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Center of mass perception and
inertial frames of reference

GEOFFREY P. BINGHAM and MICHAEL M. MUCHISKY
Indiana University, Bloomington, Indiana

Center of mass perception was investigated by varying the shape, size, and orientation of planar
objects. Shape was manipulated to investigate symmetries as information. The number of reflec
tive symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry
were varied. Orientation affected systematic errors. Judgments tended to undershoot the center
of mass. Random errors increased with size and decreased with symmetry. Size had no effect on
random errors for maximally symmetric objects, although orientation did. The spatial distribu
tions of judgments were elliptical. Distribution axes were found to align with the principle mo
ments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A func
tional and physical account was given in terms of the repercussions of error. Overall, judgments
were very accurate.

Perceptual information used to control and coordinate

object manipulation can be obtained either haptically or

visually. As soon as contact with an object is established,

haptic information is available. In preparation for grasp

ing before contact, the location for a grasp on an object

must be determined using visual information. The in

tended grasp locus along with perceived object shape and

size determine the direction of the reach, the orientation

of the hand, and the relative extension of the fingers and

thumb (Jeannerod, 1984; Jeannerod, 1988; Wing & Fraser,

1983). However, the intended grasp locus also depends

on the goal in the specific task being performed.

The basic intent in grasping a detached object is to con

trol the position or trajectory of the object in free space.

This requires that the object's weight be supported by the

hand. Occasionally, an object is supported by placing the

hand underneath the object without enclosing it. However,

the manipulation allowed by this posture is very limited.

At the other extreme, an object's weight can be sustained

solely by a friction force between hand and object sur

faces. This force is a function of the roughness of hand

and object surfaces and of the forces applied perpendicu

larly forcing the surfaces together. To fix an object in the

hand, equal and opposite forces must be applied by the

hand to surfaces on opposite sides of the object. Thus,

for equilibrium, there must be at least two contact forces,

and if there are only two, these must be colinear and op

positely directed. 1
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A grasp in which finger and thumb pads contact and

pinch an object is called a "precision grasp" in Napier's

widely used classification (Napier, 1980). Precision grasps

are used with great frequency in assembly tasks where

small parts must be manipulated for precise placement.

The stability of such grasps is important because objects

in an unstable grasp may be difficult to put in place and

dropped parts may be broken or lost. On the other hand,

a momentary instability can be used to allow an object

to rotate within the grasp to a desired stable position.

We will refer to the line between the thumb and finger

along which contact forces are directed in a precision or

pinching grasp as the "opposition axis" (!berall, Bing

ham, & Arbib, 1986). The stability achieved in a simple

precision grasp at equilibrium depends on the location of

the opposition axis with respect to the center of mass of

an object. 2 The grasp can be stable, unstable, or neutrally

stable. Grasping an object above its center of mass yields

a stable equilibrium; if perturbed, the object returns to

its original orientation when the perturbing force is re

moved. This configuration allows passive maintenance of

posture and is convenient, for instance, in keeping a cup

of hot coffee from spilling. Grasping below the center of

mass yields unstable equilibrium; when perturbed away

from the equilibrium position, the object continues to ro

tate toward the stable configuration with the center of mass

located below the opposition axis. An unstable grasp may

be desirable in one-handed manipulation to achieve pas

sive changes in orientation. Finally, grasping an object

so as to pass the opposition axis through the center of mass

yields neutral stability. The object exhibits no preferred

orientation about the opposition axis and will remain in

any given posture in which it is placed. A neutrally sta

ble grasp can be useful in precision positioning where the

orientation of an object must be carefully controlled and

adjusted during placement. This posture also might be de-
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sirable in situations where the final desired orientation is
not apparent at the moment of initial grasping.

As shown by Iberall et al. (1986), who observed manual
behaviors in assembly tasks, the center of mass is fre
quently used to determine the location of a grasp. They
videotaped participants performing tasks while seated at
a table. Participants used either one or two hands with
or without vision. Two tasks were used: in one, par
ticipants assembled and disassembled a tower made from
large plastic blocks; in the other, they assembled and dis

assembled a meat grinder weighing slightly more than
2 kg, and consisting of six irregularly shaped and rela
tively heavy parts. Particularly with the meat grinder, par
ticipants were observed to establish precision grasps at
centers of mass (an S-shaped crank handle was usually
grasped in this way, for instance, in attaching it to the
end of a screw-shaped blade). With vision, the desired
location of the grasp was achieved on first contact. 3 Fur
ther, the passive manipulation of objects by grasping be
low the center of mass was often observed in the one
handed mode, and sometimes also in the two-handed sit
uation if the other hand was momentarilyoccupied in hold
ing or supporting other parts.

If, as suggestedby these observations, people can locate
the center of mass in objects using only visual informa
tion, then what is that information? The center of mass
is, obviously, a mass-related or dynamic property of ob

jects. Such properties are often referred to as "nonvisual"
(Quinlan, 1991, p. 238) or "hidden" (Runeson & Fryk
holm, 1983), with concurrent recognition, nevertheless,
that perceptual access to them is essential for the control
and coordination of actions. The problem is that dynamic
properties are described in units of mass in addition to
those of length and time whereas patterns detectable by
the perceptual systems involve only lengths and times.

In the context of events, visual informationabout dynamics
can be mapped through resulting motions into spatio
temporal optical patterns that can be detected by the per
ceptual apparatus (see, for instance, Bingham, 1987a,
1987b, in press; Bingham, Rosenblum, & Schmidt, 1993;
Bingham, Schmidt, & Rosenblum, 1989; Bingham, Schmidt,

Turvey, & Rosenblum, 1991; Kugler, 1986; Kugler &

Turvey, 1987; Pittenger, 1985, 1990; Riccio, Martin, &

Stoffregen, 1992; Runeson, 1977; Runeson & Frykholm,
1981, 1983; Runeson & Vedeler, 1993; Solomon, Tur

vey, & Burton, 1988, 1989b; Todd & Warren, 1982;
Warren, Kim, & Husney, 1987). The center of mass

might well be specified by object trajectories: in projec
tile motion, an object's center of mass follows a parabolic

path while the remaining portions of the object follow
more complex paths composed of a parabolic component
plus a component of rotation around the center of mass.

However, before being grasped, objects often lie un

moving on support surfaces. If visual information about
the center of mass is available in such situations, then that

information must lie in the geometric properties of an ob
ject which would map, in tum, into properties of the optic

array or optic flow. The distinction between informative

object properties and corresponding properties comprising
information in optical pattern is important. Although the
informative object properties might be spatial or static,
the corresponding optical properties typically would be
spatiotemporal because the observer would be in motion
even if the object was not. Our investigation focused on
the object properties that might provide information about
the center of mass. We leave the study of corresponding
information in optical flows for future investigations.

In general, constant mass density is required if shape
is to provide information about mass distribution. Single
material composition ensures nearly constant mass density

and is usually recognizable. Fortunately, single-material
objects are relatively common, and include the majority
of natural objects and a large proportion of manufactured
objects, such as those made from wood, soap, plastic,
metal, ceramics, stone, glass, and organic fibers. The per
ception of the center of mass in objects manufactured from
more than one material is necessarily more difficult. How
ever, depending on their intended use, objects manufac

tured from composite materials are often designed so that
the center of mass is specified by geometry-the center
of mass of the first author's rectangularly shaped electric

razor, for instance, lies at its geometric center.
The center of mass is a symmetry property of objects

(Becker, 1954; Sears, Zemansky, & Young, 1986). It is
the point around which the mass distribution is balanced.
Assuming constant mass density, the center of mass must
fall on any axes of reflective symmetry in an object. The
axis that divides an isosceles triangle into two right trian
gles is an axis of reflective symmetry. Three non-coplanar

axes of reflective symmetry uniquely specify the location
of the center of mass in an object. Detection of reflective
symmetry could be a fundamental means of identifying
the center of mass. If so, a larger number of axes of reflec

tive symmetry should increase accuracy in locating the
center of mass. Might accuracy improve with increases
in the number of axes above three (or in planar objects,

above two)?
Reflective symmetry can be defined not only with

respect to an axis or line through which object points are
reflected, but also with respect to a point. This is called

radial symmetry (see Griinbaum & Shephard, 1989; Lord
& Wilson, 1986; Rosen, 1982; Shubnikov, 1964; and
Weyl, 1921, for various taxonomies of symmetry). An

equilateral triangle has three axes of reflective symmetry
but does not have radial symmetry, whereas a parallelo

gram has no axes of reflective symmetry but does have
radial symmetry. In objects of constant mass density, the
center of mass must lie at the focus of radial symmetry.

Is the center of mass located more accurately in objects
with radial symmetry?

A third type of symmetry is rotational symmetry. This
is counted or indexed by the number of times self

congruence occurs with a rotation through 360°. A paral
lelogram is self-congruent twice, at 180° and 360°, while
a square is self-congruent four times, at 90°, 180°,270°,
and 360°, right and isosceles triangles are only self-
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Figure 1. Shapes used in Experiments 1 and 2. The number and
location of reflectivegynunetry axes are shown as weD as (in brackets)
the frequency of congruence in a 360° rotation, the latter indicat
ing the amount of rotational symmetry. Shapes that possess radial
symmetry are indicated as RS.
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angle: 100, 113, 144; equilateral triangle: 92, 100, 149; square:

72, 100, 165. The largest set still allowed the tongs to reach far

past the centers of the figures from almost any direction in the plane

of the objects.
The objects were presented to each observer with the plane of

the figure parallel to gravity. Objects were held upright in a trans

parent spring-loaded clamp affixed to a wooden base, as shown in

Figure 2. The side of the figure facing the subject was an unfinished

smooth wood surface. The side facing the experimenter had polar

coordinate paper attached to it with the origin of the coordinates
fixed at the center of mass. The units were millimeters. The Archi

medean method was used to determine the location of the center

of mass in each object, which was suspended alternatively from

two different points along its perimeter. A plumb line was hung

from each point in tum and marked on the object. The intersection

of the two lines marked the location of the center of mass. The tongs

used to express judgments were held and manipulated in one hand

like a large pair of scissors. The point of the tongs that contacted
the surface viewed by the observer was padded to prevent indenta

tion of the surface.

Procedure. The observers were asked to judge where they felt

the "stable point" was. We explained that this term referred to the

point where an object would remain stable without rotating about

the point of contact when held upright with the thumb and index

finger. Furthermore, if the object were to be rotated to another orien
tation, it would remain in the new orientation in which it had been

placed. This was demonstrated using a different object from those

used in the judgment trials. The term "stable point" was employed
to avoid using the word "center" in the task description, and be-

EXPERIMENT 1

Method
Participants. Thirty undergraduates at Indiana University

participated in partial fulfillment of an introductory psychology
course requirement. Twenty-four were female and 6 were male.

All had normal or corrected-to-normal vision and reported no mo

tor disabilities.

Apparatus. A set of seven planar objects was designed to vary

the amount of symmetry. Shapes were cut from l-cm-thick ply

wood. The number of axes of reflective symmetry ranged from zero

to four. Rotational symmetry in the plane of the objects varied from

one to four loci of self-congruence within a 360 0 rotation. Finally,

four of the shapes possessed radial symmetry. The shapes and sym

metries of the objects are shown in Figure I (the quadrilateral was

used only in Experiment 2). Each of these planar shapes was created

in three sizes (in em") as follows: right triangle: 75, 100, 163;
isosceles triangle: 74, 100, 140; parallelogram: 66, 100,285; rect-

We focused on tasks requiring precision grasps with

neutral stability so that participants were required to tar

get the center of mass in their grasping. We used planar

objects of a single material-namely, shapes cut from a

wooden board. Only two coordinates were required to lo

cate pinching grasps in terms of a single point on the ob

ject's planar surface. Judgments were expressed by using

tongs to grasp the objects. The tongs allowed a determi

nation of accuracy in perception beyond that required by

characteristics of the hand. We manipulated three geo

metric properties: shape, orientation, and size. Symmetry

properties ofobjects were manipulated by varying object

shape to include shapes with or without radial symmetry

and shapes with increasing numbers of reflective sym

metry axes (and, concurrently, shapes with increasing

amounts of rotational symmetry). Objects of three differ

ent sizes in each of seven different shapes were presented

in three different orientations.

congruent once, at 360 0
, and an equilateral triangle is self

congruent three times, at 1200
, 240 0

, and 360 0
• Might

greater rotational symmetry yield greater accuracy in

locating the center of mass?

Orientation is potentially relevant because axes of

reflective symmetry have been reported to be recognized
more readily when parallel to gravity (Rock, 1973). In

Rock's studies, a reflective axis was recognized increas

ingly less often as it was rotated farther from a vertical

orientation. Might accuracy in locating the center of mass

increase when reflective symmetry axes are parallel to

gravity?

The size of an object might affect accuracy in deter

mining center of mass location. Error in judging the center

of mass might increase in proportion to its distance to the

defining outline of the shape. On the other hand, this ten

dency might be mitigated by increasing symmetry. The

existence of axes of reflective symmetry or of a locus of
radial symmetry could make distance to the outline less

relevant (or perhaps alter its role). Might shape and size

interact in determining the accuracy of judgments of the
center of mass?
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Figure 2. Presentation of Experiments 1 and 2.

cause stability was the disposition that we wished our observers

to achieve in grasping. During each trial, the observers were asked

to close their eyes while the object in the clamp was changed. In
this way, they were prevented from obtaining information about

the center of mass by witnessing the experimenter handling the
objects.

Participants indicated their judgments of the stable point by lightly

grasping the object with the tongs at the appropriate location. Par

ticipants never lifted the object. The experimenter measured the

error in estimation by noting the angle and the radial distance of
the point of contact (in millimeters) in the polar coordinates on the
back of the object.

Size was manipulated as a between-subjects variable. Originally,

we ran three different experiments with 10 participants in each, re
sulting in an unbalanced between-subjects manipulation of size (the

reason for the irregular sizing of the objects). A given observer

judged different size levels across the six shapes. (The quadrilateral

was used in only one of the original experiments. Here, we report

results from the six remaining shapes, with data from the quad

rilateral being used only to determine the axes for measurement

in a subsequent experiment.)

Observers viewed all of the objects at three orientations: 0°, 135°,

and 270°. We used three orientations instead of four, to reduce

the total number of trials and to include off-axis orientations in the
maximally symmetric objects. The 0° orientation was determined

for the rectangle and the isosceles and equilateral triangles by orient

ing the longest reflective symmetry axis vertically. In the case of
the right triangle, the longest axis running through the center of

mass was used. All triangles were oriented at 0° with the point down.
For the parallelogram, we used an axis connecting the center of

mass to one of the obtuse angles. For the square, a nondiagonal

symmetry axis was used. Each participant saw each of the 6 shapes

0 D D
Small Medium

Size
Lusoo

D () \)
2

Orientation

at 3 orientations 3 times each, for a total of 54 presentations over

three blocks of trials. Presentation order within each block was ran

domized. Each experimental session lasted approximately I h.

Results and Discussion
Measurements in polar coordinates were converted to

Cartesian coordinates with the origin at the center of mass.

Polar angle of 0° was designated as the positive x direc

tion. The spatial distribution of the data for each object

exhibited an elliptical shape with distinct major and minor

axes. The x-data coordinates were regressed on the cor

responding y coordinates to determine if the major axis

in the distribution matched the axis chosen beforehand as

the x-axis on the object. In the parallelogram (and quadri

lateral), the regression line did not match the x-axis. For

these, the coordinates were rotated to fit the x-axis to the

data. The angle of rotation was computed from the slope

of the linear regression. Subsequent analysis, therefore,

was performed with respect to axes that were intrinsic to

the data.

We used the means of the x and y data for analysis of

the systematic error along the x- and y-axes. Standard

deviations calculated for each participant across orienta

tion and trials were used to analyze the random error along

the x- and y-axes. (We computed standard deviations

within orientations for trials both across and within sub

jects, but we found no effect of orientation on random

error in either instance.)

The shapes were ordered according to increasing sym

metry as follows: The number of axes of reflective sym

metry was counted, as was the number of self-congruences

within a 360° rotation within the plane of the figure. These

numbers were added for each shape, and the sum was in

cremented by 1 if the figure exhibited radial symmetry.

The totals gave the following order: (quadrilateral [total
symmetry = 1]), right triangle (1), isosceles triangle (2),

parallelogram (3), rectangle (5), equilateral triangle (6),

square (9).

Systematic errors were very small (within ±4 mm), and

increased when the major axis of reflective symmetry was

vertical. Judgments tended to undershoot the center of

mass in that case. Systematic errors were analyzed by per

forming multiple regressions of total symmetry, orienta

tion, and size, with three two-way and one three-way

interaction vectors on the x and then on the y data. Both

orientation and size were coded as categorical variables

using orthogonal coding. Means computed within each

cell across the three trials for each participant were used

for this analysis. The analysis was significant for x data

[F(7,532) = 6.5, r2 = .08,p < .001]. Significant main

effects were obtained for orientation (p < .001, (3 =

- .32, partial F = 18.3) and for size (p < .01, (3 =
- .20, partial F = 6.8). Total symmetry was only sig-

nificant as part of the three-way interaction. Overall means

for the three size levels only varied within ±1 mm. Sys

tematic errors were affected primarily by orientation. The

overall means for the three orientations were 2.01, -.31,
and -.81, respectively. The consistent tendency was to

Experimenter

•with origin of
polar graph at

the center of mass

E'sviewO'sview

of object
D

Tongs

~ ~
Observer



undershoot the center of mass, although less so in the sec

ond and third orientations. When the longest axis of
reflective symmetry was oriented vertically, mean judg
ments were approximately 2-3 mm below the center of

mass.
This analysis was also significant when performed on

ydata [F(7,532) = 3.2, r2 = .04,p < .002]. However,
only the size and size x orientation interaction were sig
nificant, and the means only varied within ± 1 mm of the

center of mass.
Random error along the x-axis increased with increas

ing object size but decreased with increasing object sym
metry. The pattern was similar but much weaker along
the y-axis. x and y error levels converged at the square.

Random error was analyzed by performing regressions
on standard deviations computed for each participant (or
size) and shape across trials and orientations. Linear re

gressions of total symmetry on x standard deviations for
each size were all significant (p < .(01). Slopes increased
from -.38 to -.44 to -.77 for small to large sizes, as

did the intercepts, from 6.2 to 6.8 to 9.4. Slopes were
extremely shallow for y standard deviations, and only the
linear regression for the largest size objects was signifi-
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cant (p < .02), with a slope of - .22 and an intercept
of 4.1. A multiple regression of total symmetry, size
(coded orthogonally), and an interaction vector on all x
standard deviations was significant [F(3,176) = 31.3,

r2 = .35, p < .001]. Total symmetry (p < .001, (3 =

-.52, partial F = 72.7), size (p < .001, (3 = -.52,
partial F = 20.2), and the interaction (p < .001, (3 =
.38, partial F = 11.0), were also all significant. The mean
x and y standard deviations for each shape and size were
plotted in order of increasing symmetry (Figure 3). No

increases in random error occurred with increasing size
for the most symmetric shape (the square). When the re

gressions were performed using indices of reflective sym
metry or rotational symmetry, the results were essentially
the same as for total symmetry. Use of only radial sym
metry accounted for about half of the variance covered
by the other symmetry measures.

In summary, the results showed that systematic error
was affected by orientation. When the long axis in an ob
ject was aligned with gravity, the participants tended to
undershoot the center of mass by a larger amount. In con

trast, random error was affected by object shape and size:
in less symmetric objects, random error increased with
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Figure 3. Random errors along the x- and y-axes; mean standard deviations for each shape and size are
shown, with shapes ordered by total symmetry. x-axis: large objects = filled squares, medium objects =
open diamonds, small objects = filled triangles. y-axis: large objects = open squares, medium objects =
filled diamonds, small objects :. open triangles.
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size, and as the amount of symmetry increased, random
error decreased. Random error was greater along the
longer x-axis than it was along the y-axis.

Two of these results, when combined, implied that the
observers were well able to recognize and use axes of
reflective symmetry occurring in any orientation. First,
that random error decreased with an increasing number
of reflective symmetry axes implied that the axes were
recognized and used; and second, that orientation had no
effect on random error implied that the axes were recog
nized and used in all orientations. Thus, while Rock
(1973) may have shown that reflective symmetry axes are
recognized less readily in vertical orientations, ultimately
they can nevertheless be recognized and used in all orien
tations.

A number of questions remained unanswered by Ex
periment I. First, what was the contribution of the dif
ferent types of symmetry to judgment accuracy? Radial
symmetry seemed to be a less powerful, but not irrele
vant, determinant of judgment accuracy, while the effects
of axial reflective symmetry and rotational symmetry
could not be determined independently. There was also
the question of whether the tendency to undershoot the
center of mass more strongly in the first orientation was
specific to the particular orientation of the shapes rather
than to a vertical orientation of the long x-axis: Would
undershooting also result at 180° from this orientation?
Finally, related to the effects of orientation, was the ques
tion of what determined the axes or orientations intrinsic
to the objects that were revealed by the data distributions?

There were also a number of design problems in Ex
periment 1. The most obvious was that of the unbalanced
and irregular manipulation of size. In addition, use of a
between-subjects design was perhaps less sensitive than
a completely within-subjects design that might enable us
to better differentiate the effects of different types of sym
metry. Finally, varying orientation by four increments of
90° each would have better revealed the effects of orien
tation with respect to the intrinsic axes found in the data.

EXPERIMENT 2

All seven shapes shown in Figure 1 were used in three
sizes, preserving area across shapes in each size. Objects
were presented at four orientations, each separated by 90°
and starting with the x-axis vertical, positive end down
wards. The axes used were those found in the data of Ex
periment 1. The positive x-axis (or 0° polar radius) on
the quadrilateral ran from the center of mass to a point
about 20° clockwise from the smallest acute angle. The
x-axis on the parallelogram connected the midpoints along
the short sides. All three factors (shape, size, and orien
tation) were within subjects.

Method
Participants. Ten undergraduate students at Indiana University

participated in the experiment, and were paid $4.25 per hour. All
of the participants had normal or corrected-to-normal vision and
reported no motor disabilities.

Apparatus. The quadrilateral, shown in Figure I, was added to
the six shapes used in Experiment I, and was included as a non
triangular asymmetric shape. Three sizes were used in all shapes,
with surface areas of 100, 200, and 300 em", Seven shapes in three
sizes yielded 21 objects in total.

Procedure. The task was the same as in Experiment I. Each par
ticipant judged all 21 objects at 4 orientations 3 times each, for a
total of 252 presentations divided into two sessions, each lasting
75 min and held on consecutivedays. Presentation order within each
of three blocks of trials was randomized.

Results and Discussion
Systematic error was analyzed by performing repeated

measures analyses of variance (ANOVAs) on the x and
y data, with shape, orientation, and size as factors. For
the x data, the size and shape factors were not signifi
cant, but the orientation factor was [F(3,27) = 11.5, P <
.001], as was the size x orientation interaction [F(12, 108)

= 3.8, p < .001]. In a simple effects test, sizes were
significantly different at Orientations 1 and 4 (p < .04),
while orientation was significant at all levels of size (p <
.001). The means are plotted in Figure 4a. Other inter
actions were significant also, but in each case the means
varied only by ±1 mm and the patterns seemed random.

For the y data, the shape factor was significant [F(6,54)

= 5.5, P < .001], but all means were within ±1 mm
except for that of the quadrilateral, which was at 1.8 mm.
Both orientation [F(3,27) = 9.3, p < .001] and size
[F(2,18) = 28.8, P < .001] were significant. The inter
action was not. The means also are plotted in Figure 4a.
As can be seen in Figure 4a, the x and y means were af
fected primarily by orientation. To reveal the pattern of
change over orientations for the centroids of the distri
butions, the overall means were plotted inx, y coordinates
(see Figure 4b; arrows show orientation). The trend was
for the centroids to be located below and to the left of
the center of mass by about 2-3 mm.

Random errors were analyzed by computing x and y

standard deviations across trials within shapes, sizes, and
orientations for each participant. A repeated measures
ANOVA was performed on x standard deviations, with
size, orientation, and shape as factors. Both size [F(2,18)

= 37.9, p < .001] and shape [F(6,54) = 33.2, p <
.001] were significant, as was the interaction [F(12,108) =

2.6, p < .005]. Neither orientation nor any of its inter
actions were significant. Standard deviations increased
with increases in object size for less symmetric objects.
As symmetry increased, random error decreased, even
tually eliminating the effect of size in the most symmetric
objects. In a simple effects test, size was significant (p <
.01) for all shapes except the rectangle and square, while
shape was significant at all size levels (p < .01).

In a repeated measures ANOVA performed on y data,
size [F(2, 18) = 14.7, P < .001] and shape [F(6,54) =

7.9, P < .001], were both significant. The interaction
was not. In a simple effects test, shape was significant
at all size levels (p < .001), but size was significant only
for the quadrilateral and equilateral triangle (p < .05).
Orientation was significant [F(3,27) = 7.9, p < .003].
Examination of the means revealed that random error in-
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Figure 4. <a) Systematic errors along the x- and y-axes for each of the three object sizes, plotted by
orientation. x-axis: 300 cmz = filled squares, 200 cm 2 = filled diamonds, 100 cm2 = fIlled triangles.
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of the centroids of the distributions for each of tbe four orientations. Arrows indicate the downward
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creased, especially in more symmetric objects, when the

y-axis was vertical. The same trend occurred in thex data,

although there it failed to reach statistical significance.

This can be seen in Figure 5, where vertical versus hori

zontal mean standard deviations for x or y are plotted sep

arately for each size. Means for the most symmetric ob

jects (rectangle, equilateral triangle, and square) at vertical

orientations of both the .r- and y-axis were greater than

those at horizontal orientations. There was a trend in this

direction for other shapes as well.

Apparent in Figure 5 was a knee in both x and y judg

ment curves at Object 6, the equilateral triangle. In Ex-

periment I, this had appeared only in the y data, and in

the x data for the largest size. This knee placed the data

for the equilateral triangle closer to those for the isosceles

and right triangles and the quadrilateral. The result was

an apparent split in the data depending on the presence

or absence of radial symmetry.

Except for the square, in which the lengths of the x

and y-axes were equivalent, y standard deviations were

always smaller than x standard deviations. Mean x and

y standard deviations were closer also for the quadrilateral,

in which the difference in axis lengths was smaller. These

observations taken together with the fact that mean stan-
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of each shape twice-that is, both within and across par

ticipants. In both cases, we plotted x- and y-axis lengths

against x and y standard deviations, respectively. Two sep

arate trends were apparent in scatterplots, and corre

sponded to shapes with or without radial symmetry. Using

the x standard deviations computed for each participant,

we performed a multiple regression on x standard devia

tions with vectors for .r-axis length, radial symmetry, and

the interaction. The regression was significant [F(3,416)

= 111.0,r2 = .44,p < .001],aswasx-axislength(p <
.001, (3 = .54, partialF = 191.9). Radial symmetry was

not significant ({3 = .15), but the interaction was signifi

cant (p < .001, (3 = -.49, partial F = 24.9). The re

sult was the same when the analysis was performed on

x standard deviations computed across participants, but

the r 2 was doubled to .84. When the analysis was per

formed on y standard deviations within participants, it was

significant [F(3,416) = 41.8, r2 = .23, p < .001], as

was y-axis length (p < .001, (3 = .34, partial F = 22.0)

and the interaction (p < .002, (3 = - .44, partial F =

4.7). Radial symmetry was not significant ({3 = .18).

When this was performed on y standard deviations com

puted across participants, the r? was doubled to .45. In

cluding a vector coding for vertical versus horizontal axis

orientation improved the r 2 for the y data but not for the

x. The trends are shown in Figure 6, where mean stan

dard deviations for each object are plotted against axis

lengths with linear fits for data with and without radial

symmetry at each of the two orientations.

Random error increased with axis length more rapidly

in objects without than in objects with radial symmetry,

and increased somewhat more rapidly for vertical than

horizontal axis orientations. Similar results were obtained

when we performed this analysis on the data from Ex

periment 1.

We found that radial symmetry together with axis

lengths accounted for a large proportion of the random

errors. However, the existence of axes of reflective sym

metry was also relevant, as perhaps was the amount of

rotational symmetry. We performed separate linear re

gressions of axis lengths on x and y standard deviations

for each object and axis orientation (vertical or horizon

tal). The slopes of these regressions are shown in Fig

ure 7. Here again, the difference between shapes with and

without radial symmetry was apparent. Random errors

increased more rapidly with size in shapes without radial

symmetry. However, variations depending on the pres

ence or absence of axes of reflective symmetry were also

apparent. Although x slopes were comparable in the right

and isosceles triangles, the y slope decreased with the pres

ence of the reflective symmetry axis in the isosceles tri

angle. The same was true of the parallelogram versus the

rectangle and square. These differences also appear in the

means in Figure 5. Clearly, the existence of axial reflec

tive symmetry also reduced random errors. We could not

determine on the basis of these results whether rotational

symmetry might contribute to the accuracy of judgments
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Figure S. Random errors along x- and y-axes for each shape (top =

100 cm2
, middle = 200 cm2, bottom = 300 cm2) . The respective

axes vertical or horizontal are plotted separately for each size, and
shapes are ordered by total symmetry. Axis vertical = open sym
bols, axis horizontal = closed symbols; x-axis = squares, y-axis =

triangles.

dard deviations generally increased with object size, as

apparent in Figure 5, implied that standard deviations

varied generally with axis length. We computed x and y
standard deviations for vertical and horizontal orientations
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beyond that allowed by radial symmetry and independent

of axial reflective symmetry.

Figure 6. Mean standard deviations for each shape and size and
axis orientation (vertical vs. horizontal), plotted against axis length
separately for x- and y-axes. Least squares best fit lines are plotted
for shapes with (squares) and without (circles) radial symmetry for
each orientation. Vertical orientation ofthe axis = open symbols,
horizontal orientation of the axis = fiUed symbols.
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would be to use the second moments or principal moments

of inertia to determine the axes themselves. As to the lat

ter question, which we consider first in the following dis

cussion, symmetry eliminated explanation via shape vari

ations, leaving the dynamically determined repercussions
of error as the only basis for understanding.

X .18/.11 .18/.05 X .10/.02 .08/.01 X .20/.03 .04/.02

Orientation to Gravity
We have described this task in terms of center of mass

perception. To interpret these results in terms of the per

ception of either a dynamic or an affordance property

might seem inappropriate; after all, we had reduced our

object variations to variations in planar shapes. Perhaps

our participants were only judging centroids of areas as

such-that is, as strictly geometric properties with no dy

namic content whatsoever. The problem with such an ac

35 count, however, is that we did not ask our participants

to judge centers of area; we asked them, rather, to judge

a dynamically determined dispositional property of the

objects-that is, to judge where the objects should be

grasped to produce neutrally stable equilibrium in a pre

cision grasp. The task was inherently dynamical. Further

more, the participants found the task as explained to them

to be intuitively clear, and they had no difficulty in under-

standing what was required of them.

The greatest difficulty for a nondynamical account,

however, is in handling variations in judgments corre

sponding to variations in object orientations. Changes in
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Figure 7. Slopes of linear regressions performed for each shape
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on standard deviations. The first number in each ceU is the slope
for tbe regression performed on standard deviationscomputed across
participants, whilethe second is for that performed on standard devi
ations computed within participants. The arrows are reminders that
x was vertical whiley was horizontal (and vice versa). The top four
shapes lack radial symmetry, while the bottom three possess it.

Many questions still remained unanswered, but the most

pressing concerned the existence of intrinsic object axes

in the data and the effects of orientation on the distribu

tion of errors along these axes. We turned to the under

lying dynamics for an account in both cases. Regarding

the first question, our empirically determined axes aligned

rather well with the principal moments of inertia. Hav

ing used the first moment or the center of mass to estab

lish the origin of a coordinate system, the next logical step

Parallelogram Rectangle Square
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judgments reflected the gravitational direction. This cer

tainly implied dynamic content. Systematic errors tended

to fall below the center of mass. Initially, this tendency

was surprising: we had expected to see overshooting in

the direction of stable equilibrium rather than undershoot

ing. However, the observed tendency also produced a sta

ble grasp. Because participants were grasping the objects

from the right, a systematic tendency to grasp below and

to the left of the center of mass would result in a tendency

for the object to rotate into the grasp so as to contact and

lean against the hand. This also would yield a somewhat

better measure of control over the object's trajectory.

We found an orientation effect in random error as well.

In the objects with the largest number of reflective sym

metry axes, random errors along an axis were greater

when it was aligned with gravity. An interesting aspect

of this effect was that it occurred strongly with the square;

because of its 90° rotational symmetry period, 90°

changes in orientation of the square were not accompa

nied by shape-related changes. Generally, the orientation

effect on random error seems to have emerged as the ob

jects became more symmetric and shape variations be

came less of a factor. The effect is illustrated in Figures

8a and 8b, respectively, for the equilateral triangle and

square, which were the most symmetric objects-one with

and one without radial symmetry. The contour plots rep

resent the spatial distribution of judgment frequencies

across object surfaces. They reveal the tendency of the

distributions to align with gravity in each of the four

orientations.

Why should these distributions be constrained in the

direction perpendicular to gravity while spreading in the

direction of gravity? What was the difference between

misjudging above or below the center of mass as opposed

to misjudging off to the side? Dynamical analysis revealed

the functional repercussions of misjudging the center of

mass by distances in different directions. The angular ac

celeration about the opposition axis (that is, about the

points of contact) increases with increasing distance from

the center of mass, depending on the direction with respect

to gravity. The analysis is shown in Figure 9. The object

acts as a physical pendulum, and this determined the equa

tion of motion. We used the parallel axis theorem to com

pute the moment of inertia around the opposition axis

that is, the inertia was computed as the inertia around the

center of mass added to the product of the object mass

and the square of the distance from the center of mass.

The inertia about the center of mass was computed as a

function of two shape-specific constants and the squares

of object dimensions. When these were substituted into

the original expression, the masses canceled, meaning that

the rotational acceleration was strictly a function of the

geometry of the object and gravity. {) and r can be thought

of as polar coordinates on the object surface with the ori

gin at the center of mass. For each object of a given shape,

the rotational acceleration was computed for each poten

tial contact point on the object surface using this function

as a single-valued function (the rotational acceleration)

in two variables (8 and r). All objects yielded acceleration
surfaces with the same basic shape: two hills surrounding

a vertically oriented valley containing the center of mass.

The valley always aligned with gravity. Only the relative

height of the hills and the steepness of their slopes varied

with shape. The basic form of the acceleration surface

is shown in Figure 10 from two perspectives. We suggest

that the elliptical distributions in the data tend, all else

being equal, to lie along the valley in this plot.

Note that this plot is the product of a very local analy

sis in time. As a result, the plot does not reflect the asym

metry in the stability properties of points located above

versus below the center of mass. The surface represents

the accelerations generated instantaneously at the given

location. This is relevant when a complete lack of rotation

is desired (as opposed to rotations that take one into de

sirable configurations). The problem, of course, is that

corrections or responses to rotations can only be provided

in some fmite time. The greater the rotational acceleration,

the greater the amount of undesired rotation within a given

response time (or alternatively, for a given minimum

amount of rotation, the smaller the time in which to re

spond and the greater the required vigilance). To mini

mize amplitude of rotation in slips, the optimal strategy

would be to hone as closely as possible to a vertical line

extending though the center of mass. This is what the par

ticipants appear to have done when best able to recog

nize a vertical passing though the center of mass.

Inertial Frames of Reference

We have noted that in objects with maximum symmetry,

the elliptical distributions tended to align with gravity. In

all cases, however, the axes of the elliptical distributions

aligned within the object geometry. Furthermore, the

major axis of the ellipse tended to align with object shape,

especially when there were fewer than two axes of reflec

tive symmetry. How might we account for these orienta

tions? The major axes of the distributions did not consis

tently align with the longest axis passing though the center

of mass. In objects with axes of reflective symmetry, the

axes ofthe distributions aligned with the symmetry axes.

But what of the asymmetric objects or the objects with

only radial symmetry? This problem has been considered

at length elsewhere in the context of object or shape

recognition.
In the study of shape recognition, a controversy has de

veloped concerning the frame of reference used to estab

lish orientation for purposes of recognition. The alterna

tives have included a retinal (Corballis & Roldan, 1975;
Sutherland, 1968), a gravitational (Hock & Tromley,

1978; Rock, 1973, 1983), and an intrinsic (based on prop

erties of object shape) frame of reference (Hinton, 1981a,

1981b, 1981c; Hock & Tromley, 1978; Marr, 1982;

Wiser, 1981). The controversy has been conditioned by

the assumption that perception proceeds by constructing

descriptions of objects. Recognition has been portrayed

as a matter of matching current descriptions with stored
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Calculation of Rotational Acceleration

Figure 9. Calculation of the instantaneous rotational acceleration
about the opposition axis.

ballis & Roldan, 1975; Corballis et aI., 1976; Quinlan,

1991). The results produced using this method are of
questionable generality because the mapping from object

shape (or surface structure) to optical pattern has been

restricted in a way that is entirely unrepresentative. Free

variation in the perspective mapping is an unavoidable

facet of the visual perception of shape. A more promis

ing approach, recognizing that the observer is never mo

tionless, is to study the regularities in the optical flow pat

terns that are generated over perspective transformations

(Koenderink, 1975; Koenderink, 1986; Koenderink,

1990; Koenderink & van Doom, 1978; Nakayama, 1985;

Thompson, 1989; Thompson, Mutch, & Berzins, 1984,

1985; Waxman & Ullman, 1985). We must emphasize

that we have not pursued this aspect of center of mass

perception here. Our results (and a large proportion of

results in the shape-perception literature) concern varia

tions in object shape and orientation. We emphasize that

these shapes should not be confused with optical infor

mation about shape.
If we interpret the debate in the shape-perception liter

ature in a manner that is consistent with the distinction

Grip Point
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V'8= -grsin8

( ~ x ~ + Cl.Yo2) + r
2

Figure 10. An iIInstrative rotational acceleration surface shown
from two perspectives. x and y distances are in meters, whileangular
acceleration is in radians/second.
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descriptions. The extrinsic geometries typically used to

model this process require a set of coordinates to describe

and to match shapes.4 A frame of reference is used to de

termine the orientation of the coordinate axes. A frame

intrinsic to object shape has been advocated in the interests

of parsimony. The idea has been to reduce the number

of stored representations used to recognize an object. Al

though shape recognition seems relatively insensitive to
changes in size and location (Corcoran, 1971; Deutsch,

1955; Sutherland, 1960, 1968; Sutherland & Carr, 1963),

it can be perturbed by changes in orientation' (Attneave

& Olson, 1967; Attneave & Reid, 1968; Corballis, Anuza,

& Blake, 1978; Corballis & Roldan, 1975; Corballis,

Zbrodoff, & Roldan, 1976; Hock & Tromley, 1978;
Quinlan, 1991; Rock, 1973, 1983; Rock, DiVita, & Bar

beito, 1981; Rock & Leaman, 1963). This sensitivity has

been used to argue for gravitational rather than intrinsic

frames of reference.

A large proportion of studies on shape recognition have

focused on the recognition of two-dimensional (2-D) planar

shapes, with the suggestion that their results might be

generalized to the perception of 3-D object shape, assum

ing that the latter is mediated by momentary, static, 2-D

projected shape (Quinlan, 1991). The problem with this

idea is that it confuses the shape of an object or of a fig

ure drawn on a surface with optical information about

shape. The optical information about object shape or

drawn shape is never a copy of the shape. Shape in opti

cal pattern is transformed by the nonlinear (that is, polar

projective) mapping to the point of observation. The

momentary optical pattern depends on the momentary per

spective. RT studies have attempted to control optical flow
resulting from continuous change in perspective by using

tachistoscopic exposures. This method has been used in

studies that have produced results used to argue in favor

of a retinal frame of reference (Corballis et al., 1978; Cor-



between optical flow and object shape, then the con

troversy has been about fixing coordinates in an object.

The strategy for fixing the origin has been to use the center
of mass (or the center of area)" (Ballard & Brown, 1982;

Hom, 1986; Kanade & Kender, 1983; Marr, 1982; Wechs

ler, 1990). This strategy has been common to almost all

approaches despite disagreement over the means of es

tablishing coordinate orientation. In machine or computa

tional vision, orientation of coordinates has been achieved

exclusively via object-centered frames of reference. Two

largely overlapping approaches can be distinguished. In

the more general computational approach, axes of reflec

tive symmetry and direction of elongation have been hy

pothesized as object properties used to fix coordinates

(Hom, 1986; Kanade & Kender, 1983; Marr, 1982; Quin

lan, 1991; Wiser, 1981). In the absence of reflective sym

metry, the longest axis passing through the center of mass

in an object or figure is used. (The center of mass is used

because the longest axis otherwise corresponds to an edge

in some figures, such as triangles and rhombuses.)

An alternative approach commonly employed in ro

botics is to use the second moments, the principal axes
of inertia (Horn, 1986). This is a logical extension of hav

ing used the first moment or center of mass to establish

the origin of the coordinates. The principal axes of inertia

are orthogonal axes fixed at the center of mass. As such,

they are Cartesian coordinate axes that are intrinsic to a

given shape. They represent axes of rotation at which in
ertial resistance is maximal at one axis while minimal at

the other. They also correspond to axes around which ro

tation is smoothest and most stable. Although the larger

of the principal axes may pass near the longest axis

through the center of mass, most often it is not the same

as the longest axis. The two approaches to establishing

intrinsic object coordinates therefore differ, but only in

this respect; otherwise, the principal moments correspond

to axes of reflective symmetry when the latter exist.

Use of the inertial axes is certainly a more elegant ap

proach than using either symmetry or the longest axis,

the choice between which is problematic for objects in
which symmetry is closely approximated. Objects are pre

cisely symmetric only on rare occasion. How much must

an object deviate from symmetry before the longest axis

is used in preference to an (approximate) symmetry axis?

The difference may be significant. For instance, in a rect

angle, the longest reflective symmetry axis connects the

midpoints of the shorter sides, while the longest axis

through the center of mass runs corner to comer. As the

rectangle is perturbed gradually into a parallelogram, at

what point would the coordinate axis jump to the corner?

The inertial axis moves continuously away from the mid

point of the sides toward the (acute-angled) corners as a

rectangle is transformed into a parallelogram with angles

that gradually move farther from 90°. The location of the

inertial axes is well defined at every configuration of the

figure.

Using the inertial axes is preferable also because they

are directly relevant to the control of object manipula-
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tion. (Naturally, roboticists would appreciate this advan

tage.) A growing number of studies have shown that peo

ple are very sensitive to the inertial properties of objects

that they either manipulate (Bingham et al., 1989; Jones,

1986; Solomon & Turvey, 1988; Solomon, Turvey, &

Burton, 1989a, 1989b; Turvey, Burton, Pagano, Solo
mon, & Runeson, 1992) or might manipulate (Bingham,

1987b; Runeson & Frykholm, 1981, 1983). In particu

lar, Solomon et al. (1989a, 1989b) have demonstrated a

sensitivity to the inertial moments.

The alignment of the distributions in our center of mass

judgments supported the inertial-axes approach to object
coordinates. First, as shown in Figure 11, the axes in the

distributions aligned with axes of reflective symmetry. In

these cases, the longest symmetry axis was not always

the longest axis through the center of mass-it was in the

triangles, but was not in the squares and rectangles. In

the elongated objects, the major axis of the ellipse tended

to run in the direction of elongation. The exceptions, of

course, were the objects with multiple axes of reflective

symmetry, one of which lay parallel to gravity; in such

cases, the ellipse also tended to align with gravity. We

did not record an effect of orientation on random errors

in Experiment 1, in which we aligned reflective symmetry

axes with gravity only at one orientation.

We used the orientations in the distributions recorded

in Experiment 1 to determine the axes used for orienta

tion and analysis in Experiment 2. The distributions in

EB
Figure 11. Locations of the x and y principal moments of inertia

compared with the axes apparent in the data distrihutions for each

of the shapes (the two coincided).
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Experiment 2 aligned with the axes determined in Exper

iment I with one exception. Without knowing or think

ing about the locations of the inertial axes, we had allowed

ourselves in Experiment 1 to be influenced by the approx

imate symmetries of the parallelogram. The choice seemed

to be whether to lay the .r-axis between the two acute

corners or between the midpoints of the short sides, since

the major axis in the data lay 5.33 0 toward the acute

corners from an axis between the midpoints of the short

sides. We interpreted the 5.33 0 as measurement error and

placed the axis for Experiment 2 between the midpoints

of the short sides. As it happens, the axis of the larger

of the principal moments of inertia lies almost exactly
where the Experiment I data were-about 50 above the

axis that we used in Experiment 2. Likewise, the orien

tation of the data distributions for the parallelograms in

Experiment 2 was 7.5 0 toward the acute corners, as

shown in Figure II.

We determined these orientations by regressing x on

y data for each ofthe four object orientations, collapsing

across sizes, and then computing the mean slope across

the four orientations. Because the major axis of the

elliptical distributions lay along the x-axis in all cases ex

cept that of the parallelogram, these regressions were non

significant (with slopes near 0) on at least three occasions

out of four for each object. For the parallelogram, three
of the regressions were significant (p < .001) and, as

mentioned, the mean slope was 7.5 0 with a standard devi

ation of 5.8 0
• The longest axis through the center of mass

in a parallelogram is the axis running between the acute

corners. This was about 14 0 from the axis between the

midpoints of the short sides and 6.5 0 (that is, more than
a standard deviation) away from the mean orientation of

the data distribution. The major axis in the data distribu

tions for the quadrilateral did not coincide with the lon

gest axis in the objects either, although, once again, it

was about 2.5 0 from the inertial axis in the direction of

the longest axis.

Taken by themselves, the results for the parallelogram

and the quadrilateral are perhaps not absolutely conclusive

evidence that axes reflected in performance correspond

to inertial axes. However, determination by inertial axes

is certainly the more parsimonious approach when such

evidence is coupled with the alignment of data with sym

metry axes when they exist. The frequent noncoincidence

of long axes and reflective symmetry axes places the two

at odds in a way that would require complex criteria for

their respective application. Furthermore, inertial axes are

of greater potential use and we have other evidence that

these properties are used in object manipulation.
In any case, our observers were clearly skilled in de

termining the location of the center of mass in these ob

jects; errors rarely exceeded a finger's width in distance

from the actual center of mass. Observers were more ac

curate with objects that exhibited radial symmetry, and

also appeared to use reflective symmetry. Whether rota

tional symmetry is also used remains unclear, and the is

sue of what is done in the absence of symmetry is also

still to be determined, although a sensitivity to inertial mo

ments would constrain the possibilities.
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NOTES

I. This is not precisely true. Fearing (1983) has shown that strict op

position of contact forces is not required. The angle between the force

vectors from opposing segments of the hand can vary within a toler-
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ance determined by the frictional characteristics of the object and hand

surfaces.
2. With some misgivings, we will use "center of mass perception"

as shorthand for "perception of grasp locus on an object affording a

neutrally stable precision grasp" (see Bingham & Muchisky, 1993, for

an extended discussion). The perception of this property coincides more

or less with center of mass perception, but deviates from the center of
mass within a tolerance determined by the frictional properties of the

hand and object surfaces and by the physically determined repercus

sions of missing the exact locus of the center of mass. For purposes
of measurement, the frictional component of grasping was not empha

sized in our studies.
3. Without vision, the object was typically grasped at an arbitrary

point of first contact and lifted slightly to obtain haptic information. The

grasp was then moved to the desired location, which was the center of

mass in such appropriate instances as that of the crank handle.

4. Use of intrinsic geometries would obviate this requirement (Koen

derink, 1990; Koenderink & van Doom, 1978; Lappin, 1990; Lord &

Wilson, 1986).
5. An exception is that of rotations that preserve reflective symmetry

(Deutsch, 1955).
6. The center of area is the first moment of a plane figure and is the

same as the center of mass of a planar object of the same shape with
constant mass per unit area. Area is the zeroth moment, while the mo

ment of inertia is the second moment. Use of moments in computing

shape is standard (Ballard & Brown, 1982; Hom, 1986), but not uni

versal (Wechsler, 1990).
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