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Abstract 

Data taken with the Collider Detector at Fermilab (CDF) during the 198% 

1989 run of the Tevatron are used to measure the center-of-mass angular dis- 

tribution between isolated prompt photons and the beam direction. The shape 

of the angular distribution for photon-jet events is found to be significantly 

different from that observed in dijet data. The next to leading order (NLO) 

QCD predictions show qualitative agreement with the observed prompt photon 

angular distribution. 

PACS Numbers: 12.38.QK, 13.85.Qk, 14.80.Er 

Prompt photons produced in pp collisions provide good quantitative tests of per- 

turbative Quantum Chromodynamics (QCD). P revious publications from UA2 [I] and 

CDF [2] have shown good agreement between data and the predicted prompt photon 

cross section over a wide range of photon and center-of-mass (CM) energies. Pertur- 

bative QCD predicts that the CM angular distribution of prompt photon events will 

differ significantly from that of dijet events. The UA2 collaboration demonstrated 

this by plotting the ratio of the photon/dijet CM angular distributions [3]. Leading 

order (LO) prompt photon production, at Tevatron energies, is dominated by the 

t-channel quark exchange process (gq + 97); here the spin $ quark propagator pro- 

duces a photon angular distribution roughly of the form (1- cos 8*)-l, where 6’ is the 

CM polar angle. In contrast, dijet production is dominated by the t-channel gluon 

exchange process (gg-+gg), where the spin 1 gluon produces a jet angular distribu- 

tion roughly of the form (1 - cos B*)-*. H ere we present the first measurement of the 
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prompt photon CM angular distribution at &=1.8 TeV and compare it to LO and 

NLO &CD. The data sample corresponds to an integrated luminosity of 3.3 pb-’ [4]. 

CDF has been described in detail elsewhere [5]. We describe here briefly those 

detector subsystems used in this analysis. We use a coordinate system defined such 

that z is along the proton beam direction, 4 is the azimuthal angle and 0 the polar 

angle. The central region (I 7 I< 1.1, where 17 is the pseudorapidity) contains a 1.4 

Tesla superconducting solenoid enclosing the vertex time projection chamber and the 

central tracking chamber. Outside the coil are situated the central electromagnetic 

(CEM) and hadronic calorimeters consisting of lead-scintillator and steel-scintillator 

sandwiches respectively. Imbedded within the CEM are the central electromagnetic 

strip chambers (CES) whose finer segmentation allow the measurement of the lateral 

shower profiles in 4 and z views. The area outside the central region (1.1 < 1 7 I< 4.2) 

is instrumented with gas calorimeters divided into electromagnetic (lead absorber) 

and hadronic (steel absorber) compartments. 

The data satisfied a trigger requiring an isolated electromagnetic cluster with a 

minimum transverse energy (ET = E sin 4) of 23 GeV in the CEM [4]. The candidate 

events were reconstructed and energy corrections were applied to the EM and jet 

clusters [4] [6]. Additional requirements were imposed to ensure that photons were 

well measured. These include a cut on the pseudorapidity of the photon (1 77 ~ .,: 

0.9), a maximum displacement along z of the event vertex from the center of the 

detector (I z,.,~ I< 50 cm) and fiducial cu s t t o avoid dead regions of the detectur. 
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Stringent isolation requirements were placed upon the photon candidates. The photon 

candidate cluster was required to have no secondary strip (CES) clusters of ET >l.O 

GeV and have less than 2.0 GeV unclustered EM ET (CEM) within a cone radius 

R=0.7, where R=JA@ + A$. 

The stringent isolation cuts and a veto on any tracks pointing to the calorimeter 

tower of the photon candidate reduce the possible prompt photon backgrounds to 

events where a QCD jet fragments into a single isolated neutral meson that decays 

into multiple photons. While jet fragmentation into single isolated particles is rare, 

the inclusive jet cross section [S] is approximately three orders of magnitude higher 

than the prompt photon cross section [2] at similar energies. As a result, the abso- 

lute background and signal production probabilities are roughly comparable after the 

application of isolatipn cuts. The final data sample was about 65% signal and 35% 

background. 

The background subtraction method exploits the average difference in shower 

profiles expected from events with single isolated prompt photons and those with 

multiple photons originating from decaying neutral mesons. The shower profiles in 

both 4 and z views are compared to a sample prolile obtained from test beam electrons 

and a x2 is extracted for each view on an event by event basis. The average (xz,.,) 

of the two views is then used for the background subtraction. A simulation was run 

to determine the expected xi”. distributions as a function of pi for signal and an 

expected background mix of #‘s, 7’s and Kf’s. The details of the simulation and the 
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determination of the likely background mix can be found in [4]. The x&. distributions 

from the simulation are then reduced to a pi dependent efficiency for both the signal 

and the background. These efficiencies are used to calculate signal and background 

weights (which sum to 1) for an individual event. The sum of the signal weights for all 

events passing the cuts is the background subtracted result. The method breaks down 

when a pair of photons from a decaying ?y” are sufficiently boosted to the point where 

their angular separation is less than the resolution of the strip chambers. Therefore 

a maximum pi cut of 45 GeV/c is imposed. 

In an effort to retain the simplicity of the 2 + 2 system, we vectorially sum the 

momentum from jets opposite to the photon, in 4, to create a single ‘summed’ jet. 

We require that the highest pi jet be in the opposite hemisphere in 4 from the photon 

and that the jet pi be > 10 GeV/c after all energy corrections. The CM variables 

are found from the pr and direction of the photon candidate and the direction of 

the summed jet. We then add in second or third jets if they are also in the opposite 

hemisphere and have a corrected pi > 10 GeV/c. 

The angular distribution presented is dp.d~~~~. , where we have integrated over a 

range of the CM momentum p*. Since there can be no angular asymmetry in this 

measurement, we plot 1 cos9’ 1. In the case of a 2 + 2 system, the CM variables p’, 

q* and ~~~~~~ can be found from the pi of the photon, and the detector positions of 

the photon and the jet (+,, 7~~~) via: 7)’ = T, vBoost = T, p’ = p~coshq’ 

and cos 8’ = tanh II*. 
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II Var Region 1 Region 2 
lk cos 8’ 0.0 to rkO.6 zt0.3 to f0.8 

*11* 0.0 to *0.7 zko.3 to fl.1 
7Boost TO.9 to 10.2 q.2 to TO.2 

P* 27.8 to 45.0 GeV/c 36.7 to 47.0 GeV/c 

Table 1: Table of cuts on the CM variables that ensure uniform acceptance for cos 6’-. 

It is desirable to push the measurement to as large a value of cosB* as possible 

because the differences between the theoretical calculations are most pronounced at 

small angles. Fig. 1 shows n., vs. 77~~~ for the data on the horizontal-vertical axes; the 

diagonal axes are the transformation to n* vs. naoost. The limits on the n? acceptance 

implies that an n* = 0.9 is the maximum value that could be measured in one uniform 

region of acceptance; this corresponds to cos8’ - 0.7. In order to utilize as much 

of the data as possible, we select two regions (see Table l), each uniform in 7x and 

nn,,,$t acceptance, and normalize in a region of overlap. The boxes in Fig. 1 define the 

regions of uniform acceptance in 7’ and ~“~,,~r. The corresponding cuts for cos 8’ are 

given in Table 1. The p’ limits for uniform acceptance are the result of the combined 

limits on pr (22 < pi < 45 GeV/c) and n* ( explicitly, p& = pTmin . coshn;,, and 

* 
P,,X = ~~~~~ . coshr&,). Fig. 2 plots pr vs. 7’ and illustrates this effect on the 

transformation to p’. 

The largest systematic uncertainty of the measurement comes from the statistics 

of the overlap region and therefore an increase in momentum bandwidth is vital to 

the measurement. Since the minimum p’ is determined in large part by the minimum 

pi, we choose to lower the minimum pi to 22 GeV/c, one GeV/c below the trigger 
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on 7’ correspond to 27.6 < p' < 45.0 GeV/ c and 36.7 < p' < 47.0 GeV/c in each 
of the uniform acceptance regions. The CDS 6” scale is given along the upper axis for 
reference. 
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threshold and correct for trigger inefficiencies where appropriate. The events with low 

pi (22< pi < 24) have large efficiency uncertainties (- 20%), but they occur only in 

the last bin of high cos 8’ in each region, where they contribute only a small fraction 

of the total signal (< 8%). However, lowering the minimum pi gives us a band of 

increased p’ acceptance over the full range of cos 8’ which substantially reduces the 

normalization uncertainty (see Fig. 2). The trigger efficiency for the data sample was 

measured through the use of a lower threshold trigger. No qI’ trigger dependence was 

found [7]. The photon candidates with pT’s below threshold come from events whose 

trigger cluster was above 23 GeV/c but had their energy corrected to a lower pr. 

Fig. 3 shows the prompt photon cos 8’ distribution after background subtraction 

plotted against predictions from a full NLO [8] and a LO tree-level diagram calcula- 

tion [9] of prompt photon production. Also shown are a LO calculation [9] of dijet 

production and dijet data from CDF [lo]. Th e inner error bars of Fig. 3 show the 

statistical uncertainties only, the outer are the statistical and systematic uncertain- 

ties added in quadrature. The prompt photon data show rough agreement with both 

LO and NLO theory but do not agree with dijet data or theory. The theory curves 

were generated at the parton level and were required to pass the same isolation re- 

quirements as the data. In the NLO calculations the outgoing partons were summed 

and the resultant direction was used to calculate. cosB*, in the same fashion as the 

data. AU theory curves and data have a normalization such that the flat part of 

the curve 1 cosB* /< 0.3 has an area of 0.3. The unnormaliaed (N,) and normalized 
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11 / cos6” I / N- 1 Stat Err Sys Err j NNorm 
+22.7 / 1.086 128.2 

29.4 
28.1 
27.6 

r 
32.6 
43.7 
20.7 
33.5 

17.3 0.964 
16.8 0.949 
16.9 0.915 

l-l 
26.9 0.947 
39.8 1.838 
26.1 2.782 
46.1 4.790 1 

Table 2: Table of the background subtracted data and uncertainties. N, are the 
unnormalized data and NY’“” are the normalized data as shown in Fig. 3. 

(NY”’ ) backg round subtracted data are presented in Table 2 along with the un- 

normalized statistical and systematic uncertainties. The unnormalized data are the 

number of photon events found in each bin of cos8’ after background subtraction, 

trigger efficiency and acceptance corrections. 

The systematic uncertainties include effects from the normalization, uncertainties 

in the x2’s distributions for background subtraction, trigger efficiency and acceptance 

[7]. The normalization uncertainty was estimated with the lu statistical variation 

within the regions used for normalization. This was found to be the dominant uncer- 

tainty and is completely correlated between the first six points (~12%) and between 

the last two (~27%). The uncertainties on the angular distribution due to the back- 

ground subtraction and trigger efficiency uncertainty were found by repeating the 

analysis with the simulation x’&. distributions and trigger efficiency varied indepen- 

dently by their 1 g uncertainties. Both uncertainties get larger with increasing cos P 

reaching a maximum of 14% and 7% respectively. The systematic uncertainties from 

q* and q*OosL acceptance were found from a MC detector simulation to be < 5% [7;. 
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Figure 3: Prompt photon dN/dcos 8’ after background subtraction. The photon data 
(open circles) are compared to LO-QCD (dashes) and NLO-QCD (solid) [8]. Also 
shown are previously published dijet data [IO] (solid circles) and theory curves for 
LO dijet tree level diagrams [9] (dots). The data and theory curves are normalized 
to an area of 3.0 in the region / cos 8’ I< 0.3. 
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In conclusion, we find the prompt photon CM angular distribution to be signifi- 

cantly different from the corresponding dijet angular distribution. The data are also 

found to agree with NLO QCD with a confidence level of 52% for prompt photon pro- 

duction. Note that the normalization for the last two points is 100% correlated and 

has the largest systematic uncertainty. When only the statistical errors are used, the 

confidence level with NLO QCD is 7%. While the effects of photon bremsstrahlung 

are accounted for at some level in the present NLO calculations, the presence of a 

larger bremsstrahlung component in the data would tend to create an excess at high 

cos e-. 
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