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1Institut de Mathématiques de Bourgogne, CNRS - URM 5584,
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1. Introduction

Ever since the first works on dynamical systems, attempts have been made to reduce the

dimension of the system, and many techniques have been developed for that purpose: first

integrals (for some conservative systems), Poincaré return maps on transverse sections

(for flows), quotients by invariant foliations, and so on. One of these techniques is the

famous center manifold theorem; see for instance [12, 23]. Consider a fixed point x of a

diffeomorphism f on a manifold M such that the differential D f (x) leaves invariant a

splitting Tx M = E ss
⊕ Ec

⊕ Euu , corresponding to the parts of the spectrum of D f (x)
whose moduli are, respectively, strictly less than 1, equal to 1, and strictly greater

than 1. Then there exists a locally f -invariant manifold W c through x tangent at x
to Ec. Furthermore, the local topological dynamics of f is the product of the restriction

f |W c by a uniform contraction in the E ss direction and by a uniform dilation in the

Euu-direction.

1.1. Main result

We propose here a generalization of the center manifold theorem where the fixed point

x is replaced by an invariant compact set. Recall that a D f -invariant splitting T M =
Ec
⊕ Euu defined over an invariant compact set K is partially hyperbolic with strong
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786 C. Bonatti and S. Crovisier

unstable direction Euu if the vectors in Euu are uniformly expanded and the possible

expansion in Ec is strictly weaker than the expansion in Euu . More precisely, there

are constants λK > 1 and C > 0 such that, for each x ∈ K , each unit vector u ∈ Ec(x),
v ∈ Euu(x), and each n > 1, one has

‖D f n(x)v‖ > Cλn
K and ‖D f n(x)v‖ > Cλn

K ‖D f n(x)u‖.

With these hypotheses, any point in K has a well defined strong unstable manifold

W uu(x) tangent to Euu(x). It is the set of points whose backward iterates get closer to

those of x at almost the same rates as the contraction of the vectors in Euu by the

backward iterates of D f .

Main Theorem. Let f be a C1-diffeomorphism and K a partially hyperbolic compact

invariant set such that T M |K = Ec
⊕ Euu. Then, the next two properties are equivalent.

(1) There exists a compact C1-submanifold S with boundary which

– contains K in its interior,

– is tangent to Ec at each point of K (i.e., Tx S = Ec(x) for each x ∈ K ),

– is locally invariant: f (S)∩ S contains a neighborhood of K in S,

(2) The strong unstable manifold of any x ∈ K intersect K only at x (i.e., W uu(x)∩ K =
{x}).

Remarks 1.1. (1) In all the text compact manifold with boundary means compact

manifold, possibly with boundary.

(2) The submanifold S is in general not unique: if S′ is another submanifold the

intersection S ∩ S′ could be reduced to K , as for the center manifolds of a fixed

point.

(3) The implication 1⇒ 2 in the main theorem is immediate: if K is contained in S and

if x, y ∈ K share the same strong unstable manifold, the points x ′ = f −n(x), y′ =
f −n(y) for n > 0 large belong to a same local strong unstable manifold. The

transversality between Tx S = Ec(x) and Tx W uu
x = Euu(x) implies that x ′ = y′, and

hence that x = y.

(4) After we wrote a first version of this text, Geneviève Raugel mentioned to us that

center manifolds for partially hyperbolic invariant sets have been also built before

by Chow, Liu, and Yi [3] for flows generated by a vector fields under different

assumptions: they require that the set is tangent at each point to its center bundle

and that its geometry is ‘bounded’ (admissibility condition). Our result shows that

their second assumption is not necessary, and that the first one can be replaced by

a dynamical property on the strong unstable lamination, which is easier to check

in practice. Our assumptions are optimal since we get an equivalence.

The compact set K is not necessarily the maximal invariant set in a neighborhood.

The corollary below extends the conclusion of the theorem to the maximal invariant set

of a neighborhood.
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Corollary 1.2. Under the conclusion of the main theorem, there is a neighborhood U of

K such that the maximal invariant set 3 in U is contained in the interior of S.

We consider now an invariant compact set K having a D f -invariant partially hyperbolic

splitting in three bundles T M |K = E ss
⊕ Ec

⊕ Euu , with strong stable, center, and strong

unstable directions E ss , Ec, and Euu , respectively.1 The strong stable manifolds W ss(x)
of the points of K are the strong unstable manifolds, tangent to E ss(x), for f −1.

Corollary 1.3. Let K be a compact invariant set of a diffeomorphism f , admitting

a partially hyperbolic splitting T M |K = E ss
⊕ Ec

⊕ Euu. Then there is a compact

C1-submanifold S with boundary which contains K in its interior, is tangent to Ec at

each point of K , and is locally invariant, if and only if the strong stable and strong

unstable manifolds of any point x ∈ K intersect K only at x (i.e., W uu(x)∩ K = {x} =
W ss(x)∩ K ).

We will sometimes reformulate the assumptions on K with the following terminology.

We will say that a partially hyperbolic set K admits a strong stable or a strong unstable

connection if there is x ∈ K such that W ss(x) or W uu(x), respectively, meets K in a

point different from x . A compact invariant set K , endowed with a partially hyperbolic

structure of type E ss
⊕ Ec, Ec

⊕ Euu , or E ss
⊕ Ec

⊕ Euu , has no strong connection if it

has no strong stable connection, no strong unstable connection, or no strong stable or

strong unstable connection, respectively.

In the previous statements, the locally invariant submanifold S is tangent to the center

direction so that it is normally hyperbolic. In particular, it persists by small perturbations.

Corollary 1.4. Under the conclusion of the main theorem, there exists a submanifold

with boundary S′ ⊂ S ∩ f (S) which contains a neighborhood of K in S, and there exist a

C1-neighborhood U of f and a neighborhood U of K such that, for any g ∈ U ,

– the maximal invariant set 3g of g in U is contained in a submanifold Sg, C1-close

to S,

– Sg ∩ g(Sg) contains a submanifold S′g, C1-close to S′,

– Sg and S′g depend continuously on g for the C1-topology.

In order to describe the local dynamics of f and of its perturbations in the

neighborhood of K we are therefore reduced to understanding the dynamics restricted

to S. As S is a C1-submanifold, the induced local diffeomorphism (defined in a

neighborhood of K in S) cannot be a priori more regular than C1. The standard results

on normal hyperbolicity (see [12]) ensure anyway some better smoothness on S when f
is more regular.2

1That is, the splittings in two bundles T M |K = (Ess
⊕ Ec)⊕ Euu and T M |K = (Euu

⊕ Ec)⊕ Ess are
partially hyperbolic for f and f −1, respectively (with strong unstable direction Euu and Ess ,
respectively).
2We recall that a map is Ck,α with k ∈ N and α ∈ (0, 1] if it is Ck and its kth derivative is α-Hölder with
locally uniform Hölder constant. In particular, a C1,1-map has a Lipschitz derivative. For r ∈ [0,+∞) \N,
a map is Cr if it is Ck,α with r = k+α.
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We say that a partially hyperbolic set K is r-normally hyperbolic, r > 1, if there are

constants λK > 1 and C > 0 such that for each x ∈ K , each n > 1, and each non-zero

vector vs
∈ E ss, vc

∈ Ec, vu
∈ Euu at x , one has

Cλn
K
‖D f n(x)vs

‖

‖vs‖
<

[
‖D f n(x)vc

‖

‖vc‖

]r

< C−1λ−n
K
‖D f n(x)vu

‖

‖vu‖
.

Corollary 1.5. Under the conclusion of the main theorem,

– if f is Cr and K is r-normally hyperbolic, then S can be chosen Cr;

– if f is Cr , r > 1, then S can be chosen C1,α for some α > 0.

The study of C1-diffeomorphisms sometimes uses approximation by more regular

diffeomorphisms (see for instance [19]). For this reason, when f and S are only C1,

we are interested in getting a more regular submanifold, by a C1-perturbation of f .

Proposition 1.6. Under the conclusion of the main theorem, there exist a neighborhood U
of K and a submanifold with boundary S′ ⊂ S ∩ f (S) containing U ∩ S with the following

property.

There exist a C∞-diffeomorphism g and some C∞ submanifolds with boundary S′g, Sg

which are arbitrarily close to f , S′, and S for the C1-topology such that

– the maximal invariant set 3g of g in U is contained in Sg,

– Sg ∩ f (Sg) contains the submanifold S′g.

Even if f is a smooth diffeomorphism, we do not know if it is possible to chose g
Cr -close to f , r > 1, in Proposition 1.6.

1.2. Dynamical consequences

Partially hyperbolic dynamics with center dimension equal to 1. For a compact partially

hyperbolic set without strong stable and strong unstable connections, we may obtain a

better description of the local dynamics if the dimension of the center direction is very

small. The following corollary asserts that, when the center direction is one dimensional,

we can perturb the diffeomorphism in order to get a dynamics which is locally of

Morse–Smale type.

Corollary 1.7. Let K be a compact invariant set endowed with a partially hyperbolic

structure whose center bundle is one dimensional, and assume that K has no strong

connection. Then, there is a compact neighborhood U of K and, for any C1-neighborhood

U of f , there is a diffeomorphism g ∈ U such that the maximal invariant set 3g in U
satisfies the following.

– The set of periodic orbits in 3g is finite; each periodic point is contained in the interior

of U and is hyperbolic.

– The set of non-periodic points in 3g decomposes into finitely many orbits of compact

segments; each of them is contained in the transverse intersection of the stable manifold

W s(O1) and of the unstable manifold W u(O2) of two periodic orbits O1, O2 ∈ 3g.
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For the initial dynamics f , any forward orbit in K accumulates on a periodic circle or

on a periodic orbit, or on a Cantor set (a minimal set conjugated to the return map on

a family of sections of an ‘exceptional minimal set’ for a C1-vector field on a compact

surface).

This result may be related with an extension by Pujals and Sambarino of

Mañé’s theorem [13] about the hyperbolicity of one-dimensional endomorphisms to

higher-dimensional diffeomorphisms; see [19] and generalizations [8, 20]:

Let K be a compact invariant set of a C2 Kupka–Smale diffeomorphism f , with a

partially hyperbolic splitting T M|K = E ss
⊕ Ec, where Ec is one dimensional. Consider

the maximal invariant set 3 of f in a small neighborhood of K. Then the chain-recurrent

set of f in 3 consists of finitely many normally hyperbolic attracting periodic circles, and

finitely many hyperbolic sets.

Palis’ hyperbolicity conjecture. A conjecture by Palis claims that any diffeomorphism

may be C1-approximated by Axiom A diffeomorphisms, or by diffeomorphisms which

present a homoclinic tangency (a non-transverse intersection between the stable and

unstable manifolds of a hyperbolic periodic orbit) or a heterodimensional cycle (two

hyperbolic periodic orbits with different stable dimensions linked by two heteroclinic

orbits).

This conjecture has been solved on surfaces [19], and our main theorem allows us to

generalize in some cases to higher dimensions3 (see also [7, § 2.7]).

Corollary 1.8. Let U be a filtrating set of a diffeomorphism f such that the maximal

invariant set 3 of f in U admits a partially hyperbolic splitting whose center bundle has

its dimension equal to 2. We assume furthermore that 3 has no strong connection. Then,

in any C1-neighborhood U of f there is a diffeomorphism g ∈ U verifying one of the two

following properties:

– either there is a hyperbolic periodic saddle x ∈ U of g whose invariant manifolds present

a homoclinic tangency along an orbit of a point y ∈ U;

– or g verifies the ‘Axiom A + no cycle condition’ in U: the chain-recurrent set R(g)∩U
in U consists in finitely many hyperbolic transitive sets.

The previous conjecture has motivated studies of diffeomorphisms ‘far from homoclinic

tangency’ or ‘far from heterodimensional cycles’. For instance, Wen has shown that

the minimally non-hyperbolic sets of diffeomorphisms C1-far from tangencies and

from heterodimensional cycles are partially hyperbolic with a one-dimensional or

3A point x is called chain recurrent if f admits ε-pseudo orbits starting and ending at x , for any ε > 0.
On the set R( f ) of chain-recurrent points, one defines a equivalence relation as follows: two points
x, y ∈ R( f ) are equivalent if there are ε-pseudo orbits starting at x and ending at y, and conversely
starting at y and ending at x , for any ε > 0. The chain-recurrence classes are the equivalence classes of
this relation, inducing a partition of R( f ) in invariant compact sets.

A trapping region of a diffeomorphism is an open set U such that f (U ) is contained in U . A filtrating set
is the intersection of a trapping region U of f with a trapping region V of f −1. One fundamental property
of the trapping regions is that a chain-recurrence class of f meeting a trapping region is contained in it.
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two-dimensional center bundle (see [22], and its global generalization [5]), reducing the

conjecture to the partially hyperbolic setting.

The following proposition shows that the hypotheses ‘without strong connection’ and

‘far from heterodimensional cycle’ are related. We recall that two hyperbolic periodic

orbits are homoclinically related if they belong to a same transitive hyperbolic set; the

homoclinic class of a hyperbolic periodic point p is the closure of the union of the

transitive hyperbolic sets containing p.

Proposition 1.9. Consider a diffeomorphism f and a compact invariant set K admitting

a partially hyperbolic structure whose center bundle is one dimensional. If there exists

a dense sequence of periodic orbits (On) in K that are homoclinically related and whose

center Lyapunov exponents is positive and converge to zero, then

– either there are diffeomorphisms arbitrarily C1-close to f having a heterodimensional

cycle;

– or for any periodic point x ∈ K homoclinically related to the On one has W uu(x) ∩
K = {x}.
When the second case is not satisfied, one says that K has a strong unstable connection

at the periodic point x . Using a connecting lemma one can then by a C1-perturbation

create a strong unstable homoclinic intersection at x , i.e., an intersection between the

strong unstable manifold of the orbit of x and its stable manifold. By unfolding this

intersection, one can create a strong homoclinic intersection associated to other periodic

orbits: some of them have a center exponent close to 0, and this allows one to create

a heterodimensional cycle by another C1-perturbation, which implies the proposition

(see [18, § 2.3.2] and [7, § 2.5]).

At the time we obtained Proposition 1.9, it became for us the main motivation for this

work. More precisely, one can ask the following question.

Question 1.10. Let f be a diffeomorphism, U be a C1-neighborhood of f , and p be a

hyperbolic periodic point such that for any g ∈ U the homoclinic class H(p, g) of the

hyperbolic continuation pg of p admits a partially hyperbolic structure whose center

bundle is one dimensional and expanded along the orbit of pg. Does one of the following

cases hold?

– Either there is g ∈ U such that H(p, g) has a strong unstable connection at a periodic
point x homoclinically related to pg.

– Or there exists a non-empty open subset V ⊂ U such that H(p, g), for any g ∈ V, has

no strong unstable connection.

Assuming that the center bundle of H(p) is not uniformly expanded, one can expect to

show that there exist periodic orbits homoclinically related to p whose center exponent

is arbitrarily close to 0. In the first case of question 1.10, Proposition 1.9 gives a

heterodimensional cycle after a C1-perturbation of f . In the second case, the main

theorem shows that the dynamics reduces to a submanifold transverse to the strong

unstable bundle: the center direction becomes an extremal one-dimensional bundle

and [20] contradicts the fact that it is not uniformly expanded.
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A positive answer to question 1.10 would thus be an important progress for Palis’

conjecture. It has been obtained recently in [7, Theorem 10] for quasi-attractors, and

(with other results, including the present paper) a weak version of the conjecture has

been proved: any diffeomorphism may be C1-approximated by diffeomorphisms that are

essentially hyperbolic or that present a homoclinic tangency or a heterodimensional cycle.

Invariant foliations of surface hyperbolic sets. The local stable set of a hyperbolic set

K supports a natural invariant lamination whose leaves are the stable manifolds. It is

sometimes useful to extend it as a foliation Ls which is locally invariant : there exists

an neighborhood U of K such that, for any x close to K , the connected components of

f (Ls
x )∩U and of Ls

f (x) ∩U containing f (x) coincide. This has been used for instance

in the original works on the Newhouse phenomenon [14, 15] and in the proof of the

structural stability for hyperbolic surface diffeomorphisms [9]. The following well-known

result becomes a simple consequence of our main theorem. It asserts that a C2 surface

diffeomorphism near a hyperbolic set is ‘C1-conjugated to a product’.

Corollary 1.11. Let f be a C2-surface diffeomorphism and K be an invariant compact set

which is hyperbolic. Then, there exists a C1-foliation locally invariant in a neighborhood

of K which is tangent to the stable bundle of K. If moreover f is Cr , r > 2, then the

foliation can be chosen C1,α, for some α > 0.

We do not assume that K is the maximal invariant set in a neighborhood. For a classical

proof, see [16, Appendix 1].

Newhouse phenomenon in dimension larger than or equal to 3. Newhouse has

shown [14, 15] that, among C2-diffeomorphisms of a surface, the existence of a homoclinic

tangency for f generates an open set U of diffeomorphisms close exhibiting

– persistent tangencies: there exists a transitive hyperbolic set whose local stable and

local unstable sets have a non-transverse intersection for any diffeomorphism g ∈ U),

– generic wild dynamics: there exist infinitely many sinks or sources for any

diffeomorphism in a dense Gδ subset of U .

These properties have been generalized to higher dimension by Palis and Viana [17]

for diffeomorphisms exhibiting a sectionally dissipative homoclinic tangency, whereas

Romero [21] has obtained the first property for diffeomorphisms exhibiting an arbitrary

homoclinic tangency. Their proof tries to reduce to the dimension 2 by either building

a locally invariant C2 surface which support part of the dynamics, or by building an

‘intrinsic two-dimensional differentiable structure’.

The second author and Nicolas Gourmelon have noticed [6] that it is possible to recover

these results using the two following ingredients.

– After perturbation, the homoclinic tangency satisfies a generic condition and the main

theorem can be applied: the dynamics in a neighborhood of the homoclinic tangency is

contained in a C1,α-surface. This allows one to reduce to the dimension 2 as expected;

however, the smoothness of the induced dynamics is a priori less than C2.
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– The Newhouse phenomenon on surfaces also holds for α ∈ (0, 1) in the space of

C1,α-diffeomorphisms whose C1,α norm is bounded, endowed with the C1-topology.

1.3. Strategy of the proof, and structure of the paper

The Main Theorem is obtained in two steps.

– In § 3, we use Whitney’s extension theorem in order to build a submanifold S tangent

to the center direction which contains K.

– In § 4, we implement a graph transform argument in order to modify this submanifold

and get the local invariance.

Section 2 is devoted to classical preliminary results. The corollaries are proved in § 5.

The general strategy of [3] also follows these two steps, but there are two important

differences (beyond the fact that we deal with diffeomorphisms). In the first step, we relate

the assumptions of Whitney’s theorem to the lack of strong connections. In the second

step, we implement the graph transform argument in a different way, which explains why

the admissibility condition does not appear in our work. A key point in our proof is to

choose carefully the neighborhood where the graph transform is defined: it has to be

small, and much thinner along the strong directions (see Proposition 4.9).

2. Preliminaries

In this section, we recall results about distances to a compact set and dominated

splittings.

Notation. In the whole paper, we denote by L · v the image of v by the linear map L.

2.1. Smoothing the distance to a compact set

We will need to consider a smooth function which evaluates the distance to a compact

set.

Proposition 2.1. Let Σ be a compact Riemannian manifold with boundary.

Then, there exists a constant CΣ > 0 such that for any disjoint compact sets K , L ⊂
Σ there is a function ϕ : Σ → [0, 1] which is as smooth as the manifold Σ, such that

ϕ−1(0) = K , ϕ−1(1) = L, and such that the norm of the differential Dϕ is bounded by
CΣ

d(K ,L) , where d(K , L) = inf{d(x, y) | x ∈ K and y ∈ L}.

We first prove the result in Rn .

Lemma 2.2. For n > 1, there exists a constant 1(n) > 0 such that for any disjoint

compact subsets K , L ⊂ Rn there is a smooth function ϕ : Rn
→ [0, 1] such that ϕ−1(0) =

K , ϕ−1(1) = L, and whose derivative has a norm bounded by 1(n) d(K , L).

Proof. Let us choose ε > 0 small, and introduce a smooth function h : [−(1+ ε), 1+
ε]n → [0, 1] which coincides with zero on a neighborhood of the boundary of the cube

[−(1+ ε), 1+ ε]n and with 1 on a neighborhood of [−1, 1]n .
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For k > 0, let Pk be the dyadic partitions of Rn which is the collection of cubes of the

form

C = [−2−(k+1), 2−(k+1)
] + 2−k V,

where V is a vector in Zn . One also defines the larger cubes

Cε = [−2−(k+1)(1+ ε), 2−(k+1)(1+ ε)] + 2−k V,

Ĉ = [−3× 2−(k+1), 3× 2−(k+1)
] + 2−k V .

For k > 0, the cube Ĉ is a union of cubes of Pk .

We associate to the cube C the function h : Cε → [0, 1] defined by

hC : x 7→ ak h((x − V )2k+1),

for some ak ∈ (0, 2−k
]. Its derivative is bounded by some constant D, uniform in k. We

choose a0 = 1 so that for k = 0 the map hC is bounded from below by 1 on C .

Let K ⊂ Rn be a compact set, and consider the collection C of cubes C which satisfy

the following:

– C ∈ Pk for some k > 0,

– the larger cube Ĉ is disjoint from K ,

– if k 6= 0, there is no cube C ′ ∈ Pk−1 containing C such that Ĉ ′ is disjoint from K .

Note that the cubes of C cover U = Rn
\ K and have disjoint interior. Moreover, two cubes

C,C ′ ∈ C that are adjacent belong to partitions Pk,Pk′ with |k′− k| 6 1. In particular

,any point x ∈ U belongs to at most 2n cubes Cε associated to C ∈ C.

The function ϕK defined on Rn
\ K by

ϕK =
∑
C∈C

hC

is thus positive, smooth, and bounded by 2d . It is bounded from below by 1 outside the

2d-neighborhood of K (this neighborhood is covered by cubes C ∈ C ∩P0). Its derivative

is bounded by 2n D. Note also that, if the sequence ak decreases fast enough to zero as

k →+∞, then one can extend ϕK by 0 on K and get a smooth function of Rn .

If K , L ⊂ Rn are two disjoint compact subsets of Rn , one may define

ϕ =
ϕK

ϕK +ϕL

which is smooth, has values in [0, 1], and satisfies moreover ϕ−1(K ) = 0 and ϕ−1(L) = 1.

Its derivative is bounded by

‖Dϕ‖ 6 2
‖DϕK ‖+‖DϕL‖

ϕK +ϕL
.

Let us assume that the distance between K and L is equal to 2n. The sum ϕK +ϕL is

thus bounded from below by 1 everywhere, and ‖Dϕ‖ is smaller than 2n+2 D
2n d(K , L).

One can reduce to the case when the distance from K to L is equal to 2n by taking

the image by an homothety. The lemma thus holds for 1(n) = 2n+2 D
2n .
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We now prove the manifold case.

Proof of Proposition 2.1. Let us consider a finite collection of charts ψi : Ui → Rn of Σ ,

i = 1, . . . , `, whose union coincides with Σ . Let us choose a partition of the unity, i.e.,

some functions θi : Ui → [0, 1] such that

–
∑

i θi (x) = 1 at any point x ∈ Σ ,

– for each i , the support Qi of θi is a compact subset of Ui .

If K , L are two compact subsets of Σ , one can consider the function ϕ̃i : Rn
→ [0, 1]

associated to the compact sets Ki := ψi (K ∩ Qi ) and L i := ψi (L ∩ Qi ) by Lemma 2.2.

Note that ϕi := θi × ( ϕ̃i ◦ψi ) satisfies the following:

– 0 < ϕi (x) < θi (x) for points of the interior of Qi \ (K ∪ L),

– ϕi (x) = 0 for x ∈ K ,

– ϕi (x) = θi for x ∈ L,

– the derivative of ϕi is bounded by Ci/d(ψi (Ki , L i ) where Ci does not depend on

K , L.

Since any x ∈ Σ \ (K ∪ L) belongs to the interior of some Qi , one deduces that ϕ :=
∑

i ϕi
is equal to 0 on K , to 1 on L, and has values inside (0, 1) elsewhere. Its derivative is

bounded by

‖Dϕ‖ 6
∑

i

Ci

d(ψi (Ki ), ψi (L i ))
6
∑

i

Ci · L i

d(K ∩ Qi , L ∩ Qi )
,

where L i bounds the Lipschitz constant of ψ−1
i . The function ϕ is as smooth as the charts

ψi and the manifold Σ . The proposition thus holds with CΣ =
∑

i Ci L i .

2.2. Cone fields and dominated splitting

We recall here well-known facts about dominated splitting and cone fields. This section

is used in order to control the smoothness of the center manifold, and can be skipped at

a first reading.

Definition 2.3. A continuous cone field C of dimension d is a family of closed cones

C(x) ⊂ Tx M such that

– C(x) = Interior(C(x)) for the topology on Tx M ;

– for each x ∈ M , there exists a d-dimensional subspace contained in Interior(C(x))∪
{0} and a (dim(M)− d)-dimensional space disjoint from C(x) \ {0};

– the set of unit vectors of C(x) and the set of unit vectors of Tx M \ Interior(C(x))
depend continuously on x for the Hausdorff topology.

The collection of cones Tx M \ Interior(C(x)) is a continuous cone field, called the

complementary cone field. A d-dimensional C1-submanifold S ⊂ M is tangent to C if

Tx S ⊂ C(x) for each x ∈ S.

The cone field C is transverse to a submersion π : M → Σ0 if, for each x ∈ Σ0 and

z ∈ π−1(z), the tangent space at z of the fiber Tzπ
−1(x) and C(z) \ {0} are disjoint.
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2.2.1. Contracted cone fields. The notion of a contracted cone field is usually

defined for diffeomorphisms. We allow here non-surjective tangent maps, which will be

necessary when we will consider graph transforms.

Let us consider a C1-map 9 : U → M defined on an open subset U ⊂ M .

Definition 2.4. For r > 1, the cone field C is r-contracted by 9 if there exist λ > 1 and

n0 > 1 such that, for any n > n0, and any x in U ∩9−1(U )∩ · · · ∩9−n+1(U ), we have

– D9n(x) · C(x) ⊂ C(9n(x)),

– D9n(x) · u is non-zero if u ∈ C(x) \ {0},
– for any unit vectors u, v ∈ Tx M such that u ∈ C(x) and D9n(x) · v /∈ C(9n(x)),

min(‖D9n(x) · u‖, ‖D9n(x) · u‖r ) > λn
‖D9n(x) · v‖.

When r = 1, we simply say that the cone field is contracted.

Remarks 2.5. (1) The second item implies that, if a submanifold S is tangent to C and

invariant by 9, then the restriction 9|S is a local diffeomorphism.

(2) We want that an r -contracted cone field is also r ′-contracted for any r ′ ∈ [1, r ].
This is the reason why the minimum min(‖D9n(x) · u‖, ‖D9n(x) · u‖r ) appears in

the third item. Up to replacing U by any open set U ′ relatively compact in U , a

contracted cone field is also r -contracted for some r > 1 (with the same constant n0).

(3) If 9 is a diffeomorphism and if C is contracted, the complementary cone field is

contracted by f −1.

Let us define, for n > 1 and z ∈ 9(U )∩ · · · ∩9n(U ), the cone Cn(z) := D9n(9−n(z)) ·
C(9−n(z)), and for x ∈ U ∩ · · · ∩9−n+1(U ), the cone C−n(x) := D9−n(9n(x)) · C(9n(x)).
The following lemma justifies that the cone field is contracted.

Lemma 2.6. If the cone field C is contracted, there exist C1 > 0, λ > 1 such that, for

any n > 1 and z ∈ 9(U )∩ · · · ∩9n(U ), the cone Cn(z) is exponentially thin: there exists

a d-dimensional space F ⊂ Cn(z) and, for any unit vector u ∈ Cn(z), there is w ∈ F such

that ‖w− u‖ 6 C1λ
−n. Similarly, for x ∈ U ∩ · · · ∩9−n+1(U ), the cone Tx M \ C−n(x) is

exponentially thin.

Proof. The proof will use the following claim.

Claim 2.7. There exist m0 > 1 and σ > 0 such that, for any n > m0, the angle between

the vectors u and v in the third item of Definition 2.4 is bounded from below by σ. The

same holds for the angle between D9n(x) · u and D9n(x) · v, if this last vector is not zero.

Proof. One chooses k in [m0/3, 2m0/3]. If m0 is large enough, we have λk > 2. By

invariance of C, we get that D9k(x) · v /∈ C(9k(x)), so that by the cone contraction

‖D9k(x) · u‖ > 2‖D9k(x) · v‖. Since ‖D9k
‖ is bounded, this implies that the angle

between u and v is bounded from below, proving that the angle between u and v is

bounded away from zero when n > m0. A similar argument holds for D9n(x) · u and

D9n(x) · v.
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Let us prove now the statement of the lemma. We set x = 9−n(z). By the definition of

the cone field, there exists a d-dimensional space F0 ⊂ C(x) such that F := D9n(x) · F0
is also d-dimensional. Similarly, there exists a transverse (dim(M)− d)-dimensional space

E ⊂ Tz M which is not contained in C(z). One can thus decompose any unit vector u ∈
Cn(z) as w+ v with w ∈ F and v ∈ E . By definition, u has a preimage u0 ∈ C(x) and

w also. Hence, there exists a preimage v0 ∈ Tx M of v = u−w by D9n(x). The cone

contraction gives, since u is a unit vector,

‖v‖ 6 λ−n ‖v0‖

‖u0‖
.

One may assume that v0 6= 0. Since v0 is the preimage by D9n(x) of a vector v /∈ C(z)
and u0− v0 belongs to C(x), the angle between u0− v0 and v0 is bounded from below

by σ . One deduces that ‖v0‖
‖u0‖

is uniformly bounded; hence there exists C1 > 0 such that
‖v0‖
‖u0‖

< C1. This gives the required estimate.

The argument for Tx M \ C−n(z) is very similar after noting that D9−n(z) · E is a

(dim(M)− d)-linear space contained in (Tx M \ C(x))∪ {0}.
Let us denote by m(D9n(x)) the infimum of the norms ‖D9n(x) · u‖ over unit vectors

u ∈ Tx M . Here is another consequence of cone contraction.

Lemma 2.8. If the cone C is contracted, there exists C2 > 0 such that, for any n > 1, any

x ∈ U ∩9−1(U )∩ · · · ∩9−n+1(U ), and any unit vector u ∈ Tx M, we have

‖D9n(x) · u‖ > C2 m(D9n(x)|Tx M\C−n(x)).

Proof. Any unit vector u ∈ Tx M decomposes as u = u1+ u2 such that u1 ∈ C(x) and

u2 ∈ Tx M \ C−n(x). By Claim 2.7, the angle between D9k
· u1 and D9k

· u2 is uniformly

bounded away from zero for any k ∈ {0, . . . , n} (unless one of these vectors is zero). As a

consequence,

‖D9n
· u‖ > C̃ max

(
m(D9n

|C(x)) ‖u1‖ , m(D9n
|Tx M\C−n(x)) ‖u2‖

)
.

This concludes the proof after noting that max(‖u1‖, ‖u2‖) is bounded away from below

and that m(D9n
|C(x)) > m(D9n

|Tx M\C−n(x)) by the cone contraction.

2.2.2. Dominated splitting. In order to prove higher smoothness in Corollary 1.5,

we extend the usual definition of dominated splitting to the notion of r -dominated

splitting. It is related to the dominated splitting as the r -hyperbolicity in [12] is related

to the hyperbolicity.

The existence of a dominated splitting and of a contracted cone field are two close

properties.

Definition 2.9. Let us consider an invariant compact set K for a diffeomorphism f and

an invariant splitting T M|K = E ⊕ F . We say that E is r-dominated by F if there exist

C ′ > 0, λ > 1, and n > 1 such that for any unit vectors u ∈ E(x) and v ∈ F(x) we have

max(‖D f n(x) · u‖, ‖D f n(x) · u‖r ) < C ′−1
λ−n
‖D f n(x)v‖.
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One can extend the bundles Ec, Euu as two (non-invariant) continuous bundles E, F
over a neighborhood U of K . For any x ∈ U and any β > 0, one defines the cone field

associated to the splitting E ⊕ F and to the Riemannian metric:

Cβ(x) = {w ∈ Tx M | ∃u ∈ E(x), ∃v ∈ F(x), w = u+ v, ‖u‖ 6 β‖v‖}. (1)

For β ′ < β and n > 1 such that C ′λ−nβ < β ′, we have, for any x close to K ,

D f n(Cβ(x)) ⊂ Cβ ′( f (x)).

Lemma 2.10. If 9 is a diffeomorphism between U and its image, if K ⊂ U is an invariant

compact set, and d > 1 an integer, there exists a dominated splitting T M|K = E ⊕ F
with d = dim(F(x)) for each x ∈ K, if and only if there exists a contracted cone field of

dimension d on a neighborhood of K.

The bundle F is r-dominated by E for f = 9−1 if and only if there exists a cone field

of dimension d on a neighborhood of K which is r-contracted by 9.

Proof. The contracted cone field can be defined from a dominated splitting as in (1).

Conversely, if there exists a contracted cone field, C, we first note that the complementary

cone field is contracted by f −1. The intersection of the cones Cn(x) as in Lemma 2.6

defines at each point x ∈ K a d-dimensional space F(x). Considering the complementary

cone field, we also obtain a (dim(M)− d)-dimensional space E(x) and, by the definition

of contracted cones, the splitting Tx M = E(x)⊕ F(x) is dominated. The second part of

the lemma is obtained similarly.

2.2.3. Lift to Grassmannian bundles: the r-contracted case. In order to prove

that an invariant submanifold is Cr , we will prove that its lift in a Grassmannian bundle

is Cr−1. We explain here how to lift the dynamics. The 2-domination allows to get a

domination of the lift dynamics.

Let us fix a contracted continuous cone field C of dimension d. Let p : G(d,M)→ M
be the Grassmannian bundle of d-dimensional tangent spaces. We define Û , the interior

of the set of d-dimensional tangent spaces E contained in a cone C(x) for some x ∈ U .

One gets a surjective submersion p : Û → U . By the second item of Definition 2.4, D9
induces a continuous map

9̂ : Û → G(d,M).

Note that 9̂ is Cr−1 if 9 is Cr . Moreover, 9̂ is a diffeomorphism if 9 is a

C2-diffeomorphism.

Proposition 2.11. If 9 is C2, the map 9̂ contracts the fibers of p : Û → U . More

precisely, there exists C3 > 0 such that, for any n > 1, and for P ∈ Û ∩ · · · ∩ 9̂−n+1(Û ),
denoting x = p(P),

‖D9̂(P)|p−1(x)‖ 6 C3‖D9n(x)|Tx M\C−n(x)‖ m(D9n(x)|C(x))−1 < C3λ
n .

Proof. For any two d-spaces P, P ′ in Tx M , one can consider the linear map L : P →
P⊥ whose graph is P ′. The tangent space at P ∈ p−1(x) to the fiber of p may thus
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be identified to the space of linear maps L : P → P⊥ and D9̂ acts by conjugacy. For

x ∈ U ∩9−1(U )∩ · · · ∩9−n+1(U ),

D9̂n(L) = 5(Pn, P⊥n ) ◦ D9n(x) ◦ L ◦ D9−n( f n(x)),

where 5(F, E) denotes the orthogonal projection on E parallel to F and Pn = D9n(x) ·
P. Let us consider a (dim(M)− d)-dimensional space E ′ in T9n(x)M disjoint from

C(9n(x)) \ {0} and its pre-image E = D9−n(E ′). The projection between E and P⊥

parallel to P is uniformly bounded and has a uniformly bounded inverse. The same

holds for the projection between D9n(x) · E and (D9n(x) · P)⊥ parallel to D9n(x) · P
(this is a consequence of Claim 2.7). One deduces that the norm of the linear map of

D9n(x) restricted to E and the norm of 5(Pn, P⊥n ) ◦ D9n(x) restricted to P⊥ are equal

up to a factor bounded by a uniform constant C3:

‖D9̂n(P)‖ 6 C3 ‖D9n(x)|E‖ m(D9n(x)|P )−1.

Together with the cone contraction, this concludes the proof.

Proposition 2.12. If 9 is C2 and if C is r-contracted with r > 2, then there exists an

(r − 1)-contracted cone field Ĉ for 9̂, of dimension d, which is transverse to p. One can

build Ĉ to contain any compact set of vectors v ∈ T G(d,M) such that Dp · v ∈ C \ {0}. If

C is transverse to a submersion π , then one can build Ĉ to be transverse to π ◦ p.

Proof. We define at each point P ∈ G(d,M) the space G(P) tangent to the fibers of p
and H(P) a transverse space (for instance the normal space to G(P) for an arbitrary

Riemannian structure), so that G, H are two smooth transverse bundles and Dp induces

an isomorphism between the bundles H and T M . One can thus pull back the Riemannian

metric of M as a metric ‖ · ‖H on H . Let us consider an arbitrary metric ‖ · ‖G on the

bundle G, and define ‖ · ‖ = (‖ · ‖2H + ε
2
‖ · ‖

2
G)

1/2 a Riemannian metric on G(d,M) for

some ε > 0 small. Note that for any vector v at P we have ‖Dp · v‖ 6 ‖v‖, with equality

if v is tangent to H(P).
We then define Ĉ(P) as the set of vectors v at P such that ‖Dp · v‖ > 1

√
2
‖v‖ and

Dp · v ∈ C(x) with x = p(P). If E is a d-dimensional subspace contained in C(x) and F a

(dim(T )− d)-dimensional transverse subspace disjoint from C(x) \ {0}, then Ĉ(P) contains

Dp−1(E)∩ HP and is disjoint from Dp−1(F) \ {0}. Hence Ĉ is a continuous cone field of
dimension d transverse to p. If C is transverse to a submersion π , one may choose for

F the tangent space at x of the fiber of π , which implies that Ĉ is transverse to the

submersion π ◦ p.

Let us choose n0 > 1 large enough. The small constant ε > 0 will be fixed later. In

order to prove that Definition 2.4 is satisfied, it will be enough to check it for any n ∈
{n0, . . . , 2n0}. For any P ∈ Û ∩ · · · ∩ 9̂−n+1(Û ), we set x = p(P) and take any v ∈ Ĉ(P).
By invariance of the cone field C we have Dp(9n(P)) · (Dψ̂n

· v) ∈ C(9n(x)). One can

decompose v = vH
+ vG according to the splitting H ⊕G. By definition of Ĉ, we have

vH
∈ C(x). By definition of the metric, we have ‖vH

‖H > ε‖vG
‖G .

The image w of vH by D9̂n decomposes as wH
+wG with ‖wG

‖G 6 K‖wH
‖H , where

K is a constant which controls the angle between the image D9̂n
· E of the bundle E and
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the fibers of p for any n0 6 n 6 2n0. For ε small, we get

‖wH
‖H > 2ε‖wG

‖G . (2)

Since the metric on H is defined by lifting the metric on U , we get

‖wH
‖H > m(D9n(x)|C(x)) ‖vH

‖H .

By Proposition 2.11, we have

C0‖D9n(P)|Tx M\C−n(x)‖ m(D9n(x)|C(x))−1
‖vG
‖G > ‖D9̂n(P) · vG

‖G .

Hence this gives

m(D9n(x)|C(x))−2
‖D9n(P)|Tx M\C−n(x)‖ ‖w

H
‖H >

ε

C0
‖D9̂n(P) · vG

‖G .

Since C is 2-contracted and n is large, m(D9n(x)−2
|C(x)) ‖D9

n(P)|Tx M\C−n(x)‖ is small, and

‖wH
‖H > 2ε‖D9̂n(P) · vG

‖G .

With (2), one deduces ‖wH
‖H > 1

2‖D9̂
n(P) · v‖, so that D9̂n(P) · v belongs to Ĉ(9n(P)).

This gives the first item of Definition 2.4.

By the second item of Definition 2.4, and since ‖wH
‖H = ‖D9n(x) · vH

‖H does not

vanish, the image D9̂n
· v is non-zero. Hence the second item of Definition 2.4 is satisfied.

Let us fix two unit vectors u ∈ Ĉ(P), v ∈ T Û \ Ĉ−n(P) and n ∈ {n0, . . . , 2n0}. We have

‖D9̂n(P) · u‖ > ‖Dp(D9̂n(P) · u)‖ = ‖D9n(x) · (Dp · u)‖ >
1
2

m(D9n(x)|C(x)).

For D9̂n
· v, two cases are possible. In the first case, ‖Dp(D9̂n

· v)‖ 6 1
2‖D9̂

n
· v‖. We

decompose as v = vH
+ vG and the image w = D9̂n

· vH as w = wH
+wG . As before,

we have ‖wG
‖G 6 K‖wH

‖H . The first case restates as ‖wH
‖H 6 ε‖wG

+ D9̂n
· vG
‖G .

Hence if ε has been chosen small enough ‖wG
‖G is much smaller than ‖D9̂n

· vG
‖G .

With Proposition 2.11, one gets

‖D9̂n
· v‖ 6 3ε ‖D9̂n

|p−1(x)‖G ‖v
G
‖G

6 3C3 ‖D9n(x)|Tx M\C−n(x)‖ m(D9n(x)|C(x))−1 ε‖vG
‖G .

Hence by the r -contraction of the cone field C, and since ε‖vG
‖G 6 ‖v‖ = 1, this gives

‖D9̂n
· v‖

min(‖D9̂n · u‖, ‖D9̂n · u‖r−1)
6

6εC3‖D9n(x)|Tx M\C−n(x)‖

min(m(D9n(x)|C(x))2,m(D9n(x)|C(x))r )
6 6εC3λ

−n .

In the other case, ‖Dp(D9̂n
· v))‖ > 1

2‖D9̂
n
· v‖, and Dp(D9̂n

· v) = D9n(Dp · v)
belongs to T U \ C. By the cone contraction, one gets

‖D9̂n
· v‖ 6 2‖Dp(D9̂n

· v))‖ = 2‖D9n(Dp · v)‖

6 2λ−n min(‖D9n(Dp · u)‖, ‖D9n(Dp · u)‖r ).

We also have ‖D9n(Dp · u)‖ = ‖Dp(D9̂n
· u)‖ 6 ‖D9̂n

· u‖. Consequently,

‖D9̂n
· v‖

min(‖D9̂n · u‖, ‖D9̂n · u‖r )
6 2λ−n .

In both cases, the third item of Definition 2.4 holds; hence the cone Ĉ is (r − 1)-contracted.

For ε > 0 small enough, Ĉ contains any compact set of vectors v satisfying Dp · v ∈
C \ {0}.
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2.2.4. Lifts to Grassmannian bundles: the bunched case. In Corollary 1.11,

we will prove the existence of locally constant foliations. These are built from locally

constant C1-vector fields that are obtained as invariant sections of the tangent bundle. A

different dominated splitting of the lift dynamics is used; it is a consequence of a bunching

property.

Definition 2.13. The cone field C is bunched if there exist λ > 1 and n0 > 1 such that,

for any n > n0, any x in U ∩9−1(U )∩ · · · ∩9−n+1(U ), and any unit vectors u, v ∈ C(x)
and w ∈ Tx M \ C−n(x), we have

‖D9n(x) ·w‖ < λ−n ‖D9
n(x) · u‖

‖D9n(x) · v‖
.

Remark 2.14. When 9 is a diffeomorphism and K is a partially hyperbolic invariant

set such that T M|K = E ss
⊕ Ec and dim(Ec) = 1, then the cone fields C associated to

Ec as in (1) on a neighborhood of K are bunched. Indeed, by Lemma 2.8, the vectors

in the cone field T M \ C−n are close to the bundle E ss , and hence are contracted by

forward iterations, while the vectors in the cone C become close to the bundle Ec after

a few iteration; since Ec is one-dimensional, the iterates of any two vectors u, v ∈ C are

almost collinear, and the ratio ‖D9
n(x)·u‖

‖D9n(x)·v‖ does not decay faster than the strong stable

contraction.

Proposition 2.15. Let 9 be a C2-diffeomorphism between U and its image, and let C be

a contracted cone field of dimension d. If the complementary cone field of C is bunched,

then there exists a continuous cone field Ĉ of dimension dim(M) on Û ⊂ G(d,M) which

is contracted by 9̂ and transverse to the submersion p.

Proof. With the same notation as in the proof of Proposition 2.12, we define in this case

Ĉ(P) as the set of vectors v at P such that ‖Dp · v‖ > 1
2‖v‖, and we obtain in this way a

continuous cone field of dimension dim(M) on G(d,M), transverse to p. Since 9̂ is a local

diffeomorphism, D9̂(x) · u does not vanish on non-zero vectors. It is enough to prove the

cone contraction for any integer n ∈ {n0, . . . , 2n0}, where n0 is large.

Let us consider v ∈ Ĉ(P). It decomposes as v = vH
+ vG . One can decompose the image

w = D9̂n
· vH as w = wH

+wG . On the one hand, having chosen ε small enough, one

has

2ε‖vG
‖G 6 ‖vH

‖H . (3)

On the other hand, by Lemma 2.8,

‖wH
‖H > m(D9n) ‖vH

‖H > m(D9n(x)) ε ‖vG
‖G > C2l m(D9n(x)|Tx M\C−n(x)) ε ‖v

G
‖G .

By Proposition 2.11 and the bunching, we have

2ε‖D9̂n
· vG
‖G 6 2εC3‖D9n(x)|Tx M\C−n(x)‖ m(D9n(x)|C(x))−1

‖vG
‖G

6 2C3C−1
2

‖D9n(x)|Tx M\C−n(x)‖

m(D9n(x)|Tx M\C−n(x)) m(D9n(x)|C(x))
‖wH
‖H 6 ‖wH

‖H .

Together with (3), this proves the first item of Definition 2.4.
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Let us fix two unit vectors u ∈ Ĉ(P), v ∈ T Û \ Ĉ−n(P), and n ∈ {n0, . . . , 2n0}. Arguing

as in the proof of Proposition 2.12, on the one hand we have

‖D9̂n(P) · u‖ >
1
2

m(D9n(x)) >
C2

2
m(D9n(x)|Tx M\C−n(x)).

On the other hand we have

‖D9̂n
· v‖ 6 3C3‖D9n(x)|Tx M\C−n(x)‖ m(D9n(x)|C(x))−1 ε‖vG

‖G .

Hence, by the bunching of the cone field C, and since ε‖vG
‖G 6 ‖v‖, this gives

‖D9̂n
· v‖

‖D9̂n · u‖
6

6εC3C−1
2 ‖D9

n(x)|Tx M\C−n(x)‖

m(D9n(x)|Tx M\C−n(x)) ·m(D9n(x)|C(x))
6 6εC3C−1

2 λ−n .

This gives the last item of Definition 2.4, and hence the contraction of the cone field C.

3. Existence of submanifolds carrying a compact set

Let K be a subset of the n-dimensional manifold M .

Definition 3.1. At each point z ∈ K the tangent set Tz K of K is defined as follow.

For any chart ϕ : U → Rn centered at z, and for ε > 0, one considers the compact set

τε = Closure
{
v ∈ Rn, ∃x, y ∈ ϕ(K )∩ B(z, ε), x 6= y and v =

x − y
‖x − y‖

}
.

One denotes by τ0 the intersection
⋂
ε>0 τε, and by T the linear subspace of Rn generated

by τ0. The pull-back Tz K := (Dzϕ)
−1(T ) does not depend on the choice of the chart ϕ.

It is clear that a necessary condition for K to be contained in a d-dimensional

submanifold of M is that each Tx K is contained in a continuous subbundle of dimension

d of the restriction of T M over K . The next theorem is an easy consequence of Whitney’s

extension theorem, and it asserts that this condition is also sufficient.

Theorem 3.1. If K ⊂ M is a compact set and x 7→ E(x) ⊂ Tx M is a continuous

d-dimensional subbundle defined on K , such that Tx K ⊂ E(x) for any x ∈ K , then there

is a compact d-dimensional C1-submanifold with boundary Σ ⊂ M which contains K in

its interior. Furthermore, Σ is tangent to E(x) at each point x ∈ K .

We now consider the case when K is a partially hyperbolic set.

Corollary 3.2. Let f be a C1-diffeomorphism of M and K be a compact invariant

set admitting a partially hyperbolic structure T M|K = Ec
⊕ Euu, where d = dim(Ec).

If, for each x ∈ K , the intersection W uu(x)∩ K is reduced to {x}, then there exists a

compact d-dimensional C1-submanifold with boundary which contains K in its interior.

Furthermore, at each x ∈ K , it is tangent to Ec(x).

Remark 3.3. One can assume that Σ \ K is smooth. Indeed, one can modify Σ outside

a small neighborhood U of K by an arbitrarily small C1-perturbation, such that Σ \U
is smooth. A converging sequence of such perturbation when U decreases to K gives the

property.
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3.1. Whitney’s extension theorem: the solution of the local problem

One can find in [1, Appendix A] the following statement.

Whitney’s extension theorem. Let A ⊂ Rd be a closed subset, and let f : A→ Rn−d be

a continuous function. The two following properties are equivalent.

(1) f extends to a C1 function 8 : Rd
→ Rn−d .

(2) There is a continuous map D from A to the space of linear maps L(Rd ,Rn−d) such

that, if one defines the function R : A× A→ Rn−d by

R(x, y) = ( f (y)− f (x))− D(x)(y− x),

then for each z ∈ A the quantity ‖R(x,y)‖
‖y−x‖ tends to 0 as x 6= y tend to z.

Moreover, if f and D verify the second property, then the extension 8 can be chosen so

that Dx8 = D(x) at each x ∈ A.

It can be restated as follows.

Corollary 3.4. Let K ⊂ Rn be a compact set such that

– every (n− d)-dimensional affine space (x1, . . . , xd)×Rn−d meets K in at most one

point,

– for every x ∈ K there is a linear subspace E(x) ⊂ Rn of dimension d, transverse to

{0}d ×Rn−d , containing the tangent set Tx K of K at x,

– the map x 7→ E(x) is continuous.

Then K is contained in the graph 0 of a C1-map 8 : Rd
→ Rn−d , and the tangent space

Tx0 coincides with E(x) at each point x of K .

Proof. Let us denote by A the projection of K on Rd
×{0}n−d along the vertical direction:

K is the graph of a function f : A→ Rn−d . Since K is compact, this map is continuous.

For each point x , the d-dimensional space E(x) has been assumed to be transverse to

the vertical direction so that it is the graph of a linear map D(x) : Rd
→ Rn−d . The map

x 7→ D(x) is continuous since x 7→ E(x) is continuous.

Consider a point z ∈ A and p = (z, f (z)) in K . The hypothesis that Tp K ⊂ E(p) means

that every v ∈ Tp K can be written as (u, D(z)u). Hence, for any x, y ∈ A in a small

neighborhood of z, the following quantity is very small:

(x − y, f (x)− f (y))
‖(x − y, f (x)− f (y))‖

−
(x − y, D(z)(x − y))
‖(x − y, D(z)(x)− y)‖

.

After multiplying by the uniformly bounded quotient ‖(x−y,D(z)(x−y))‖
‖x−y‖ , we get that

‖(x − y, D(z)(x − y))‖
‖(x − y, f (x)− f (y))‖

(x − y, f (x)− f (y))
‖x − y‖

−
(x − y, D(z)(x − y))

‖x − y‖
→ 0 (4)

when x and y 6= x tend to z.

Considering the projection on the horizontal coordinates Rd , one deduces that
‖(x−y,D(z)(x−y))‖
‖(x−y, f (x)− f (y))‖ goes to 1. Since ‖(x−y,D(z)(x−y))‖

‖x−y‖ is uniformly bounded, we deduce
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from (4) that

(x − y, f (x)− f (y))
‖x − y‖

−
(x − y, D(z)(x − y))

‖x − y‖
→ 0 when x 6= y tend to z.

By projecting on the vertical coordinates Rn−d , and by continuity of x 7→ D(x) at z, one

gets
f (x)− f (y)− D(x)(x − y)

‖x − y‖
→ 0 when x 6= y tend to z.

This gives the second of the properties of Whitney’s extension theorem, and this theorem

concludes the proof of the corollary.

Consider now a subset K of the n-dimensional manifold M and a d-dimensional linear

subspace E(x) ⊂ Tx M at each point x ∈ K . We introduce two definitions.

– A diffeomorphism ϕ from an open set U ⊂ M to ]−1, 1[n is called an adapted chart

of (K , E) if ϕ(K ∩U ) ⊂ ]−1, 1[d×{0}n−d and Dϕ(x) · E(x) coincides with the linear

space Rd
×{0}n−d for each x ∈ K ∩U .

– A pair (U,Σ), where U ⊂ M is open and Σ ⊂ U is a submanifold, carries (K , E)
if K ∩U ⊂ Σ and TxΣ = E(x) for each x ∈ K ∩U .

Corollary 3.5. Let K ⊂ M be compact. If the map x 7→ E(x) is continuous on K and

satisfies Tx K ⊂ E(x) for each x ∈ K , then each point of K is contained in an adapted

chart of (K , E).

Proof. Let us choose some coordinates around a point p ∈ K such that the vertical

plane {0}d ×Rn−d is transverse at p to E(p). As Tp K ⊂ E(p), shrinking the chart at p if

necessary, one can assume that, for x 6= y in K close to p, x−y
‖x−y‖ does not belong to the

vertical (n− d)-dimensional plane. Hence, any vertical (n− d)-dimensional affine space

in this chart meets K in at most one point. We can thus apply Corollary 3.4 and get a

C1-graph 0. A chart at p which trivializes the graph is an adapted chart of (K , E).

3.2. From local to global

Theorem 3.1 is now a consequence of Corollary 3.5 and of the following proposition.

Proposition 3.6. Let K ⊂ M be a compact subset, d > 0 be an integer, and at each x ∈ K
let E(x) ⊂ Tx M be a d-dimensional subspace such that K is covered by charts adapted to

(K , E).
Then there exists an open d-dimensional submanifold Σ ⊂ M such that K ⊂ Σ and

TxΣ = E(x) for x ∈ K .

Proof. Consider a finite covering {Ui }i∈{1,...,`} of K by charts adapted to (K , E), and for

each i fix some open subset Vi whose closure is contained in Ui , such that K ⊂
⋃

i Vi .

By induction, one will build open sets Wi , for i = 1, . . . , `, containing Oi :=
⋃i

j=1 V j and

a submanifold Σi such that the pair (Wi ,Σi ) carries (K , E). The open submanifold Σ`
obtained this way will satisfy the conclusion of Proposition 3.6 since (W`,Σ`) carries

(K , E) and since K is contained in W`.
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For the first step of the induction, one chooses W1 = U1, and Σ1 is the horizontal

d-dimensional plane in the coordinates of U1. The other steps are obtained by applying

the next lemma, Lemma 3.7, to Ui+1, Vi+1,Wi ,Σi and Oi .

Lemma 3.7. Let U be an adapted chart of (K , E), and (W,Σ) be a pair carrying (K , E).
Consider an open set V whose closure is contained in U and an open set O whose closure

is contained in W . Then there is a pair (W ′,Σ ′) carrying (K , E) such that V ∪ O ⊂ W ′.

The proof of Lemma 3.7 is obtained after two intermediate lemmas.

In the first lemma, we prove that, in the coordinates of the adapted chart U , Σ can be

considered as a graph. We recall that the adapted chart identifies U with ]−1, 1[n and

we introduce some constants.

– η < δ in ]0, 1[ are chosen to define the smaller rectangles ]−δ, δ[n, ]−η, η[n of U .

By choosing η close to 1, one can assume that they contain V .

– ε > 0 allows us to define the (open) ε-neighborhood Wε of O and the intersection

Σε := Σ ∩Wε. Notice that the pair (Wε,Σε) still carries (K , E).

Sublemma 3.8. For ε > 0 small enough, the intersection Σε ∩ ]−δ, δ[
n is the graph of a

C1-function 8 : S→]−η, η[n−d defined on an open subset of ]−δ, δ[d . Furthermore, if

z ∈ S×]−δ, δ[n−d belongs to K , then z belongs to the graph of 8.

Proof. Consider a point z = (x, 0) ∈]−1, 1[d×{0}n−d .

– Assume first that z /∈ K ∩ O. Then the fiber {x}× [−δ, δ]n−d is a compact set

disjoint from K ∩ O. For ε > 0 small enough, Σε is contained in an arbitrarily small

neighborhood of K ∩ O. As a consequence, there is an open neighborhood Sz of z in

]−1, 1[d×{0}n−d and there is a number ε(z) > 0 such that (Sz ×[−δ, δ]
n−d)∩Σε(z)

is empty.

– Assume now that z ∈ K ∩ O. The submanifold Σ is tangent at z to ]−1, 1[d

×{0}n−d ; as a consequence, there is an open neighborhood Vz of z, contained in

(]−1, 1[d×]−η, η[n−d)∩W , such that the intersection of Σ with Vz is a graph

over Vz ∩ (]−1, 1[d×{0}n−d). Notice that the difference
(
{x}× [−δ, δ]n−d)

\ Vz is a

compact set disjoint from K (as U is an adapted chart). Hence there is ε(z) > 0, and

there is an open neighborhood V ′z of
(
{x}× [−δ, δ]n−d)

\ Vz such that V ′z is disjoint

from Σε(z) and K . One chooses an open neighborhood S̃z of z in ]−1, 1[d×{0}n−d

small enough such that S̃z ×[−δ, δ]
n−d is contained in the neighborhood Vz ∪ V ′z of

{x}× [−δ, δ]n−d .

By construction, (S̃z ×[−δ, δ]
n−d)∩Σε(z) is the graph of a C1-function, defined over

an open neighborhood Sz of z in ]−1, 1[d×{0}n−d and with values in ]−η, η[n−d .

Moreover, if y ∈ K ∩ (Sz ×[−δ, δ]
n−d) then y belongs to Vz , and hence to W . In

particular, y ∈ Σ ; hence y belongs to the graph of the function above, and in

particular y ∈ Σε(z).

The constructions above associates to each point z ∈ ]−1, 1[d×{0}n−d an open

neighborhood Sz (in ]−1, 1[d×{0}n−d) and a constant ε(z). By compactness of [−δ, δ]d ,

one can choose a finite set X such that the open sets Sz , z ∈ X , cover [−δ, δ]d . One fixes

https://doi.org/10.1017/S1474748015000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000055


Center manifolds for partially hyperbolic sets without strong unstable connections 805

ε > 0 less than ε(z), z ∈ X . Then Σε∩]−δ, δ[
n is the graph of a C1-map 8 from an open

subset S ⊂ ]−δ, δ[d to ]−η, η[n−d .

Finally, let y be a point in K ∩ (S×]−δ, δ[n−d). Then y belongs to some Sz ×[−δ, δ]
n−d ,

z ∈ X ∩ K ∩ O and we have seen that y ∈ Σε(z); hence y belongs to the graph of 8.

Let S be the open set given by the previous lemma, and let T be the open set S×]−
δ, δ[n−d . We have proved that (Wε ∪ T,Σε) carries (K , E). We now modify Σε in the

chart U in order to glue it to the horizontal rectangle ]−η, η[d×{0}n−d . We thus choose

a smooth function θ : ]−1, 1[d → [0, 1] which takes the value 0 in a neighborhood of

[−η, η]d and takes the value 1 in a neighborhood of ]−1, 1[d\]−δ, δ[d .

Sublemma 3.9. There is an open submanifold Σ ′ε which coincides with Σε on M\]−δ, δ[n

and with the graph of θ ·8 : S→]−η, η[n−d in ]−δ, δ[n. Moreover, (Wε ∪ T,Σ ′ε) carries

(K , E).

Proof. Let us consider the set Σ ′ε union of Σε\]−δ, δ[
n with the graph of θ ·8 (contained

in S×]−η, η[n−d). We will cover M by two open sets and verify that the intersection of

Σ ′ε with each of them is a submanifold of dimension d.

– In M \ [−δ′, δ′]n , where δ′ is close to δ, the sets Σ ′ε and Σε coincide. Indeed,

by Sublemma 3.8, neither Σ ′ε, nor Σε meets [−δ, δ]d × (]−δ, δ[n−d
\]−η, η[n−d).

Moreover, taking δ′ < δ such that ϕ is equal to 1 on ]−δ, δ[d\]−δ′, δ′[d , one deduces

that Σ ′ε and Σε coincide on (]−δ, δ[d\[−δ′, δ′]d)×]−δ, δ[n−d .

– In ]−δ, δ[n , the set Σ ′ε is the graph of a C1-function defined on an open set of

]−δ, δ[d .

This implies that Σ ′ε is a d-dimensional submanifold of M , which is contained in Wε ∪ T
(since Wε contains Σε and T contains the graph of θ ·8).

Consider any z ∈ K ∩ (Wε ∪ T ). If z ∈ T , then Sublemma 3.8 implies that z coincides

with (x,8(x)) for some x ∈ S. But 8(x) = 0 when x ∈ K so that θ(x).8(x) = 8(x) = 0
and z belongs to the graph of θ8 and hence to Σ ′ε. If z ∈ Wε \ T , then z belongs to

Wε\]−δ, δ[
n (the points of K∩]−δ, δ[n∩Wε belong to ]−δ, δ[n∩Σε and hence in T , by

Sublemma 3.8); in particular x belongs to Σε\]−δ, δ[
n , and to Σ ′ε.

End of the proof of the Lemma 3.7. By Sublemma 3.9, the union Σ ′ = Σ ′ε ∪ (]−

η, η[d×{0}n−d) is an open C1-submanifold of dimension d. Let W ′ be the open set

Wε ∪ T ∪ ]−η, η[n . Notice that Ō ⊂ Wε ⊂ W ′ and V̄ ⊂ ]−η, η[n⊂ W ′.
One concludes the proof by showing that (W ′,Σ ′) carries (K , E). If x ∈ K ∩W ′, then

one of the following holds.

– x ∈ ]−η, η[n . Then x ∈ ]−η, η[d×{0}n−d , and since U is a adapted chart of (K , E),
the space E(x) is tangent to ]−η, η[d×{0}n−d . So x ∈ Σ ′, and E(x) is tangent to Σ ′.

– x ∈ Wε ∪ T . Then x ∈ Σ ′ε ⊂ Σ
′, and E(x) is tangent to Σ ′ε (and to Σ ′) by

Sublemma 3.9.

Proposition 3.6 and Theorem 3.1 are now proved.
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3.3. Application to partially hyperbolic sets without strong connections

By Theorem 3.1, Corollary 3.2 is a direct consequence of the following.

Proposition 3.10. Under the assumptions of Corollary 3.2, Tx K ⊂ Ec(x) at each point

x ∈ K .

As in § 2.2.2, one considers the cone fields Cβ associated to a continuous extension of

the bundles Ec, Euu . To prove the proposition, it is enough to replace f by an iterate

f k ; hence one can assume the following properties for any x close to K :

D f (C1(x)) ⊂ C 1
2
( f (x)),

2‖D f (u)‖ 6 ‖D f (v)‖ and ‖D f (v)‖ > 3 for any unitary u ∈ E(x), v ∈ C1(x).

For ε > 0 less that the radius of the injectivity of the exponential map associated to

the metric on the manifold M (if M is not compact, it suffices to consider a compact

neighborhood of K ), and given any two points x, y ∈ M with d(x, y) < ε, there is a unique

geodesic of length less than ε joining x to y. We will denote by [x, y] this geodesic. If

ε is small and if V ⊂ U is a small neighborhood of K , for any two points x, y ∈ V with

d(x, y) < ε, one has [x, y] ⊂ U .

Definition 3.11. The pair (x, y) is in the cone field C1 if the tangent vector of the geodesic

segment [x, y] at each point z ∈ [x, y] belongs to the cone C1.

The pairs of points contained in a same strong unstable leaf can be characterized as

follows.

Lemma 3.12. Let x, y ∈ K and m ∈ N such that for every n > m one has

d( f −n(x), d( f −n(y)) 6 ε and the pair ( f −n(x), f −n(y)) is in the cone field C1.

Then x and y belong to the same strong unstable manifold.

Proof. From the definition of partial hyperbolicity, for each n > 0 and each unitary u ∈
Ec(x),

‖D f −n
· u‖ > 2n d( f −n(x), f −n(y)).

This implies that y belongs to the strong unstable manifold of x (see [12, Theorem 5.1]).

The property for a pair of points of K to be in the cone field C1 is invariant by positive

iterates, as long as the distance between x and y remains small.

Lemma 3.13. There is δ ∈ ]0, ε[ such that, for any pair (x, y) in C1 with x, y ∈ K and

d(x, y) < δ,

– d( f (x), f (y)) < ε,

– the pair ( f (x), f (y)) is in the cone field C1,

– d( f (x), f (y)) > 2d(x, y).
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Proof. The first point follows from uniform continuity and the two others from the

following properties.

– If d(x, y) is small, the image f ([x, y]) is C1-close to the geodesic segment

[ f (x), f (y)]. In particular, the ratio of their length is arbitrarily close to 1.

– For a pair (x, y) in C1, the length of f ([x, y]) is greater than 3 times d(x, y) (by (1)).

– For a pair (x, y) in C1, the segment f ([x, y]) is tangent at each point to the cone

field C 1
2
.

Proof of Proposition 3.10. Assume that there is some point z ∈ K such that Tz K 6=
Ec(z): there exist v ∈ Tz K \ Ec(z) and two sequences (xn), (yn) in K converging to z
such that in any chart at z the vectors yn−xn

‖yn−xn‖
converge to v. Note that by replacing v

by an iterate D f ` · v/‖D f ` · v‖ one can assume v ∈ C1(z), and hence each pair (xn, yn) is

in the cone field C1.

For large n, the distance d(xn, yn) is arbitrarily small. Lemma 3.13 implies that there is

kn > 0 such that d( f kn (xn), f kn (yn)) ∈ [
δ
‖D f ‖ , δ], and such that d( f k(xn), f k(yn)) <

δ
‖D f ‖

for any k ∈ {0, . . . , kn − 1}. By taking a subsequence, one can assume that the pairs

( f kn (xn), f kn (yn)) converge to a pair (x, y) of points of K . We will prove now that

y ∈ W uu(x).
For any i > 0, the pair ( f −i (x), f −i (y)) is limit of the pairs ( f kn−i (xn), f kn−i (yn)).

By the choice of kn , the distances d( f kn−i (xn), f kn−i (yn))) are less than δ, so that

d( f −i (x), f −i (y)) < ε. Applying Lemma 3.13 inductively, one gets that the pair

d( f kn−i (xn), f kn−i (yn))) is in the cone field C1. Notice that the geodesic segment

[ f (kn−i)(xn), f (kn−i)(yn)] converges (in the C1-topology) to the geodesic segment

[ f −i (x), f −i (y)]. As a consequence, the pair ( f −i (x), f −i (y)) is in the cone C1.

Lemma 3.12 now concludes that x and y belong to the same strong unstable manifold.

Notice that x 6= y because x and y are joined by a geodesic segment with length in ]0, ε[.
This contradicts the hypotheses on K in the statement of Corollary 3.2.

4. Invariant center manifold

We explain here how to replace the submanifold given by Theorem 3.1 by an invariant

submanifold.

Theorem 4.1. Let f be a diffeomorphism of a manifold M, and let K be an invariant

compact set contained in the interior of an (a priori non-invariant) compact submanifold

with boundary Σ. One assumes furthermore that K admits a partially hyperbolic splitting

T M = Ec
⊕ Euu such that Ec(x) = TxΣ at each point x ∈ K.

Then, one can replace Σ by a submanifold S which is locally invariant: S ∩ f (S)
contains a neighborhood of K in S.

The proof follows the usual construction of center manifolds for fixed points: one

considers graphs of functions h : Σ → Rn−d , where Rn−d is a local coordinate transverse

to Σ . The action of f −1 can be modified outside a neighborhood of K so that it preserves

the space of Lipschitz graphs. The domination between Ec and Euu ensures that this

action is a contraction, and hence has a fixed point: this is the center manifold.
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In our setting, the fixed point has been replaced by an invariant compact set K which

makes the argument more delicate: the action of f −1 in a neighborhood of K cannot be

approximated by a linear map, and the local transverse coordinates are obtained by the

construction of a tubular neighborhood.

4.1. First constructions

In this section, we build a tubular neighborhood of the submanifold Σ which will allow

us to define the space of graphs.

4.1.1. Bundles E, F around K . Since the splitting T M|K = Ec
⊕ Euu is partially

hyperbolic, there exist λK > 1 and nK > 1 such that, for each x ∈ K each n > nK and

each unit vector u ∈ Ec(x), v ∈ Euu(x), one has

‖D f n(x) · v‖ > λn
K ‖D f n(x) · u‖ and ‖D f n(x) · v‖ > λn

K .

From now on we assume that nK = 1 (this is always possible by changing the initial

metric; see [10]).

We also extend the bundles Ec, Euu , defined on K as two (a priori non-invariant)

continuous bundles E, F on a neighborhood of K . One can reduce Σ and assume that at

each x ∈ Σ E(x), F(x) are defined and that both E(x) and TxΣ are transverse to F(x).

4.1.2. Tubular neighborhoods of Σ. The next proposition provides us with a

tubular neighborhood T of an open submanifold Σ0 ⊂ Σ .

Definition 4.1. A tubular neighborhood of an open submanifold Σ0 ⊂ Σ is a smooth

surjective submersion π : T → Σ0 on an open neighborhood T of Σ0 which induces the

identity on Σ0.

A vector u ∈ Tx M for x ∈ T is vertical if it is tangent to the fibers of π (i.e., Dπ(x).u =
0) and horizontal if it is tangent to E . The set Vx of vertical vectors at x is the vertical

space. Any tangent vector u ∈ Tx M decomposes as a sum uv + uh , where uv is vertical

and uh is horizontal. For any β > 0 we denote by Ch
β(x) the horizontal cone associated to

the splitting E ⊕ V :

Ch
β(x) = {u ∈ Tx M, β‖uh‖ > ‖uv‖}.

Proposition 4.2. For any λ0 ∈ ]1, λK [ and any η, β, δ > 0 there is a neighborhood Σ0 of

K in Σ and there is a tubular neighborhood π : T → Σ0 with the following properties.

(1) For any vertical vector uv at x ∈ T ∩ f −1(T ),

‖D f (x) · uv‖ > λ0‖uv‖ and ‖Dπ ◦ D f (x) · uv‖ 6 η‖uv‖.

(2) For any horizontal vector uh at x ∈ T,

(1− δ) ‖uh‖ 6 ‖Dπ(x) · uh‖ 6 (1+ δ) ‖uh‖.

(3) For any x ∈ T ∩ f (T ), one has

D f −1(x) · Ch
β(x) ⊂ Ch

β
λ0

( f −1(x)).
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Proof. Let F̃ be a smooth vector bundle arbitrarily C0-close to F , let Σ0 be a small

open neighborhood of K in Σ , and let m0 > 0 be a small constant. We denote by Tm0 the

m0-neighborhood of the zero section of the restriction F̃|Σ0 . The exponential map sends

Tm0 diffeomorphically on a set T ⊂ M . The canonical projection Tm0 ⊂ F̃|Σ0 onto Σ0
induces by identification a projection π : T → Σ0. One checks easily that T is a tubular

neighborhood of Σ0.

At points x of K the bundle Euu is preserved, expanded by D f by λK , and the cone

Ch
β(x) is mapped into Ch

β/λK
( f (x)). Since the splitting E ⊕ F̃ is close to the splitting

Ec
⊕ Euu , the three items of the proposition follow by continuity.

As a consequence we obtain the following.

Lemma 4.3. Under the setting of Proposition 4.2, and if β < λ0−2η
6β , for any vertical

vector uv 6= 0 at x ∈ T ∩ f −1(T ), the image w = D f (x) · uv does not intersect the cone

Ch
3β( f (x)).

Proof. One first decomposes w into wh +wv and denotes by wπ = Dπ(x).wh = Dπ(x).w
the projection by Dπ . We have ‖w‖ > λ0‖uv‖ and ‖wπ‖ 6 η‖uv‖ by Proposition 4.2(1).

Moreover, ‖wπ‖ >
1
2‖wh‖ by Proposition 4.2(2). Hence,

‖wv‖ > ‖w‖−‖wh‖ > λ0‖uv‖− 2‖wπ‖ > (λ0− 2η)‖uv‖ and ‖wh‖ 6 2η‖uv‖.

We thus get ‖wv‖ >
λ0−2η

2η ‖wh‖ > 3β‖wh‖ by our choice of the constant β.

4.1.3. Contraction of the tubular neighborhood. Let dπ be the distance along

the fibers of the tubular neighborhood π : T → Σ0, given by the induced metric. For any

m > 0 small, one denotes by Tm ⊂ T the set of points z ∈ T such that dπ (z, π(z)) < m.

For any z ∈ Tm , one considers the geodesic segment joining z to π(z), parameterized

by [0, 1]. For each θ ∈ [0, 1], this allows us to define θ · z ∈ Tm as the barycenter of z and

π(z) for the weights θ , 1− θ . For any θ ∈ [0, 1] and z ∈ Tm , one defines θ · z ∈ Tm as the

barycenter of z and π(z) along the geodesic segment joining them in the fiber π−1(π(z)).
This gives a map 2 : (θ, z) 7→ θ · z on [0, 1]× Tm . For each θ ∈ [0, 1], we also denote by

2θ : Tm → Tm the map z 7→ θ · z.

Equivalently, let F̃ be the tangent bundle on T to the fibers of π , let Tm be the

m-neighborhood of the zero section of the restriction F̃|Σ0 , and let 2̃ : [0, 1]× Tm → Tm
be the map which sends (θ, v) ∈ [0, 1]× F̃(x) on θ · v in the vector space F̃(x). The maps

2 and 2̃ are conjugated by the fibered exponential map.

Proposition 4.4. (1) The map 2 is C1.

(2) The image of the derivative Dθ2 at a point (θ, z) ∈ [0, 1]× Tm is contained in the

vertical space V (z) of z. It has a norm bounded by the distance dπ (z, π(z)) in the

fiber of z.

(3) For any ρ > 1, if m > 0 is small enough the following property holds.

For any θ ∈ [0, 1], and any z, z′ ∈ Tm such that π(z) = π(z′), we have dπ (θ · z, θ ·
z′) 6 ρdπ (z, z′).

(4) For any constants β̄ > β ′ > 0, if m > 0 is small enough the following property holds.

For any θ ∈ [0, 1] and z ∈ Tm , the differential D2θ (z) sends Ch
β ′
(z) inside Ch

β̄
(θ · z).
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Proof. The proposition may be obtained easily from the map 2̃.

(1) The map 2̃ is C1, and so is 2.

(2) For any v ∈ Tm , the map θ 7→ 2̃(θ, v) is linear. The norm of its derivatives is equal

to ‖v‖. Let z ∈ Tm be the image of v by the fibered exponential map. Since the

exponential map sends isometrically the line R · v on the geodesic R.z, one deduces

that the derivative Dθ2 at the point (θ, z) has a norm equal to ‖v‖ = dπ (z, π(z)).

(3) For any v, v′ ∈ Tm which belong to the same fiber F̃(x) of F̃|Σ0 , and for any θ ∈ [0, 1],
we have ‖θ · v− θ · v′‖ 6 ‖v− v′‖. We consider the images z, z′ ∈ Tm of v, v′ by the

exponential map. At the point (x, 0) ∈ Tm , the derivative of the exponential map is

an isometry. Hence, for any ρ > 1, if v and v′ are close enough to (x, 0), we have

dπ (θ · z, θ · z′) 6 ρdπ (z, z′).

(4) By construction, for any point x ∈ Σ0, and any θ ∈ [0, 1], the differential D2θ of

the map 2θ at x maps the cone Ch
β̄
(x) into itself: the horizontal vectors at x are

preserved and the vertical vectors are contracted. The last item of the proposition

thus follows by continuity of the differential of 2.

Remark 4.5. One can assume that the map π and 2 are smooth on π−1(Σ0 \ K ) and

[0, 1]×π−1(Σ0 \ K ). Indeed, Σ0 can be taken smooth outside K by Remark 3.3, and the

vector field F̃ tangent to the fibers of π has been chosen smooth also.

4.1.4. Lipschitz functions and graphs over Σ0. Let us consider λ0, η, β and a

tubular neighborhood π : T → Σ0 as given by Proposition 4.2.

Definition 4.6. A function of T is a map h : U → T , where U is a subset of Σ0 such that

π ◦ h(x) = x at any x ∈ U . The image h(U ) will be called the graph of h.

h is β-Lipschitz if the tangent space Tzh(U ) (as in Definition 3.1) is contained in the

cone Ch
β(z) for each z ∈ U .

The distance inside Lipschitz graphs is bounded.

Lemma 4.7. Let Σ ′ ⊂ Σ0 be a neighborhood of K in Σ0 and h : Σ ′→ T a β-Lipschitz

function. Then, for any curve σ ⊂ Σ ′, we have the estimate

|h(σ )| 6 2(1+β)|σ |

, where |σ | and |h(σ )| are the lengths of the curves σ and h(σ ).
Proof. At any point z ∈ T , any vector u ∈ Ch

β(z) decomposes as uh + uv such that ‖uv‖ 6
β‖uh‖. By Proposition 4.2(2), we also have ‖uh‖ 6 2‖v‖, where v = Dπ(z) · u, so that

‖u‖ 6 2(1+β)‖v‖. This gives the lemma.

The next lemma will show that the distance between Lipschitz graphs is contracted

by f −1.

Lemma 4.8. Fix a constant γ > (λ0− 4η(1+β))−1 and a neighborhood Σ ′ ⊂ Σ0 of K in

Σ0. Then, there exists a neighborhood Uγ ⊂ T of K which satisfies the following.
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For any graph S of a β-Lipschitz function h : Σ ′→ T and any points z1, z2, z̃2 in Uγ
such that z1, z̃2 ∈ S, π(z2) = π( z̃2) and π( f −1(z1)) = π( f −1(z2)), we have

dπ ( f −1(z1), f −1(z2)) 6 γ dπ (z2, z̃2).

Proof. One chooses λ ∈ ]1, λ0[ such that γ > (λ− 4η(1+β))−1. Let σ be a geodesic

segment joining the points f −1(z1) and f −1(z2). Since Uγ is small, the length of σ

is small.

The length | f (σ )| is close to ‖D f (z) · u‖ · |σ |, where z is a point of σ and u a unit vertical

vector tangent to σ . Proposition 4.2(1) gives | f (σ )| > λ0|σ |. The distance between z1 and

z2 in M is close to the length of f (σ ); hence

d(z1, z2) > λ|σ |. (5)

Similarly, the length of σ ′ = π ◦ f (σ ) is close to ‖Dπ ◦ D f (z) · u‖ · |σ |, and

Proposition 4.2(1) gives

|σ ′| 6 2η|σ |. (6)

Since h is β-Lipschitz function, we have by Lemma 4.7 that

|h(σ ′)| 6 2(1+β)|σ ′|. (7)

Since the segment h(σ ′) joins the points z1 and z̃2 = h(π(z2)), one gets by (7) and (6) the

estimate d(z1, z̃2) 6 4η(1+β)|σ |. Writing d(z1, z2) 6 d(z1, z̃2)+ d( z̃2, z2), and using (5),

one gets

λ|σ | 6 4η(1+β)|σ | + d( z̃2, z2).

Since |σ | = dπ ( f −1(z1), f −1(z2)), this gives as required

dπ ( f −1(z1), f −1(z2)) 6 (λ− 4η(1+β))−1d( z̃2, z2) 6 γ dπ (z2, z̃2).

4.1.5. Choice of the constants and of the tubular neighborhood. We explain

the constants used in the proofs below and how to choose them.

(1) One chooses the constants required by Proposition 4.2: one first fixes λ0 ∈ ]1, λK [,

then η > 0 small and finally β, δ ∈ ]0, 1/2[ small enough so that

β <
λ0− 2η

6η
, λ0− 4η(1+β) > 1 and β + δ <

1
10
. (8)

(2) We also consider γ > 0 and then ρ > 1 such that

(λ0− 4η(1+β))−1 < γ < 1 and γρ < 1. (9)

The first part of (8) is used in Lemma 4.3. The second part guarantees the existence

of γ satisfying (8) as required in Lemma 4.8. The third part is used in the proof of

Proposition 4.14 for the cone contraction. The constant ρ > 1 appears in Proposition 4.4,

and the condition γρ < 1 will ensure the contraction of the graph transformation in the

later constructions.
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(3) In order to obtain contraction of the horizontal cone fields, we choose β̄ ∈ ] β
λ0
, β[.

(4) Proposition 2.1 applied to Σ gives CΣ > 0, and c f > 1 is any bound on ‖D f ‖ and

‖D f −1
‖.

One can now fix the tubular neighborhood T which satisfies the conclusions of

Proposition 4.2 for the constants λ0, η, β and the conclusions of Proposition 4.4 for

β ′ = β/λ0 and β̄.

4.2. A graph transformation

4.2.1. Geometry of the graph images. Before defining the graph transformation,

we need to check that the images by f −1 of the Lipschitz graphs above Σ0 remain

Lipschitz graphs. We recall that c f > 1 is a constant which bounds ‖D f ‖, ‖D f −1
‖.

Proposition 4.9. There exists a function ε : ]0,m1[ →]0,+∞[, with the following

properties. Let Σm, Σ̂m denote the open ε(m) and 2c f · ε(m)-neighborhoods of K in Σ0.

Then the following hold.

(1) limm→0
m
ε(m) = 0.

(2) For any m ∈ ]0,m1[, f −1(Tm)∩π
−1(Σ̂m) ⊂ Tm .

(3) For any m ∈ ]0,m1[, the image f −1(S) of the graph S of any β-Lipschitz function

h : Σ̂m → Tm contains the graph of a β
λ0

-Lipschitz function h′ : Σm → Tm over Σm .

The proof uses two preliminary lemmas.

Lemma 4.10. For each small neighborhood Σ ′ of K in Σ0, there exists a positive constant

m = m(Σ ′) verifying the following property.

Consider the graph S of a β-Lipschitz function h : Σ ′→ Tm(Σ ′). Then, f −1(S) is

contained in T and is the graph of a function h′ over the subset π( f −1(S)) of Σ0.

Proof. Working with small charts (where the metric ‖ ‖ and the bundles E and F are

almost constant) that cover the tubular neighborhood T , one gets the following property.

There exists ν > 0 such that, for any β-Lipschitz function h : U → T over a subset

U ⊂ Σ0, and for any points x, y ∈ h(U ) such that d(x, y) 6 ν, then the geodesic segment

joining x to y is tangent to the cone Ch
2β at each point.

Since f (K ) = K , since Σ0 is tangent at each point x ∈ K to E(x), and since E|K is

invariant by D f , there exists a neighborhood Σ1 ⊂ Σ0 of K in Σ0 such that f −1(Σ1) is

contained in T and is the graph of a function over a subset of Σ0.

We now consider Σ ′ ⊂ Σ1 and prove that it satisfies the lemma with some constant

m > 0. Let us assume, by contradiction, that there exist a sequence (mn) going to 0, a

sequence of graphs (Sn) of β-Lipschitz functions over Σ ′ such that Sn ⊂ Tmn , and two

sequences of points (xn) and (yn) such that, for each n, the points xn and yn are distinct,

contained in Sn , and verify π( f −1(xn)) = π( f −1(yn)).

We first prove that the distance d(xn, yn) goes to 0: in the other case, one would obtain,

by considering some subsequences and using the fact that mn goes to 0, two distinct points

x, y in Σ ′ whose images by π ◦ f −1 coincide, contradicting that f −1(Σ ′) ⊂ f −1(Σ1) is a

graph.
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We consider the geodesic segment σn joining f −1(xn) to f −1(yn) in the fiber of π−1.

Then, by Lemma 4.3 and our choice of β, the segment f (σn), joining xn to yn , is never

tangent to the cones Ch
3β . On the other hand, for n large enough, the points xn and yn

are at distance less than ν, so that the geodesic segment joining xn to yn is tangent to

the cone Ch
2β . When n tends to ∞, the angles between these two segments at xn go to 0

leading to a contradiction.

Lemma 4.11. There exists a function ε1 : ]0,+∞[ →]0,+∞[, with the following

properties.

(1) limm→0
m

ε1(m)
= 0.

(2) Tm contains the image by f −1 of the ε1(m)-neighborhood of K in Σ0, for any m > 0
small.

Proof. By Lemma 4.10, there is a neighborhood Σ1 of K in Σ0 such that f −1(Σ1) is the

graph of a C1-function h which is tangent to the bundle E at points of K . Hence, one

can cover K by finitely many open sets Ui of Σ0 and charts ϕi : Ui → Vi×]0, 1[dim(M)−d

such that Vi is an open set of Σ0 and h writes in this chart as a C1-map from Vi to

Vi×]0, 1[dim(M)−d of the form x 7→ (π(x), hi (x)). Moreover, hi (x) and Dhi (x) are equal

to zero at points x of K .

For any η > 0, let ν0(η) > 0 be the supremum of the norm of the derivatives of the maps

hi on the η-neighborhood of K in Σ0. We set ν(η) = max(η, ν0(η)). The map η 7→ ν(η)

is continuous, increasing, and goes to 0 with η (since Dhi vanishes at points of K ).

For m small enough, one defines η(m) > 0 as the minimum of the numbers η such that

m 6 ην(η). Clearly, η(m) goes to 0 with m so that m
η(m) = ν(η(m)) goes to 0 with m.

By construction (using the inequality m 6 ην(η) and the facts that h vanishes on K
and has a derivative bounded by ν(η) on the η-neighborhood of K ), the C0-norm of

h is bounded by m on the η(m)-neighborhood of K in Σ0. In other words, the graph

f −1(S) over the η(m)-neighborhood of K in Σ0 is contained in Tm . The differential of

f −1 is bounded by c f > 1. Hence, the function ε1(m) =
η(m)

c f
satisfies the statement of

the lemma.

Proof of Proposition 4.9. We set ε(m) = 1
2c f
ε1(m) with ε1 as in Lemma 4.11.

(1) The first item of the lemma is an easy consequence of Lemma 4.11(1).

(2) Let z′1 be a point in f −1(Tm)∩π
−1(Σ̂m) and z′2 ∈ f −1(Σ1) such that x ′1 := π(z

′

1) =

π(z′2). We also let z1 := f (z′1) ∈ Tm and z̃1 ∈ Σ0 such that π( z̃1) = π(z1). Since

z1 ∈ Tm , we have dπ (z1, z̃1) 6 m. By Lemma 4.8, we have

dπ (z′1, z′2) 6 γ dπ (z1, z̃1) 6 γm. (10)

Since Σ and f −1(Σ) are tangent at points of K , for m small we have

dπ (x ′1, z′2) 6 d(z′1, K ) 6 2c f ε(m) 6 (1− γ ) ·m

by Lemma 4.11(1). This proves dπ (x ′1, z′1) 6 m and gives the second item.

(3) We now prove the following property:

f −1(Tm ∩π
−1(∂Σ̂m))∩π

−1(Σm) = ∅. (11)

https://doi.org/10.1017/S1474748015000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000055


814 C. Bonatti and S. Crovisier

We consider a point z1 in Tm ∩π
−1(∂Σ̂m) and z2 = π(z1). Let z′1, z′2 be their images

by f −1, and let x ′1, x ′2 be the projections of z′1, z′2 by π . It is enough to show that x ′1
and K are at distance larger than ε(m) in Σ0. In particular, one can assume that

x ′1 ∈ Σ̂m .

The distance between z2 and K in Σ0 equals 2c f ε(m); hence the distance between

z′2 and K is larger than 2ε(m) in f −1(Σ0) and (since f −1(Σ) and Σ are tangent

at points of K ) the distance between x ′2 and K is larger than 3
2ε(m). We will show

that the distance between x ′1 and x ′2 in Σ0 is smaller than ε(m)
2 , and this will give

the announced property.

Since x ′1 ∈ Σ̂m , by the second item one has z′1 ∈ Tm , and hence dπ (x ′1, z′1) 6 m.

Since dπ (z1, z2) 6 m, we have d(z′1, z′2) 6 2c f m, where c f bounds the derivative of

f −1. Since z2 ∈ Σ̂m , it belongs to the 2c f ε(m)-neighborhood of K in Σ0. We have

2c f ε(m) 6 ε1(m), and hence z′2 ⊂ Tm by Lemma 4.11(2); that is, dπ (z′2, x ′2) is less

than m. The distance between x ′1 and x ′2 is thus bounded by 2(1+ c f )m.

Since m
ε(m) may be taken arbitrarily small, one deduces that the distance in Σ0

between x ′1 and x ′2 is smaller than ε(m)
2 , as required, proving (11).

Let us come to the proof of the last item. By Lemma 4.10, the image by f −1 of

the graph S of the function h over Σ̂m is the graph S′ of a function h′ defined

over a subset D of Σ0. By Proposition 4.2(3), h′ is β
λ0

-Lipschitz. By the second

item, S′ ∩π−1(Σm) is contained in Tm . By (11), Σm and the boundary of D do not

intersect. Hence, Σm is contained in D. This shows that S′ contains the graph of a

function defined over Σm .

4.2.2. Definition of the graph transformation. For m small, we denote the

following.

Um : the open set Tm ∩ (π ◦ f )−1(Σm). For m small it is an arbitrarily small neighborhood

of K .

Lipm,β : the set of β-Lipschitz functions h : Σ0 → Tm , which vanish outside Σm , i.e.,

h(x) = x for x ∈ Σ0 \Σm . It is endowed with the C0-distance: if h, h′ ∈ Lipm,β are

two Lipschitz functions, we set

d(h, h′) = sup
x∈Σm

dπ (h(x), h′(x)).

By Arzela–Ascoli’s theorem, this space is compact.

Lipm,β(K ): the subset of functions h ∈ Lipm,β vanishing on K (i.e. ∀x ∈ K , h(x) = x).

ϕm : a smooth function Σ0 → [0, 1], given by Proposition 2.1, equal to 1 in the
ε(m)

2 -neighborhood of K and to 0 in a neighborhood of Σ0 \Σm . Its derivative is

bounded by 2CΣ
ε(m) , where CΣ is the constant associated to the manifold Σ .

Vm : an open neighborhood of Σ0 \Σm in Σ0 where ϕm vanishes.

φm(h): the function Σ0 → Tm associated to a function h : Σm → Tm as follows: it is equal

to ϕm · h on Σm and to the identity outside Σm . With the notation of § 4.1.3,

φm(h)(x) = 2(ϕm(x), h(x)) for each point x ∈ Σm .
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Gm(h): the function Σ0 → Tm associated to h ∈ Lipm,β as follows: by Proposition 4.9(3),

the image of the graph of h by f −1 contains the graph of a Lipschitz function

h′ : Σm → Tm . We set Gm(h) = φm(h′).

The map Gm is called the graph transformation.

One can see the graph S′ of Gm(h) as the image of the graph S of h by some C1-map.

Indeed, if one defines in f (T ) the map

9m : z 7→ 2(ϕm ◦π ◦ f −1(z), f −1(z)), (12)

then the graph S′ is the union of 9m(S)∩π−1(Σm) with Σ0 \Σm .

By construction, S′ and Σ0 coincide on the open set Vm ⊂ Σ0. Note that S′ is the union

of Vm with 9m(S ∩Um).

Remark 4.12. From Remarks 3.3 and 4.5, one can construct the map 9m as smooth as

the diffeomorphism f .

4.2.3. Invariance of the space of Lipschitz graphs. The next proposition shows

that the image Gm(h) of a Lipschitz graph is also Lipschitz.

Proposition 4.13. For m > 0 small, Gm preserves Lipm,β.

This follows immediately from the next result.

Proposition 4.14. For m > 0 small, and z ∈ Tm ∩ f (T ), the image of the cone Ch
β(z) is

contained in the cone Ch
β(9m(z)). Moreover, D9m(z) · u0 does not vanish for u0 ∈ Ch

β(z).

Proof. Let us fix u0 ∈ Ch
β(z) and denote u1 = D9(z) · u0. We also set z̃1 = f −1(z) and

ũ1 = D f −1(z) · u0. By Proposition 4.2(3), ũ1 belongs to Ch
β
λ0

( z̃1). Note that u1 is the

image of ũ1 by the tangent map at z̃1 of

Pm : x 7→ 2(ϕmπ(x), x).

We aim to compare u1 with ũ1.

Claim 4.15. If m is small, for any z̃1 ∈ f −1(Tm) and ũ1 ∈ Ch
β
λ0

, we have

|‖D Pm · ũ1‖−‖ũ1‖| 6 9(β + δ).‖ũ1‖. (13)

Proof. If z̃1 belongs to π−1(Σ \Σm), then Pm coincides locally with the projection π on

Σ0. In particular, the image of D Pm( z̃1) coincides with the tangent space to Σ0, and

hence is contained in Ch
β(9m(z)), and by Proposition 4.2(2) we have

|‖D Pm · ũ1‖−‖ũ1‖| 6 δ‖ũ1‖.

Otherwise, z̃1 belongs to f −1(Tm)∩π
−1(Σm), and it also belongs to Tm by

Proposition 4.9(2), so that denoting x1 = π( z̃1) we have

dπ ( z̃1, x1) 6 m. (14)
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We set ũ1,π = Dπ( z̃1) · ũ1 and θ1 = ϕm(x1). The image u1 := D Pm(z) · ũ1 is equal to

D2(θ1, z̃1).(Dϕm · ũ1,π , ũ1), and it decomposes as

u1 = v+w = Dθ2(θ1, z̃1) ◦ Dϕm(x1) · ũ1,π + D2θ1( z̃1) · ũ1,

where 2θ1 is the map z 7→ 2(θ1, z) as before.

By Proposition 4.4(2), the vertical vector v has a norm bounded by

dπ ( z̃1, x1) ‖Dϕm‖ ‖ũ1,π‖. The first term of this product is bounded by m by (14) and

the second by 2CΣ
ε(m) . Hence,

‖v‖ 6
2CΣm
ε(m)

‖ũ1,π‖. (15)

The second vector w = D2θ1( z̃1) · ũ1 decomposes as the sum wh +wv of a horizontal

vector and a vertical vector. By construction, π ◦2ϕ(x1) = π , so that Dπ(z1).wh =

Dπ( z̃1) · ũ1 = ũ1,π . By Proposition 4.2(2), ‖wh‖ > (−δ) ‖ũ1,π‖. One the other hand, using

that ũ1 is contained in a cone Ch
β/λ0

, and β̄ > β/λ0, Proposition 4.4(4) implies that w

belongs to a cone Ch
β̄
. Hence, ‖wv‖ 6 β̄‖wh‖.

Let us recall that β̄ < β. By these estimates and (15), the vertical component u1,v =

v+wv of u1 is bounded by

‖u1,v‖ 6 ‖v‖+‖wv‖ 6

(
4CΣm
ε(m)

+ β̄

)
‖wh‖.

The horizontal component u1,h of u1 is wh .

If one chooses m small enough, 2CΣ
ε(m)m may be assumed arbitrarily small by

Proposition 4.9(1), so that 2CΣ
ε(m)m+ β̄ is less than β. Hence u1 belongs to the cone Ch

β(z1).

Moreover, we have

|‖u1‖−‖ũ1‖| 6 |‖ũ1‖−‖D2θ1( z̃1) · ũ1‖|+
2CΣm
ε(m)

‖ũ1,π‖.

For m small, z1 := Pm( z̃1) and z̃1 are arbitrarily close. Furthermore, ũ1 and D2θ1( z̃1) · ũ1
have the same projection by Dπ and are tangent to Ch

β . Recalling that β, δ ∈ ]0, 1/2[, and

using Proposition 4.2(2), we also deduce that

|‖ũ1‖−‖D2θ1( z̃1) · ũ1‖| 6 8(β + δ) ‖ũ1‖.

The claim is thus proved in all the cases.

We have proved that u1 belongs to Ch
β , which gives the first part of the Proposition 4.14

(and the first item of the Definition 2.4). Note that, if u0 is non-zero, the same holds

for ũ1 = D f −1(z) · u0. If β + δ < 1/10, estimate (13) gives ‖u1‖ >
1
10‖ũ1‖; hence u1 does

not vanish. In particular, we have obtained the second part of the proposition (and the

second item of the Definition 2.4).

In order to control the smoothness of the center manifold we will need the following

additional result, which can be skipped at a first reading.

Addendum 4.16. Let us assume that K is r-normally hyperbolic. One can choose the

tubular neighborhood π : T → Σ0 such that, for β > 0 and m > 0 small enough, the cone

Ch
β is r-contracted by the restriction of 9m to Um .
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Proof. Note that the two first items of the Definition 2.4 are satisfied. In order to get

the third one, one has to choose the tubular neighborhood π : T → Σ0 carefully.

Since K is r -normally hyperbolic and the decomposition T M|K = Ec
⊕ Euu is

dominated, there exists nK > 1 such that, for x ∈ K and each unit vector uc
∈ Ec(x),

vu
∈ Euu(x),we have

min(‖D f −nK (x) · uc
‖, ‖D f −nK (x) · uc

‖
r ) > 3‖D f −nK (x) · vu

‖.

The same holds for any unit vectors in some thin continuous cone fields Cc Cuu containing

the bundles Ec, Euu , respectively, and defined on a neighborhood of K .

One will choose the cone field Cuu to be invariant by D f . For instance, for a > 0
small enough, one may consider at points x ∈ K the cone Cuu(x) := Cuu

a (x) of vectors

w ∈ Tx M such that the norm of the component along Ec(x) is smaller than a times the

norm of the component along Euu(x): then the image of Cuu
a (x) by D f −1 is contained in

C̃uu( f (x)) := Cuu
a/λ0

( f (x)). The cone fields Cuu and C̃uu may be extended continuously to

a neighborhood of K .

Let us choose b > 0 small. The cones Cuu and C̃uu being chosen as above with respect

to the r -normal hyperbolicity and the domination, we assume that the tangent spaces to

the fibers of F are close enough to the bundle Euu . Moreover, D Pm contracts the fibers

of π , while its restriction to Ec
|K is the identity. Consequently, for any points x ∈ K and

any m small, if we have D Pm(x) · u ∈ C̃uu(x) then D Pm(x) · u and u are almost collinear,

u belongs to Cuu(x), and ‖D Pm(x) · u‖ is smaller than (1+ b) · ‖u‖. In particular, for any

z ∈ Um and u ∈ Tz M , we have

D9m(z) · u ∈ Cuu(z)⇒


u ∈ Cuu(z),
‖D9m(z) · u‖ 6 (1+ b)‖D f −1(z) · u‖∥∥∥∥∥ D9m(z) · u
‖D9m(z) · u‖

−
D f −1(z) · u
‖D f −1(z) · u‖

∥∥∥∥∥ 6 b.

Arguing in a similar way, the cone field C̃uu has the same properties.

If β,m > 0 are small and y is close to K , any unit vector u ∈ Ch
β/λ0

(y) is close to its

image by D Pm(y) by Claim 4.15; moreover, the cones Ch
β are contained in the cones Cc.

In particular, we have, for any z ∈ Um ,

u ∈ Ch
β(z)⇒


D9m(z) · u ∈ Ch

β(9m(z)),
‖D9m(z) · u‖ > (1− b)‖D f −1(z) · u‖.∥∥∥∥∥ D9m(z) · u
‖D9m(z) · u‖

−
D f −1(z) · u
‖D f −1(z) · u‖

∥∥∥∥∥ 6 b.

In particular, for any z ∈ Um ∩ · · · ∩9
−nK+1
m (U ) and any unit vectors u, v with u ∈ Ch

β(z)
and D9nK

m (z) · v ∈ Cuu(9
nK
m (z)), we have

min(‖D9nK
m (z) · u‖, ‖D9nK

m (z) · u‖r ) > 2‖D9nK
m (z) · v‖. (16)
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Let us now consider n > 1 large, z ∈ Um ∩ · · · ∩9
−n+1
m (U ), and any unit vectors u, v

with u ∈ Ch
β(z) and D9n

m(z) · v 6∈ Ch
β(9

n
m(z)).

One can decompose v as a sum vc
+ vu such that D9n

m(z) · v
u
∈ C̃uu and D9n

m(z) · v
c
∈

D9n
m(Ch

β/λ0
). Note that, since the image of v is not in Cβ , there exists C̃ > 0 uniform such

that

‖D9n
m(z) · v

u
‖ > C̃−1

‖D9n
m(z) · v

c
‖.

If n0 = ` nK , we have by (16) that

‖D9n−n0
m (z) · vc

‖ 6 C̃2−`‖D9n−n0
m (z) · vu

‖.

Since D9n−n0
m (z) · vu belongs to C̃uu , one deduces that D9n−n0

m (z) · v belongs to Cuu . One

can thus apply 16 to any iterate D9k
m · u, D9k

m · v such that 0 6 k 6 n− n0− nK , and

prove for some C > 0 uniform the required estimate

‖D9n
m(x) · v‖ 6 C2−n/nK min(‖D9n

m(x) · u‖, ‖D9
n
m(x) · u‖

r ).

4.3. Fixed point of the graph transformation

4.3.1. Existence of the fixed point.

Proposition 4.17. For m > 0 small enough, Gm has a unique fixed point in Lipm,β.

Since Lipm,β is compact, the next lemma implies Proposition 4.17.

Lemma 4.18. For m small, Gm is a contraction of Lipm,β.

Proof. Let us consider two Lipschitz functions h1, h2 ∈ Lipm,β . By Proposition 4.9(3),

the images by f −1 of their graphs contain the graphs of two Lipschitz functions h′1, h′2 :
Σm → Tm . Let x be a point in Σm . One first wants to estimate the length dπ (h′1(x), h′2(x)).

Let us denote by z1 and z2 the images by f of h′1(x) and h′2(x). We introduce their

projections x1, x2 ∈ Σm by π , so that z1 = h1(x1) and z2 = h2(x2). We also consider the

point z̃2 = h1(x2). By Lemma 4.8, we have

dπ (h′1(x), h′2(x)) 6 γ d(h1, h2).

By Proposition 4.4(3), we also have

dπ (ϕm(x).h′1(x), ϕm(x).h′2(x)) 6 ρdπ (h′1(x), h′2(x)).

Thus, one gets

d(Gm(h1),Gm(h2)) 6 γρd(h1, h2).

We have chosen γρ < 1, so this implies the contraction property for Gm .

4.3.2. C1-smoothness of the fixed graph. In order to prove that the graph S of the

function h ∈ Lipm,β fixed by Gm is C1, we apply the following proposition to the tubular

neighborhood π : Tm → Σ0, the graph S, the map 9m , and the open sets Um, Vm .

Proposition 4.19. Let us consider a C1 submersion π : T → Σ0 and a section S. We

assume furthermore that

https://doi.org/10.1017/S1474748015000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000055


Center manifolds for partially hyperbolic sets without strong unstable connections 819

(1) there exists a C1-map 9 : U → T defined on an open set U ⊂ T , which preserves S:

the restriction of 9 to S ∩U is a homeomorphism to its image and 9(S ∩U ) ⊂ S,

(2) S is C1 on an open set V of S containing S \9(S ∩U ), and

(3) there exists a continuous cone field C on T of dimension d = dim(Σ0) that is

transverse to the fibration π , contracted by 9, and such that S is tangent to C.

Then S is a C1-submanifold.

Corollary 4.20. The fixed point h : Σ0 → T of the map Gm is a C1 function.

Proof of Proposition 4.19. Let us consider a point z0 ∈ S. There are two cases.

– Case 1. There exist an integer n > 0 and a point z−n ∈ S ∩ V such that, for each

0 6 k < n, the point 9k(z−n) belongs to S ∩U and 9n(z−n) = z0. Since z−n belongs

to V , the graph S is C1 in a neighborhood of z−n . By the definition of contracted

cone fields, the restriction of D9n to the tangent bundle of S ∩ V is non-degenerate:

the restriction of 9 to a neighborhood of z0 in S is a diffeomorphism to its image,

and by invariance S is C1 in a neighborhood of z0. In particular, S is tangent to a

d-dimensional space L z ⊂ Tz M transverse to π at each point z close to z0.

– Case 2. There exists an infinite sequence (z−n)n∈N of points in S ∩U such that

9(z−n) = z−n+1 for each n > 1. In this case, using that 9|S∩U is a homeomorphism

on its image, for each n > 0, the graph S is tangent to the continuous cone field

Cn
= D9n

· C in a neighborhood of z0. This cone field is exponentially thin around

a d-dimensional subspace of Tz0 M by Lemma 2.6. The intersection of the Cn(z0) is

thus a d-dimensional space L z0 and S is tangent to L z0 at z0.

We now prove that z 7→ L z is continuous at any point. It is clear in the first case. In

the second case, it comes from the fact that L z is tangent to the thin continuous cone

field Cn in a neighborhood of z0, for arbitrarily large n.

We have thus proved that the section S of π has continuous tangent spaces transverse

to π : this is a C1 transverse section, and hence a C1-submanifold.

Under stronger assumptions, we can prove a higher smoothness. It is not used in the

proof of Theorem 4.1, and may be skipped at a first reading.

Addendum 4.21. Under the assumptions of the Proposition 4.19, let us suppose

furthermore that, for some α ∈ (0, 1], the map 9 and the manifolds S ∩ V are C1,α,

and that the cone field C is (1+α)-contracted. Then S is the graph of a C1,α function.

Proof. Let us consider a point z ∈ S and a point z′ ∈ S close to z. We have to estimate

the difference between the slopes of Tz S and Tz′ S.

In the following, we define for x ∈ S the distance d(u, Tx S) between Tx S and a non-zero

vector u ∈ Tx M as the norm of the linear projection of the unit vector u/‖u‖ to the

tangent space of the fiber of π containing x , parallel to Tx S.

By Claim 2.7, the angle between Tx S and the fiber containing x is uniformly bounded

away from zero; hence the linear projection on the tangent space of the fiber at x and

parallel to Tx S has a norm bounded by a constant C1 > 0. Similarly, for any point x ∈
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S ∩U ∩9−1(U )∩ · · · ∩9−n0+1(U ) and v ∈ Tx M such that D9n0(x) · v /∈ C(9n0(x)), the

angle of v with Tx S is bounded away from zero so that its projection has norm larger

than C−1
2 ‖v‖ for another constant C2 > 0.

The (1+α)-contraction of the cone field gives an integer N > 1 satisfying the following.

Lemma 4.22. There exists N > 1 such that, for any x ∈ S ∩U ∩9−1(U )∩ · · · ∩
9−N+1(U ), and any unit vector u ∈ Tx M close to Tx S, and any unit w ∈ C(x),

d(D9N (x) · u, T9N (x)S) 6
1
4

min(‖D9−N
|S (x)‖−α, 1)d(u, Tx S).

Proof. The proof is similar to the contraction Lemma 2.6: we may choose v such that

u+ v belongs to Tx S and D9N (x) · v is tangent to the fiber of π at 9N (x). One deduces

that

d(D9N (x) · u, T9N (x)S) =
‖D9N (x) · v‖
‖D9N (x) · u‖

.

The distance d(u, Tx S) is the norm of the projection of u to the fiber of x parallel to

Tx S. It is thus equal to d(v, Tx S) and is larger than

d(u, Tx S) > C−1
2 ‖v‖.

The (1+α)-cone contraction gives, for any unit vector w ∈ C(x),

‖D9N (x) · v‖
‖v‖

6 Cλ−N min(‖D9N (x) ·w‖1+α, ‖D9N (x).w‖).

In particular, if w is the most contracted unit vector in C(x),

‖D9N (x) · v‖
‖D9N (x) · u‖

6 Cλ−N min(‖D9N (x).w‖α, 1)‖v‖ 6 Cλ−N min(‖D9−N
|S (x)‖−α, 1)‖v‖.

Putting the inequalities together, one gets the announced estimate, provided that

CC2λ
−N 6 1

4 .

Working in charts, one can identify the tangent spaces Tx M and T ′x M at points close

to each other. Since D9N is α-Hölder continuous, there exists a constant C3 > 0 such

that, for points x, x ′ close and any unit vector u,

‖D9N (x) · u− D9N (x ′) · u‖ 6 C3d(x, x ′)α.

Let us now finish the proof of the addendum. Let us denote (z−i )06i6` the backward

orbit of z by 9N in S ∩U : it is infinite (` = ∞) or defined for i smaller than some integer

`. We fix σ > 0 (small and independent of z, z′) so that the point z′ ∈ S has backward

iterates z′
−i = 9

−i N (z′) by 9N in S whenever the distance d(z′
−i , z−i ) is smaller than σ .

If σ has been chosen small enough, the distance between z−i and z′
−i is smaller than

d(z−i , z′
−i ) 6 2i

i−1∏
j=0

‖D9−N
|S (z− j )‖ d(z, z′).
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Let us consider a sequence of unit vectors u−i ∈ T S at z′
−i such that u−i is collinear

to D9N (z′
−(i+1)) · u−(i+1) for each i . We denote v−i the unit vector collinear to

D9N (z−(i+1)) · u−(i+1)
We estimate inductively the distance between u−i and T S. There exists C4 > 0

satisfying

d(u−i , Tz−i S) 6 C1‖u−i − v−i‖+ d(v−i , Tz−i S)

6 2C1
C3d(z−(i+1), z′

−(i+1))
α

‖D9N (z′
−(i+1)) · u−(i+1)‖

+
1
4

min(1, ‖D9−N
|S (z−i )‖

−α)d(u−(i+1), Tz−(i+1) S)

6 C4d(z−(i+1), z′
−(i+1))

α
+

1
4

min(1, ‖D9−N
|S (z−i )‖

−α)d(u−(i+1), Tz−(i+1) S).

We thus obtain, for any k 6 `,

d(u0, Tz S) 6
k∑

i=1

4−i C4

i−1∏
j=0

‖D9−N
|S (z− j )‖

−αd(z−i , z′
−i )

α

+ 4−k
k−1∏
j=0

min(1, ‖D9−N (z− j )‖
−α)d(u−k, Tz−k S)

6 C4d(z, z′)α +min

(
2−k d(z, z′)α

d(z−k, z′
−k)

α
, 4−k

)
.

Three cases are possible.

– The backward orbit of z is infinite (i.e., ` = ∞), and the distance d(z−k, z′
−k) is

smaller than σ for any k. In this case, k can be taken arbitrarily large.

– There is k 6 ` such that d(z−k, z′
−k) is of the order of σ : for some constant C5 > 0,

we have

2−k d(z, z′)α

d(z−k, z′
−k)

α
6 C5d(z, z′)α.

– The distance d(z−k, z′
−k) is smaller than σ for any k 6 `. Moreover, there exist

j ∈ {1, . . . , N } and a point

z̃ ∈ (S \9(S ∩U ))∩ (S ∩U )∩ · · · ∩9− j (S ∩U )

such that 9 j ( z̃) = z−`. Since σ > 0 has been chosen small, there also exists a

point z̃′ in a compact neighborhood of S \9(S ∩U ) contained in V such that

9 j ( z̃′) = z′
−`. Since S is C1+α on V , one deduces that there exists C6 > 0 uniform
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such that

d(u−`, Tz−` S) 6 C6d(z−`, z′
−`)

α 6 C6 2`
`−1∏
j=0

‖D9−N
|S (z− j )‖

α d(z, z′)α

so that d(u0, Tz S) 6 C4d(z, z′)α + 2−`C6d(z, z′)α.

In any case, we have shown that the distance between Tz S and Tz′ S is smaller than

C7 d(z, z′)α for a uniform constant C7, which ends the proof of the addendum.

4.4. Conclusion of the proof of Theorem 4.1

The graph transform also fixes the space Lipm,β(K ), and hence the graph S of the

function h ∈ Lipm,β fixed by Gm is a C1-submanifold, having the same dimension as

Σ and containing K in its interior. Note that it can be extended as a submanifold with

boundary, still denoted by S, by taking the union with Σ \Σ0. By the definition of Gm ,

the submanifolds S and f (S) coincide on a neighborhood of K . Moreover, T S|K is an

invariant subbundle transverse to Euu , and hence coincides with Ec at points of K . The

proofs of Theorem 4.1 and of the main theorem are now complete.

5. Consequences

5.1. Dynamics in a neighborhood: proof of Corollaries 1.2 and 1.3

Under the setting of the main theorem, one considers 0 < δ � ε small, and a

neighborhood U of K . Provided that U is small enough, any point x in the maximal

invariant set of U by f has a strong unstable manifold of size ε which intersects S at

some unique point s(x). Moreover, the intersection is transverse, d(x, s(x)) < δ, and s(x)
belongs to a small neighborhood of K in S. In particular, f (s(x)) still belongs to the

unstable manifold of size ε of f (x) and to S. One deduces that, for any n ∈ Z, one has

f n(s(x)) = s( f n(x)).

Taking n arbitrarily large, the distance d(x, s(x)) is exponentially smaller than

d( f n(x), s( f n(x))), which is bounded by δ. This proves that x = s(x). The maximal

invariant set of U is thus contained in S. This proves Corollary 1.2.

Corollary 1.3 is obtained by applying the main theorem to f and f −1, respectively. The

submanifold S is built as the intersection of two locally invariant submanifolds Scs, Scu

containing K and tangent to E ss
⊕ Ec and Ec

⊕ Euu , respectively.

5.2. Robustness of the submanifold: proof of Corollary 1.4

The definition of the graph transform and the results of §§§ 4.2.2, 4.3.1 and 4.3.2 allow

some flexibility: once the space Lipm,β and the function ϕm have been chosen, the set

K is not considered any more, and the graph transform may be modified into a map

which is C1-close to the initial transformation. In particular, one can replace f by any

diffeomorphism g that is C1-close to f . The map 9m introduced in (12) can then be

modified as a C∞-map

9m,g : z 7→ 2(ϕm ◦ g−1(z), g−1(z))
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which defines a new graph transform, producing a new C1-submanifold Sg. By considering

a small neighborhood U of K and arguing as for the proof of Corollary 1.2, one gets that

the maximal invariant set of g in U is contained in Sg.

The graphs Sg and g(Sg) coincide over an open set of Σ0 which is independent from the

diffeomorphism g (the points where ϕm equals 1 in § 4.2.2). This proves that the restriction

of the graph Sg to this open set defines a submanifold S′g which depends continuously on g
for the C1-topology, is contained in Sg ∩ g(Sg), and such that S′f contains a neighborhood

of K in S f .

Provided that two diffeomorphisms g1 and g2 are close enough for the C1-topology,

the fixed points in the space Lipm,β are close enough. This proves that the graphs Sg1

and Sg2 are C0 close. Both are tangent to some thin cone fields obtained by iteration

(see § 4.3.2). When g1, g2 are C1-close, these cone fields are close, and hence Sg1 , Sg2 are

C1-close. This proves that g 7→ Sg varies continuously for the C1-topology and this ends

the proof of Corollary 1.4.

5.3. Higher regularity

5.3.1. Cr -regularity of the center manifold: proof of Corollary 1.5. Let us

continue the proof of § 4 under the assumption that f is Cr and that the partially

hyperbolic set K is r -normally hyperbolic for some r > 1. The argument to prove that S
is Cr follows the ideas of the Cr -section theorem in [12] (although we were not able to

apply this theorem directly since the map 8m which is used for the graph transform is

not defined on an invariant domain).

Note that, by Remarks 4.5 and 4.12, one can assume that the submersion π : T →
Σ0 is smooth, and that the graph transform 9 := 9m introduced in § 4.2.2 is Cr .

Proposition 4.14 and Addendum 4.16 provide us with a cone field C := Ch
β on T of

dimension d which is transverse to the submersion π and r -contracted by 9. Moreover,

S is tangent to C. Let us consider the domain U := Um and the open set V := Vm ; then

Proposition 4.19 applies. If r = 1+α with α ∈ (0, 1), Addendum 4.21 proves that the

submanifold S is Cr also. It remains thus to consider the case r > 2.

We introduce the Grassmannian bundle p : T̂ → T of d-dimensional tangent subspaces

of T . Since r > 2, Addendum 4.21 proves that S is the graph of a C1,1 map. Consequently,

the tangent spaces to S define a Lipschitz graph Ŝ of the fibration π̂ := π ◦ p : T̂ →
Σ0. The preimages Û := p−1(U ) and V̂ := p−1(V )∩ Ŝ are open subsets of T̂ and Ŝ,
respectively. The tangent map D9 induces a Cr−1 map 9̂ : Û → T̂ , and the two first

properties of the Proposition 4.19 hold.

Since Ŝ is Lipschitz, the angle between the tangent space to Ŝ and the tangent space

to the fibers of p is uniformly bounded away from zero. The unit tangent vectors to Ŝ
are thus contained in a compact set of vectors v satisfying Dp(v) 6= 0. One can apply

Proposition 2.12 and get a continuous cone field Ĉ on T̂ , of dimension d, which is

transverse to the fibration π̂ and (r − 1)-contracted by 9̂. Moreover, one can require

that Ŝ is tangent to Ĉ; indeed the collection of unit vectors in the tangent sets of Ŝ is

contained in a compact set of vectors v satisfying Dp(v) ∈ C \ {0}.
Proposition 4.19 and Addendum 4.21 now imply that Ŝ is a C1,α-submanifold of T̂ , and

hence that S is C2,α, where α = min(1, r − 2). For any integer k 6 r − 1, one can repeat
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this argument inductively k times and conclude that S is Ck,α, where α = min(1, r − k−
1). This proves that S is Cr , and gives the first item of Corollary 1.5.

If f is Cr for some r > 1, and if we only assume that K is partially hyperbolic, the

continuity of the tangent map and the compactness of the unit bundle inside the central

bundle Ec on K imply that K is (1+α)-normally hyperbolic for some α > 0 small. One

deduces that S can be chosen C1,α, proving the second item of Corollary 1.5.

5.3.2. Smoothing the submanifold: proof of Proposition 1.6. Let S′ ⊂ int(S ∩
f (S)) be a submanifold with boundary which contains K in its interior. Let U be a small

neighborhood of K . Let us consider a C∞-diffeomorphism g0 and a C∞-submanifold Sg
close to f and S for the C1-topology. The image g0(Sg) is C1-close to S, and in particular

is arbitrarily C1-close to Sg in a neighborhood of S′. More precisely, there exist S′g ⊂ Sg

and S̃′g ⊂ g0(Sg) which both project on S′ by π . One can thus consider a diffeomorphism

τ of a neighborhood of S′, which is a translation along each curve π−1(x) of the tubular

neighborhood T and which maps S̃′g on S′g. Since π is C∞, and since S′g and S̃g are

C∞-submanifolds which are C1-close, one deduces that τ is a C∞-diffeomorphism which

is C1-close to the identity. It can be extended as a smooth diffeomorphism of M . The

C∞ diffeomorphism g := τ ◦ g0 is C1-close to f , and by construction S′g ⊂ Sg ∩ g(Sg).

Arguing as in the proof of Corollary 1.2, one shows that the maximal invariant set 3g of

U is contained in Sg. This gives the proposition.

5.4. Consequences when the center dimension equals 1 or 2

5.4.1. One-dimensional center bundle: proof of corollary 1.7. The arguments

for one-dimensional invertible systems are classical, and we only recall the main ideas. Let

K be a compact invariant set endowed with a partially hyperbolic structure whose center

bundle is one dimensional, and assume that K has no strong connection. By Corollary 1.3,

the set K is contained in a family of curves and circles γ1, . . . , γk that are tangent at Ec

at points of K and such that, for any point x ∈ 0 := ∪iγi close to K , the image of x is still

contained in 0. Any minimal subset C of K is either a periodic circle, a periodic orbit, or

a Cantor set. In the third case, the orbit of any point x ∈ 0 close to C accumulates on 3

in the past or in the future. In particular, there exist at most finitely many non-periodic

minimal sets, and any orbit in K accumulates in the future and in the past to minimal sets.

One can C1-approximate f by a diffeomorphism g whose periodic orbits are hyperbolic
and whose minimal sets are limit for the Hausdorff topology of periodic orbits. By

Corollary 1.4, the maximal invariant set 3g for g in a neighborhood U of K is still

contained in a one-dimensional C1-submanifold 0g, and the dynamics of g on 3g satisfies

the same properties as (K , f ). However, for any minimal set C ⊂ 3g, there exists a

periodic orbit O contained in an arbitrarily small neighborhood of C . One deduces that

O is contained in 0g. Since the non-periodic minimal sets are isolated in 0g from the

periodic orbits, they cannot exist for g. There are at most finitely many periodic orbits

since they are hyperbolic. This gives the conclusion of Corollary 1.7.

5.4.2. Two-dimensional center bundle: proof of Corollary 1.8. By

Corollary 1.4, for any diffeomorphism g that is C1-close to f , the maximal invariant
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set 3g in U has no strong connection, and is contained in a locally invariant C1-surface

Σg. Let us make two remarks.

– Σg is in general not a boundaryless compact manifold, but some known results for

surface dynamics which only involve local arguments extend to this setting.

– If h is a C1-perturbation of the restriction g|Σg supported on an arbitrarily small

neighborhood of 3g, then it extends as a diffeomorphism of M that is close to f for

the C1-topology such thatΣg contains 3h and is locally invariant in a neighborhood

of this set. Indeed, one can decompose h = ϕ ◦ g|Σg where ϕ is a diffeomorphism of

Σg which is C1-close to the identity and supported inside a small neighborhood of

3 f . Since ϕ is isotopic to the identity among diffeomorphisms of Σg close to the

identity with compact support, one can extend ϕ to a diffeomorphism of M close

to the identity.

Since U is a filtrating set, the intersection R(g)∩U is a union of chain-recurrence

classes C .

Lemma 5.1. Let us assume that the first case of the Corollary 1.8 does not hold. Taking g
in a dense Gδ-subset of U , the center bundle over any non-trivial chain-recurrence class

C ⊂ U has a dominated splitting Ec
|C = Ec

1⊕ Ec
2, i.e., there exists N > 1 such that, for

any x ∈ C and any u,∈ Ec
1(x), v ∈ Ec

2(x), one has ‖DgN (u)‖ 6 1
2‖Dgn(v)‖.

Proof. Taking g in a dense Gδ-subset of U , one can assume that any chain-recurrence

class C which is not a periodic orbit is the limit of a sequence of hyperbolic periodic

orbits (On) (see [4]), and then argue as in [19].

A result by Pliss (see [19, Theorem 2.1]) asserts that by perturbation of g|Σg one

can turn one of the periodic orbits On to be a saddle inside Σg. By a standard Baire

argument this implies that C is also the limit of hyperbolic periodic orbits whose stable

and unstable spaces intersect Ec along one-dimensional subspaces, inducing an invariant

splitting Ec
1⊕ Ec

2 of Ec over the union of the orbits On . If this splitting is not dominated,

one can create by perturbation of g|Σg a homoclinic tangency for one of these saddles

(see [11]). This perturbation may be extended as a diffeomorphism of M , and the first

case of the corollary holds. Otherwise, there exists a dominated splitting on the union of

the On , and hence on their closure and on C (see [2, Appendix B.1.1]).

As a consequence, the set R(g)∩U decomposes into finitely many isolated periodic

orbits and a set whose center bundle has a dominated splitting. The previous argument

shows that (up to reducing U and replacing f by a diffeomorphism C1-close) one can

restrict to the case the center bundle of 3 f has a dominated splitting Ec
= Ec

1⊕ Ec
2.

This also holds for any diffeomorphism g in a neighborhood U .

By Proposition 1.6, one can consider g ∈ U such that Σg and g|Σg are smooth. By

perturbation of g|Σg , one can furthermore assume that all the periodic orbits in Σg are

hyperbolic, and that there do not exist minimal sets in Σg which are a finite union of

circles that are normally hyperbolic. One can now apply the result of [19] (once again, the

argument involves only the dynamics in a neighborhood of K , and the diffeomorphism g
may be only defined on a neighborhood of K ).
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Theorem (Pujals–Sambarino). Consider a C2-diffeomorphism g of a surface S, and an

invariant compact set K with a dominated splitting T S|K = Ec
1⊕ Ec

2 such that each

periodic orbit in K is a hyperbolic saddle and K does not contain a minimal set which is

a finite union of circles that is normally hyperbolic. Then K is a hyperbolic set.

For the dynamics of g|Σg , the set R(g)∩3g is thus the union of sinks, of sources,

and of a saddle compact set K . In particular, the number of sinks and sources is finite.

By Smale’s spectral decomposition theorem, the set K decomposes into finitely many

transitive subsets, as announced by Corollary 1.8.

5.5. Invariant foliations for surface hyperbolic sets: proof of Corollary 1.11

Let f be a C2-surface diffeomorphism and K be an invariant compact set which is

hyperbolic. In particular, Eu is 2-dominated by E s for f −1, and by Lemma 2.10 there

exists a continuous cone field C of dimension 1 which is 2-contracted in a neighborhood

of K : we have Eu(x) ⊂ C(x) at each x ∈ K .

Let M̂ denote the projectivization of the tangent bundle T M (that is, the Grassmannian

bundle of one-dimensional tangent spaces) and p : M̂ → M the natural projection. The

tangent dynamics D f induces a C1-diffeomorphism f̂ of M̂ . Since the unstable bundle

Eu on K is one dimensional, it induces a point x̂ in each fiber p−1(x) with x ∈ K ,

defining a lift K̂ ⊂ M̂ of K which is invariant by f̂ . Since x 7→ Eu(x) is continuous, the

set K̂ is compact. By Proposition 2.15 and Remark 2.14, there exist neighborhoods Û
of K̂ and U = p(Û ) of K and a contracted continuous cone field Ĉ of dimension 2 on Û
that is transverse to p. By Lemma 2.10, this proves that K̂ has a dominated splitting

T M̂
|K̂ = Ê ⊕ F̂ where F̂ has two-dimensional spaces. Since the tangent spaces to the

fibers of p at points of K̂ are preserved by f̂ and since the fibers of p are contracted by

f̂ (see Proposition 2.11), one deduces that K̂ is partially hyperbolic with a dominated

splitting T M̂
|K̂ = Ê ss

⊕ Êc. The projection Dp is an isomorphism between Êc and T M|K .

Since the fibers of p are invariant by f̂ and tangent to Ê ss at points x̂ of K̂ , one

deduces that each strong stable manifold W ss (̂x) is contained in p−1(p(x)). In particular,

it intersects K̂ in a single point and the main theorem applies.

Let S ⊂ M̂ be a locally invariant C1 surface containing K̂ and tangent to Êc at points

of K̂ . The projection p : S→ M is a local diffeomorphism, injective on K̂ , and hence

injective on a neighborhood of K̂ : reducing S if necessary, p is a diffeomorphism between

S and a neighborhood U of K . Moreover, U is endowed with a C1 line field L : x 7→
p−1(x)∩ S which is locally invariant by D f by construction. This line field uniquely

integrates as a foliation Fu on U that is locally invariant on a neighborhood of K and

that is tangent to Eu at points of K . In particular, the leaves Fu
x at points x ∈ K contain

the local stable manifolds of x .

If f is Cr , with r > 2, then f̂ is Cr−1, and S can be chosen C1,α for some α > 0 by

Corollary 1.5. In particular, the line field L and the foliation F s are C1,α.
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Raugel for their comments related to this work. We thank also the anonymous referees

for their remarks, which improved the presentation of the text. This work was partially

https://doi.org/10.1017/S1474748015000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000055


Center manifolds for partially hyperbolic sets without strong unstable connections 827

supported by the ANR project DynNonHyp BLAN08-2 313375 and by the Balzan

Research Project of J. Palis. The authors acknowledge the IFUM and the CMAT

(Montevideo), where part of this text was written.

References

1. R. Abraham and J. Robbin, Transversal mappings and flows (W. A. Benjamin, Inc.,

New York-Amsterdam, 1967).

2. C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity

(Springer, Berlin, 2004).

3. S.-N. Chow, W. Liu, Y. Yi and Yingfei, Center manifolds for invariant sets,

J. Differential Equations 168 (2000), 355–385.

4. S. Crovisier, Periodic orbits and chain-transitive sets of C1-diffeomorphisms, Publ. Math.

Inst. Hautes Études Sci. 104 (2006), 87–141.

5. S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Adv. Math. 226

(2011), 673–726.

6. S. Crovisier and N. Gourmelon, Stabilisation of homoclinic tangencies in higher

dimension. In preparation.

7. S. Crovisier and E. R. Pujals, Essential hyperbolicity versus homoclinic bifurcations.

Invent. Math. to appear.

8. S. Crovisier, E. R. Pujals and M. Sambarino, Hyperbolicity of extremal bundles.

In preparation.

9. W. de Melo, Structural stability of diffeomorphisms on two-manifolds, Invent. Math. 21

(1973), 233–246.

10. N. Gourmelon, Adapted metrics for dominated splittings, Ergodic Theory Dynam.

Systems 27 (2007), 1839–1849.

11. N. Gourmelon, Generation of homoclinic tangencies by C1-perturbations, Discrete

Contin. Dyn. Syst. 26 (2010), 1–42.

12. M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics,

volume 583 (Springer-Verlag, Berlin, 1977).
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