure 2: Hierarchical subdivision used to build interior

tree with fan-out 4. Each region with more than 4 mem-

bers is recursively split into smaller sub-regions.

ignored when splitting regions, since it does not reflect the

geographic locality of nodes. However, it is used when

computing the distance between two nodes, such as when

picking the root of a sub-region.

4.3 Building Multi-Region Trees

In the multi-region system, we build an inter-region tree

of each color. The nodes in the inter-region tree then serve

as roots of the intra-region trees of that color.

The inter-region tree of a particular color is composed

of one representative of that color from each region. The

representatives are computed by the leader in a global

knowledge system, and specified in the summaries in a

partial knowledge system. The representatives can be

thought of as forming their own “super” region, and we

build the tree for that region using recursive subdivision

as within a region. The only difference is that we use

a smaller fan-out parameter for the inter-region tree, be-

cause each node in that tree also acts as a root for a tree

within its region, and therefore has descendants in that

region as well as descendants in the inter-region tree.

As mentioned in Section 3.3, representatives in the

partial knowledge deployment are responsible for prop-

agating the full report that underlies the summary to the

members of the region. The extra information is added to

the item by the root node of each tree for the region, and

thus reaches all the nodes in the region.

4.4 Reducing Bandwidth Consumption

Using erasure coded fragments allows Census to provide

high reliability with reasonably low overhead, but is not

without bandwidth overhead altogether. In a configuration

where 8 out of 16 fragments are required to reconstruct

multicast data, each node sends twice as many fragments

as strictly required in the non-failure case. Furthermore,

membership updates are transmitted in full on every tree,

giving even greater overhead.

We minimize bandwidth overhead by observing that

redundant fragments and updates are necessary only if

there is a failure. Instead of having each parent always

send both a membership update and fragment, we desig-

nate only one parent per child to send the update and m
parents per child to send the fragment. The other parents

instead send a short “ping” message to indicate to their

child that they have the update and fragment. A child who

fails to receive the update or sufficient fragments after a

timeout requests data from the parents who sent a ping.

This optimization has the potential to increase latency.

Latency increases when there are failures, because a node

must request additional fragments from its parents after a

timeout. Even without failures, a node must wait to hear

from the m parents that are designated to send a fragment,

rather than just the first m parents that it hears from.

Fortunately, we are able to exploit membership knowl-

edge to optimize latency. Each parent uses network coor-

dinates to estimate, for each child, the total latency for a

message to travel from the root of each tree to that child.

Then, it sends a fragment only if it is on one of the m
fastest paths to that child. The estimated latencies are also

used to set the timeouts for requesting missing fragments.

This optimization is possible because Census provides

a globally consistent view of network coordinates. Sec-

tion 6.2.3 shows that it eliminates nearly all redundant

bandwidth overhead without greatly increasing latency.

5 Fault Tolerance

In this section we discuss how node and network fail-

ures are handled. We consider both crash failures and

Byzantine failures, where nodes may behave arbitrarily.

5.1 Crash Failures

Census masks failures of the global leader using repli-

cation. A group of 2fGL + 1 nodes is designated as the

global leader group, with one member acting as the global

leader. Here, fGL is not the maximum number of faulty

nodes in the entire system, but rather the number of faulty

nodes in the particular leader group; thus the group is

relatively small. The members of the leader group use a

consensus protocol [25, 21] to agree on the contents of

each item: the leader forwards each item to the members

of the global leader group, and waits for fGL acknowl-

edgments before distributing it on the multicast trees. The

members of the global leader group monitor the leader

and select a new one if it appears to have failed.

Tolerating crashes or unexpected node departures is

relatively straightforward. Each parent monitors the live-

ness of its children. If the parent does not receive an ac-

knowledgment after several attempts to forward an item,
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and f leader group members faulty) is chosen, in epochs

it reports the absence of the child to the region leader. The

child will be removed from the system in the subsequent

membership update; if it was only temporarily partitioned

from the network, it can rejoin the region. In each epoch,

the parent of a particular color is designated as monitor, to

prevent multiple parents from reporting the same failure.

Region leaders are not replicated in the global knowl-

edge system; a new region leader is chosen in each epoch,

so a failed leader only causes updates to be delayed until

it is replaced. In the partial knowledge system, how-

ever, we must also ensure that if a region leader sends a

summary to the global leader, the corresponding report

survives, even if the region leader fails; otherwise, the

system would be in an inconsistent state. Census uses

a region leader group of 2fRL + 1 nodes to solve this

problem. The region leader sends the report to members

of its leader group and waits for fRL acknowledgments

before sending the summary to the global leader. Thus, if

the representatives receive an item containing a summary

for their region, they are guaranteed to be able to retrieve

the corresponding report from the leader group, even if

the region leader failed, provided that no more than fRL

members of the leader group have failed.

Census can select leader groups at random from the

system membership, using a deterministic function of the

epoch number and region membership. If this approach

is used, each summary in the partial knowledge system

announces the region’s next leader group, and the global

leader group is chosen deterministically from the nodes

in the region leader groups.

The size of the leader groups (i.e. the values of fRL

and fGL) depends on the fraction of nodes expected to

be failed concurrently, since faulty nodes are removed

from the system. Figure 3 shows the expected number

of leader groups that can be chosen before choosing a

bad group. Because Census detects and removes crashed

nodes within a couple of epochs, we can expect the frac-

tion of failed nodes to remain small (e.g. under 1%), and

therefore a small value for f will be sufficient even in a

very long lived system.

Many applications have some infrastructure nodes that

are expected to be very reliable. If so, using these as

replicas in leader groups, especially for the global leader,

can provide even better reliability. Using infrastructure

nodes is particularly well-suited for applications that send

multicast data, since they may benefit from having the

global leader co-located with the source of multicast data.

5.2 Byzantine Failures

Our solution for Byzantine fault tolerance builds on the

approaches used for crash failures, with the obvious ex-

tensions. For example, we require signed reports from

fM + 1 parents monitoring a failed node to remove it. If

this exceeds the number of trees, the node’s predecessors

in the region ID space provide additional reports.

We use region leader groups in both the global knowl-

edge and partial knowledge deployments. Since bad

nodes may misbehave in ways that cannot be proven, and

thus may not be removed from the system, all architec-

tures such as ours must assume the fraction of Byzantine

nodes is small. Figure 3 shows that this requirement is

fairly constraining if we want the system to be long-lived.

For example, with f = 5, we must assume no more than

3% faulty nodes to achieve an expected system lifetime of

10 years (with 30-second epochs). Therefore, it would be

wise to choose leader groups from infrastructure nodes.

The size of a region leader group is still only 2fRL +
1, since the group does not run agreement. Instead, a

region leader obtains signatures from fRL+1 leader group

members, including itself, before sending a summary or

report to the global leader. These signatures certify that

the group members have seen the updates underlying the

report or summary. If the leader is faulty, it may not send

the report or summary, but this absence will be rectified

in subsequent epochs when a different leader is chosen.

To ensure that a faulty region leader cannot increase the

probability that a region leader group contains more than

fRL faulty nodes, we choose leader group members based

on their IDs, using a common technique from peer-to-peer

systems [18, 36]: the first 2fRL+1 nodes with IDs greater

than the hash of the epoch number (wrapping around if

necessary) make up the leader group. A Byzantine region

leader cannot invent fictitious joins or departures, because

these are signed, and therefore it has no way to control

node IDs. It might selectively process join and departure

requests in an attempt to control the membership of the

next leader group, but this technique is ineffective.

We increase the size of the global leader group to

3fGL + 1 nodes. The global group runs a Byzantine

agreement protocol [9] once per epoch to agree on which

summaries will be included in the next item. The next

item includes fGL + 1 signatures, ensuring that the pro-



tocol ran and the item is valid. The group members also

monitor the leader and carry out a view change if it fails.

We have developed a protocol that avoids running agree-

ment but requires 2fGL + 1 signatures, but omit it due

to lack of space. Because the failure of the global leader

group can stop the entire system, and the tolerated failure

level is lower, it is especially important to use trusted

infrastructure nodes or other nodes known to be reliable.

5.2.1 Ganging-Up and Duplicates

Two new issues arise because of Census’s multi-region

structure. The first is a ganging-up attack, where a dispro-

portionate number of Byzantine nodes is concentrated in

one region. If so, the fraction of bad nodes in the region

may be too high to ensure that region reports are accurate

for any reasonable value of fRL. This may occur if an

attacker controls many nodes in a particular location, or

if Byzantine nodes manipulate their network coordinates

to join the region of their choice.

The second problem is that bad nodes might join many

regions simultaneously, allowing a small fraction of bad

nodes to amplify their population. Such duplicates are a

problem only in the partial knowledge deployment, where

nodes do not know the membership of other regions.

To handle these problems, we exploit the fact that faulty

nodes cannot control their node ID. Instead of selecting

a region’s leader group from the region’s membership,

we select it from a subset of the global membership: we

identify a portion of the ID space, and choose leaders

from nodes with IDs in this partition. IDs are not under

the control of the attacker, so it is safe to assume only a

small fraction of nodes in this partition are corrupt, and

thus at most fRL failures will occur in a leader group.

Nodes in the leader partition are globally known, even

in the partial knowledge system: when a node with an ID

in the leader partition joins the system, it is reported to

the global leader and announced globally in the next item.

These nodes are members of their own region (based on

their location), but may also be assigned to the leader

group for a different region, and thus need to track that

region membership state as well. Nodes in the leader par-

tition are assigned to the leader groups of regions, using

consistent hashing, in the same way values are assigned

to nodes in distributed hash tables [36]. This keeps assign-

ments relatively stable, minimizing the number of state

transfers. When the leader group changes, new members

need to fetch matching state from fRL + 1 old members.

To detect duplicates in the partial knowledge system,

we partition the ID space, and assign each partition to a

region, again using consistent hashing. Each region tracks

the membership of its assigned partition of the ID space.

Every epoch, every region leader reports new joins and de-

partures to the regions responsible for the monitoring the

appropriate part of the ID space. These communications

must contain fRL + 1 signatures to prevent bad nodes

from erroneously flagging others as duplicates. The leader

of the monitoring region reports possible duplicates to

the regions that contain them; they confirm that the node

exists in both regions, then remove and blacklist the node.

5.3 Widespread Failures and Partitions

Since regions are based on proximity, a network partition

or power failure may affect a substantial fraction of nodes

within a particular region. Short disruptions are already

handled by our protocol. When a node recovers and

starts receiving items again, it will know from the epoch

numbers that it missed some items, and can recover by

requesting the items in question from other nodes.

Nodes can survive longer partitions by joining a differ-

ent region. All nodes know the epoch duration, so they

can use their local clock to estimate whether they have

gone too many epochs without receiving an item. The

global leader can eliminate an entire unresponsive region

if it receives no summary or report for many epochs.

6 Evaluation

This section evaluates the performance of our system.

We implemented a prototype of Census and deployed it

on PlanetLab to evaluate its behavior under real-world

conditions. Because PlanetLab is much smaller than the

large-scale environments our system was designed for, we

also examine the reliability, latency, and bandwidth over-

head of Census using simulation and theoretical analysis.

6.1 Analytic Results

Figure 4 presents a theoretical analysis of bandwidth over-

head per node for a multi-region system supporting both

fail-stop and Byzantine failures. The analysis used 8 trees

and an epoch interval of 30 seconds. Our figures take

all protocol messages into consideration, including UDP

overhead, though Figure 4(c) does not include support for

preventing ganging-up or for duplicate detection.

Bandwidth utilization in Census is a function of both

system membership and churn. These results represent

a median node lifetime of 30 minutes, considered a high

level of churn with respect to measurement studies of

the Gnutella peer-to-peer network [33]. This serves as

a “worst-case” figure; in practice, we expect most Cen-

sus deployments (e.g. those in data center environments)

would see far lower churn.

The results show that overhead is low for all config-

urations except when operating with global knowledge

on very large system sizes (note the logarithmic axes).

Here the global leader needs to process all membership

updates, as well as forward these updates to all 8 distri-

bution trees. The other nodes in the system have lower

overhead because they forward updates on only one tree.

The overhead at the global leader is an order of magni-
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Figure 4: Mean bandwidth overhead with high churn. 30 minute session lengths, 30 second epochs, 8 trees and f = 3.

tude lower in the partial knowledge case, where it only

receives and distributes the compact region summaries.

In the partial knowledge cases (Figures 4(b) and 4(c))

the region leader incurs more overhead than the regular

nodes, primarily due to forwarding each report to the

leader group and representatives before sending a sum-

mary to the global leader. Supporting Byzantine fault

tolerance imposes little additional overhead for the region

leaders and global leader, because the cost of the addi-

tional signatures and agreement messages are dominated

by the costs of forwarding summaries and reports.

These results are sensitive to region size, particularly

in large deployments, as this affects the trade-off between

load on the region leaders and on the global leader. For

the purpose of our analysis we set the number of regions

to
3
√

nodes, mimicking the proportions of a large-scale

deployment of 100 regions each containing 10,000 nodes.

6.2 Simulation Results

We used a discrete-event simulator written for this project

to evaluate reliability, latency, and the effectiveness of

our selective fragment transmission optimization. The

simulator models propagation delay between hosts, but

does not model queuing delay or network loss; loss due

to bad links is represented by overlay node failures.

Two topologies were used in our simulations: the

King topology, and a random synthetic network topol-

ogy. The King topology is derived from the latency ma-

trix of 1740 Internet DNS servers used in the evaluation

of Vivaldi [11], collected using the King method [15].

This topology represents a typical distribution of nodes in

the Internet, including geographical clustering. We also

generate a number of synthetic topologies, with nodes

uniformly distributed within the coordinate space. These

random topologies allow us to examine the performance

of the algorithm when nodes are not tightly clustered

into regions, and to freely experiment with network sizes
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without affecting the distribution of nodes.

While our simulator measures network delays using

latencies, our algorithms operate solely in the coordinate

domain. We generated coordinates from the King data

using a centralized version of the Vivaldi algorithm [11].

Coordinates consist of two dimensions and a height vector,

as was found to effectively model latencies in Vivaldi.

These coordinates do not perfectly model actual network

delays, as discussed in Section 6.2.2.

6.2.1 Fault Tolerance

Figure 5 examines the reliability of our distribution trees

for disseminating membership updates and application

data under simulation. In each experiment we operate

with 10 regions of 1,000 nodes each; single-region deploy-

ments see equivalent results. The reliability is a function

only of the tree fan-out and our disjointness constraint,

and does not depend on network topology.

The leftmost four lines show the fraction of nodes that

are able to reconstruct application data under various era-

sure coding configurations. Census achieves very high
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and 10,000 node synthetic topologies. 4/8 erasure coding.

success rates with up to 30% failed nodes in the 16-tree

configuration, with 2× redundancy (8/16 coding). This

high failure rate is unlikely, since our membership man-

agement protocol removes failed nodes promptly. The

primary factor influencing reliability is the redundancy

rate. Increasing the number of trees also improves reli-

ability, even with the same level of redundancy: using

16 trees instead of 4 tolerates nearly 10% more failures.

Additional trees improve reliability by reducing the prob-

ability of n − m parents failing, but comes with the cost

of more messages and more representatives to maintain.

The rightmost two lines show the fraction of nodes that

receive membership update information, which is sent in

full on each tree. In a 16-tree deployment, we find that

every non-faulty node receives membership information

on at least one tree, even if as many as 70% of the region

members have failed. Even on a 4-tree deployment, all

nodes receive membership information in the presence of

upwards of 20% failed nodes.

The high reliability exhibited in Figure 5 is partially

due to our reconstruction optimization, discussed in Sec-

tion 4.1. An 8/16 deployment using reconstruction allows

all non-faulty nodes to receive application data with as

many as 22% failed nodes, but tolerates only 7.5% fail-

ures without reconstruction. Reconstruction mitigates the

effects of a failure by allowing a tree to heal below a faulty

node, using fragments from other trees.

6.2.2 Latency

Census’s multicast mechanism must not impose excessive

communication delay. We evaluate this delay in terms

of stretch, defined as the total time taken for a node to

receive enough fragments to reconstruct the data, divided

by the unicast latency between the server and the node.

Figure 6 shows stretch on both the King and synthetic

topologies, assuming no failures and using 8 trees; results

for 16 trees are similar. The figure shows that stretch

is close to 1 on the synthetic topology, indicating that

our tree-building mechanism produces highly efficient

trees. Stretch is still low on the King topology, at an

average of 2, but higher than in the synthetic topology.

This reflects the fact that the coordinates generated for

the King topology are not perfect predictors of network

latency, while the network coordinates in the synthetic

topology are assumed perfect. The small fraction of nodes

with stretch below 1 are instances where node latencies

violate the triangle inequality, and the multicast overlay

achieves lower latency than unicast transmission.

Stretch is slightly higher in the multi-region deploy-

ment with the synthetic topology because the inter-region

tree must be constructed only of representatives. In the

synthetic topology, which has no geographic locality,

stretch increases because the representatives may not be

optimally placed within each region. However, this ef-

fect is negligible using the King topology, because nodes

within a region are clustered together and therefore the

choice of representatives has little effect on latency.

Our stretch compares favorably with existing multicast

systems, such as SplitStream [7], which also has a stretch

of approximately 2. In all cases, transmission delay over-

head is very low compared to typical epoch times.

6.2.3 Selective Fragment Transmission

Figure 7(a) illustrates the bandwidth savings of our opti-

mization to avoid sending redundant fragments (described

in Section 4.4), using 2× redundancy and 8 trees on the

King topology. In the figure, bandwidth is measured rel-

ative to the baseline approach of sending all fragments.

We see a 50% reduction in bandwidth with this optimiza-

tion; overhead increases slightly at higher failure rates, as

children request additional data after timeouts.

Figure 7(b) shows this optimization’s impact on latency.

It adds negligible additional stretch at low failure rates, be-

cause Census chooses which fragments to distribute based

on accurate predictions of tree latencies. At higher failure

rates, latency increases as clients are forced to request ad-

ditional fragments from other parents, introducing delays

throughout the distribution trees.

The figures indicate that the optimization is very ef-

fective in the expected deployments where the failure

rate is low. If the expected failure rate is higher, sending

one extra fragment reduces latency with little impact on

bandwidth utilization.

6.3 PlanetLab Experiments

We verify our results using an implementation of our

system, deployed on 614 nodes on PlanetLab. While this

does not approach the large system sizes for which our

protocol was designed, the experiment provides a proof

of concept for a real widespread deployment, and allows
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us to observe the system under realistic conditions such

as non-uniform node failures.

Our implementation supports multiple regions, with

dynamic splits and joins, but we found that a single region

was sufficient for the number of nodes in our PlanetLab

deployment, and more representative of region sizes that

would be seen in larger deployments. The implementation

currently supports fail-stop failures, moving the leader

each epoch, but does not tolerate Byzantine failures.

We configured the system to use 6 distribution trees,

with an epoch time of 30 seconds. In addition to mem-

bership information, we distributed a 1 KB application

message each epoch using 3-of-6 erasure coding, to test

the reliability and overhead of this part of our system.

We ran Census for 140 epochs of 30 seconds each.

As indicated in Figure 8(a), during the experiment, we

failed 10% of the nodes simultaneously, then restarted

them; we then did the same with 25% of the nodes. The

graph shows the number of nodes reported in our system’s

membership view. Census reacts quickly to the sudden

membership changes; the slight delay reflects the time

needed for parents to decide that their children are faulty.

Figure 8(b) shows the average total bandwidth usage

(both upstream and downstream) experienced by nodes in

our system. Each node uses about 0.1 KB/s at steady-state,

much of which is due to the size of the multicast data;

the shaded region of the graph represents the theoretical

minimum cost of disseminating a 1 KB message each

epoch. Bandwidth usage increases for a brief time after

our sudden membership changes, peaking at 0.9 KB/s

immediately after 25% of the nodes rejoin at once. Node

rejoins are more costly than node failures, because more

information needs to be announced globally for a newly-

joined node and the new node needs to obtain the system

membership. We have also run the system for much

longer periods, with similar steady-state bandwidth usage.

7 Applications

Knowledge of system membership is a powerful tool that

can simplify the design of many distributed systems. An

obvious application of Census is to support administration

of large multi-site data centers, where Byzantine failures

are rare (but do occur), and locality is captured by our

region abstraction. Census is also useful as an infrastruc-

ture for developing applications in such large distributed

systems. In this section, we describe a few representative

systems whose design can be simplified with Census.

7.1 One-Hop Distributed Hash Tables

A distributed hash table is a storage system that uses a

distributed algorithm, usually based on consistent hash-

ing [18], to map item keys to the nodes responsible for

their storage. This abstraction has proven useful for orga-

nizing systems at scales ranging from thousands of nodes

in data centers [12] to millions of nodes in peer-to-peer

networks [23]. The complexity in such systems lies pri-

marily in maintaining membership information to route

requests to the correct node, a straightforward task with

the full membership information that Census provides.

Most DHTs do not maintain full membership knowl-

edge at each host, so multiple (e.g. O(log N)) routing

steps are required to locate the node responsible for an

object. Full global knowledge allows a message to be

routed in one step. In larger systems that require partial

knowledge, messages can be routed in two steps. The

key now identifies both the responsible region and a node

within that region. A node first routes a message to any

member of the correct region, which then forwards it

to the responsible node, much like the two-hop routing

scheme of Gupta et al. [16]. Although our membership

management overhead does not scale asymptotically as

well as many DHT designs, our analysis in Section 6.1

shows that the costs are reasonable in most deployments.

From a fault-tolerance perspective, Census’s member-
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Figure 8: Results of a 614-node, 70-minute PlanetLab deployment with 10% and 25% correlated failures.

ship views provide several advantages. Single-hop rout-

ing eliminates the possibility of a malicious intermediate

node redirecting a request [35]. The fault-tolerance of our

protocol prevents Eclipse attacks, where malicious nodes

influence an honest node’s routing table [6]. Applica-

tions that use replication techniques to ensure consistency

across replicas benefit from Census’s consistent member-

ship views, since all nodes in the system agree on the

identity of the replicas for each epoch.

Finally, our use of full membership information can

enable more sophisticated placement algorithms than the

standard consistent hashing approach. Any deterministic

function of the membership view, including location in-

formation, suffices. For example, we might choose one

replica for a data item based on its key, and the others

based on location: either nearby nodes (for improved

performance) or distant ones (for failure-independence).

7.2 Application-Layer Multicast

Census allows applications to disseminate information

on multicast trees by piggybacking it on items. The ap-

plication can do this as needed: occasionally, on every

item, or more frequently. An example of where more

frequent multicast is needed is to broadcast video. For

high-bandwidth multicast like video streaming, the costs

of maintaining membership become less significant.

Compared to other scalable multicast systems, Cen-

sus’s multicast trees can provide higher reliability, using

optimizations like reconstruction and selective fragment

transmission, and can tolerate Byzantine behavior. The

availability of consistent membership views keeps the

multicast protocol relatively simple, while still providing

strong performance and reliability guarantees.

Census can also be used to construct a publish-

subscribe system where only certain nodes are interested

in receiving each message. One node is designated as

responsible for each interest group, and other nodes con-

tact it to publish or subscribe. When this node receives

a message to distribute, it constructs multicast trees over

just the subscribers, using them to disseminate both the

message and changes in subscriber membership. This

multicast is independent of the one we use to distribute

membership information, but the trees can be constructed

using the same algorithm.

7.3 Cooperative Caching

We are currently developing a wide-scale storage appli-

cation where a small set of nodes act as servers, storing

the definitive copy of system data. The other nodes in

the system are clients. To perform operations, they fetch

pages of data from the server into local caches and exe-

cute operations locally; they write back modified pages

to the server when the computation is finished.

To reduce load on the storage servers, clients share

their caches, fetching missing pages from nearby clients.

A partial knowledge Census deployment makes it easy

for clients to identify other nearby clients. We are investi-

gating two approaches to finding pages. In one, nodes an-

nounce pages they are caching on the multicast tree within

a region, so each node in the region always knows which

pages are cached nearby. The other uses an approach

similar to peer-to-peer indexing systems (e.g. [10]): we

use consistent hashing [18] to designate for each page one

node per region that keeps track of which region members

have that page cached. Members register with this node

once they have fetched a page, and check with it when

they are looking for a page.

Cached information inevitably becomes stale, render-

ing it useless for computations that require consistency.

To keep caches up to date, storage servers in this system

use Census’s multicast service to distribute an invalida-

tion stream. This consists of periodic notices listing the

set of recently modified pages; when a node receives such

a notice, it discards the invalid pages from its cache.

8 Related Work

There is a long history of research in group communica-

tion systems, which provide a multicast abstraction along



with a membership management service [14, 37, 19, 2,

26, 29]. Many of these systems provide support for group

communication while maintaining virtual synchrony [3], a

model similar to our use of epochs to establish consistent

views of system information. Such systems are typically

not designed to scale to large system populations, and

often require dedicated membership servers, which do not

fit well with our decentralized model.

Spread [2] and ISIS [4] use an abstraction of many

lightweight membership groups mapping onto a smaller

set of core groups, allowing the system to scale to large

numbers of multicast groups, but not large membership

sizes. We take a different approach in using regions to

group physical nodes, and scale to large system mem-

berships, without providing a multiple-group abstraction.

Quicksilver [26] aims to scale in both the number of

groups and the number of nodes, but does not exploit our

physical hierarchy to minimize latency and communica-

tion overhead in large system deployments.

Prior group communication systems have also aimed

to tolerate Byzantine faults, in protocols such as Ram-

part [30] and SecureRing [20]. Updating the membership

view in these systems requires executing a three-phase

commit protocol across all nodes, which is impractical

with more than a few nodes. By restricting our protocol

to require Byzantine agreement across a small subset of

nodes, we achieve greater scalability. Rodrigues proposed

a membership service using similar techniques [31], but it

does not provide locality-based regions or partial knowl-

edge, and assumes an existing multicast mechanism.

Many large-scale distributed systems employ ad-hoc

solutions to track dynamic membership. A common ap-

proach is to use a centralized server to maintain the list

of active nodes, as in Google’s Chubby lock service [5].

Such an approach requires all clients to communicate di-

rectly with a replicated server, which may be undesirable

from a scalability perspective. An alternative, decentral-

ized approach seen in Amazon’s Dynamo system [12]

is to track system membership using a gossip protocol.

This approach provides only eventual consistency, which

is inadequate for many applications, and can be slow to

converge. These systems also typically do not tolerate

Byzantine faults, as evidenced by a highly-publicized

outage of Amazon’s S3 service [1]

Distributed lookup services, such as Chord [36] and

Pastry [32], provide a scalable approach to distributed sys-

tems management, but none of these systems provides a

consistent view of membership. They are also vulnerable

to attacks in which Byzantine nodes cause requests to be

misdirected; solving this problem involves trading-off per-

formance for probabilistic guarantees of correctness [6].

Fireflies [17] provides each node with a view of system

membership, using gossip techniques that tolerate Byzan-

tine failures. However, it does not guarantee a consistent

global membership view, instead giving a probabilistic

agreement. Also, our location-aware distribution trees

offer faster message delivery and reaction to changes.

Our system’s multicast protocol for disseminating

membership updates builds on the multitude of recent

application-level multicast systems. Most (but not all) of

these systems organize the overlay as a tree to minimize

latency; the tree can be constructed either by a centralized

authority [28, 27] or by a distributed algorithm [8, 7, 22].

We use a different approach: relying on the availability

of global, consistent membership views, we run what is

essentially a centralized tree-building algorithm indepen-

dently at each node, producing identical, optimized trees

without a central authority.

SplitStream [7] distributes erasure-coded fragments

across multiple interior-node-disjoint multicast trees in or-

der to improve resilience and better distribute load among

the nodes. Our overlay has the same topology, but it is

constructed in a different manner. We also employ new

optimizations, such as selective fragment distribution and

fragment reconstruction, which provide higher levels of

reliability with lower bandwidth overhead.

9 Conclusions

Scalable Internet services are often built as distributed

systems that reconfigure themselves automatically as new

nodes become available and old nodes fail. Such sys-

tems must track their membership. Although many mem-

bership services exist, all current systems are either im-

practical at large scale, or provide weak semantics that

complicate application design.

Census is a membership management platform for

building distributed applications that provides both strong

semantics and scalability. It provides consistent mem-

bership views, following the virtual synchrony model,

simplifying the design of applications that use it. The

protocol scales to large system sizes by automatically

partitioning nodes into proximity-based regions, which

constrains the volume of membership information a node

needs to track. Using lightweight quorum protocols and

agreement across small groups of nodes, Census can main-

tain scalability while tolerating crash failures and a small

fraction of Byzantine-faulty nodes.

Census distributes membership updates and application

data using a unconventional multicast protocol that takes

advantage of the availability of membership data. The key

idea is that the distribution tree structure is determined

entirely by the system membership state, allowing nodes

to independently compute identical trees. This approach

allows the tree to be reconstructed without any overhead

other than that required for tracking membership. As our

experiments show, using network coordinates produces

trees that distribute data with low latency, and the multiple-

tree overlay structure provides reliable data dissemination



even in the presence of large correlated failures.

We deployed Census on PlanetLab and hope to make

the deployment available as a public service. We are cur-

rently using it as the platform for a large-scale storage

system we are designing, and expect that it will be simi-

larly useful for other reconfigurable distributed systems.
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