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ABSTRACT
Given Q nodes in a social network (say, authorship net-
work), how can we find the node/author that is the center-
piece, and has direct or indirect connections to all, or most
of them? For example, this node could be the common ad-
visor, or someone who started the research area that the
Q nodes belong to. Isomorphic scenarios appear in law en-
forcement (find the master-mind criminal, connected to all
current suspects), gene regulatory networks (find the pro-
tein that participates in pathways with all or most of the
given Q proteins), viral marketing and many more.

Connection subgraphs is an important first step, handling
the case of Q=2 query nodes. Then, the connection sub-
graph algorithm finds the b intermediate nodes, that provide
a good connection between the two original query nodes.

Here we generalize the challenge in multiple dimensions:
First, we allow more than two query nodes. Second, we allow
a whole family of queries, ranging from ’OR’ to ’AND’, with
’softAND’ in-between. Finally, we design and compare a
fast approximation, and study the quality/speed trade-off.

We also present experiments on the DBLP dataset. The
experiments confirm that our proposed method naturally
deals with multi-source queries and that the resulting sub-
graphs agree with our intuition. Wall-clock timing results
on the DBLP dataset show that our proposed approximation
achieve good accuracy for about 6 : 1 speedup.
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1. INTRODUCTION
Graph mining has been attracting increasing interest re-

cently, for community detection, partitioning, frequent sub-
graph discovery and many more. Here we introduce and
solve a novel problem, the “center-piece subgraph” (CEPS)
problem: Given Q query nodes in a social network (e.g.,
co-authorship network), find the node(s) and the resulting
subgraph, that have strong connections to all or most of the
Q query nodes. The discovered nodes could contain a com-
mon advisor, or other members of the research group, or
an influential author in the research area that the Q nodes
belong to. As mentioned in the abstract, there are multiple
alternative applications (law enforcement, gene regulatory
networks).

Earlier work [6] focused on the so-called “connection sub-
graphs”. Although the inspiration for the current work, the
connection subgraph algorithm can only handle the case of
Q=2. This is exactly the major contribution of our work:
we allow not only pairs of query nodes, but any arbitrary
number Q of them.

Figure 1 gives screenshots of our system, showing our so-
lution on a DBLP graph, with Q=4 query nodes. All 4
researchers are in data mining, but the first two (Rakesh
Agrawal and Jiawei Han) are more on the database side,
while Michael Jordan and Vladimir Vapnik are more on
the machine learning and statistical side. Figure 1(b) gives
our CEPS subgraph, when we request nodes with strong
ties to all four query nodes. The results make sense: re-
searchers like Daryl Pregibon, Padhraic Smythe and Heikki
Mannila are vital links, because of their cross-disciplinarity
and their strong connections with both the above sub-areas.
Figure 1(a) illustrates an important aspect of our work, the
K softAND feature, which we will discuss very soon. In a
nutshell, in a K softAND query, our method finds nodes
with connections to at least k of the query nodes (k = 2 in
Figure 1(a)).
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(a) “K softANDquery”: k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and Vladimir Vapnik.

Thus, we define the center-piece subgraph problem, as
follows:

Problem 1. Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graph W, Q nodes as
source queries Q = {qi} (i = 1, ..., Q), the softAND
coefficient k and an integer budget b

Find: a suitably connected subgraph H that (a) contains all
query nodes qi (b) at most b other vertices and (c) it
maximizes a “goodness” function g(H).

Allowing Q query nodes creates a subtle problem: do we
want the qualifying nodes to have strong ties to all the query
nodes? to at least one? to at least a few? We handle all
of the above cases with our proposed K softAND queries.
Figure 1(a) illustrates the case where we want intermediate
nodes with good connections to at least k = 2 of the query
nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary number Q of
query nodes, with careful handling of a lot of the sub-
tleties.

• The introduction and handling of K softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which pro-
vides a 6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and nu-
merous optimizations, like alternative normalizations of the
adjacency matrix, a fast algorithm to compute the scores for
K softAND queries.

Our experiments on a large real dataset (DBLP) show that
our method returns results that agree with our intuition, and
that it can be made fast (a few seconds response time), while
retaining most of the accuracy (about 90%).

The rest of the paper is organized as follows: in Section 2,
we review some related work; Section 3 provides an overview
of the proposed method: CEPS. The goodness score calcu-
lation is proposed Section 4 and its variants are presented in
the Appendix. The “EXTRACT” algorithm and the speed-
ing up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7;
and conclude the paper in Section 8.

2. RELATED WORK
In recent years, there is increasing research interest in

large graph mining, such as pattern and law mining [2][5][7][20],
frequent substructure discovery [27], influence propagation [18],
community mining [9][11][12] and so on. Here, we make a
brief review of the related work, which can be categorized
into four groups: 1) measuring the goodness of connection;
2) community mining; 3) random walk and electricity re-
lated methods; 4) graph partition.

The goodness of connection. Defining a goodness cri-
terion is the core for center-piece subgraph discovery. The
two most natural measures for “good” paths are shortest dis-
tance and maximum flow. However, as pointed out in [6],
both measurements might fail to capture some preferred
characteristics for social network. The goodness function for
survivable network [13], which is the count of edge-disjoint
or vertex-disjoint paths from source to destination, also fails
to adequately model social relationship. A more related dis-
tance function is proposed in [19] [23]. However, It can-
not describe the multi-faceted relationship in social network
since center-piece subgraph aims to discover collection of
paths rather than a single path.

In [6], the authors propose an delivered current based
method. By interpreting the graph as an electric network,
applying +1 voltage to one query node and setting the other
query node 0 voltage, their method proposes to choose the
subgraph which delivers maximum current between the query
nodes. In [25], the authors further apply the delivered cur-
rent based method to multi-relational graph. However, the
delivered current criterion can only deal with pairwise source
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queries. Moreover, the resulting subgraph might be sensi-
tive to the order of the query nodes (See Figure 2 for an
example). On the other hand, as we will show very soon,
connection subgraph can actually be viewed as a special case
of the proposed center-piece subgraph (“AND query” with
pair source nodes ).

Random walk related methods. The proposed im-
portance score calculation is based on random walk with
restart. There are many applications using random walk
and related methods, including PageRank [22], personalized
PageRank [14], SimRank [16], neighborhood formulation in
bipartite graph [26], content-based image retrieval [15], cross
modal correlation discovery [24], BANKS system [1], Objec-
tRank [3], RalationalRank [10] and so on.

Community detection. Center-piece subgraph discov-
ery is also related with community detection, such as [9][11][12].
However, we cannot directly apply community detection to
subgraph discovery especially when the source queries are
remotely related or they lie in different communities.

Graph partition and clustering. There are a bunch
of graph partition and clustering algorithms proposed in the
literature, e.g. METIS [17], spectral clustering [21], flow
simulation [8], co-clusterfing [4], betweenness based method
[12]. It is worth pointing out that the proposed method is
orthogonal to the specific graph partition algorithms.

3. PROPOSED METHOD: OVERVIEW
Let us first define the goodness score for nodes. For a

given node j, we have two types of goodness score for it:

• Let r(i, j) be the goodness score of a given node j wrt
the query qi;

• Let r(Q, j) be the goodness score of a given node j wrt
the query set Q.

A natural way to measure the goodness of the subgraph H
is to measure the goodness of the nodes it contains: the more
’good’/important nodes (wrt the source queries) it contains,
the better H is. Thus, the goodness criterion of H can be
defined as:

g(H) =
X

j∈H
r(Q, j) (1)

With the above goodness criterion, a straightforward way
to choose the “best” subgraph should be the one which max-
imizes g(H):

H∗ = argmaxHg(H) (2)

However, no connection is guaranteed in this way and
the resulting subgraph H might be a collection of isolated
nodes. Thus, there are two basic problems in center-piece
subgraph discovery: 1) how to define a reasonable goodness
score r(Q, j) for a given node j; 2): how to quickly find
a connection subgraph maximizing g(H). Moreover, since
it might be very difficult to directly calculate the goodness
score r(Q, j), we further decompose it into two steps. The
pseudo code for the proposed method (CEPS) is listed as
follows:

4. GOODNESS SCORE CALCULATION
There are two basic concepts in goodness score calcula-

tion:

Table 1: CEPS
Input: the weighted graph W, the query set Q,

K softAND coefficient k and the budget b
Output: the resulting subgraph H
Step 1: Individual Score Calculation. Calculate the

goodness score r(i, j) for a single node j wrt a
single query node qi

Step 2: Combining Individual Scores. Combine the
individual score r(i, j) to get the goodness score
r(Q, j) for a single node j wrt the query set Q

Step 3: “EXTRACT”. Extract quickly a connection
subgraph H with budget b maximizing the
goodness criteria g(H)

• Let ri,j be the steady-state probability that a particle
will find itself at node j, when it does random walk
with restarts (RWR) from query node qi.

• Let r(Q, j, k) be the meeting probability , that is, the
steady-state probability that at least k-out-of-Q par-
ticles, doing RWR from the query nodes of Q, will all
find themselves at node j in the steady state; k is the
K softAND coefficient.

These two kinds of steady probability (ri,j and r(Q, j, k))
are the base of our goodness score calculation (for both
r(i, j) and r(Q, j)). It’s basic idea is that: suppose there are
Q random particles doing RWR from each query node in-
dependently; then after convergency, each particle has some
steady-state probability staying at the node j; and different
particles have some meeting probability at the node j. The
steady-state probability and the meeting probability provide
some hints on how the node j is related with the source
queries, and are used to compute the goodness score of node
j. Moreover, by designing different meeting probability , we
can get the specific type of goodness score tailored for the
specific query scenario. Table 2 lists all the symbols and
definitions used throughout this paper.

4.1 Individual score calculation
Here we want to compute the goodness score r(i, j) of a

single node j, for a single query node qi. We propose to use
random walks with restart, from the query node qi.

Suppose a random particle starts from query qi, the parti-
cle iteratively transmits to its neighborhood with the proba-
bility that is proportional to the edge weight between them,
and also at each step, it has some probability c to return to
node qi. r(i, j) is defined as the steady-state probability ri,j

that the particle will finally state at node i:

r(i, j) � ri,j (3)

More formally, if we put all the ri,j probabilities into ma-
trix form R = [ri,j ], then

RT = cRT × W̃ + (1− c)E (4)

where E = [�ei](i = 1, ..., Q) is the N × Q matrix, c is the

fly-out probability, and W̃ is the adjacency matrix W ap-
propriately normalized, say, column-normalized:

W̃ = W ×D−1 (5)

The problem can be solved in many ways - we choose
the iteration method, iterating Eq. 4 until convergence. For
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Table 2: Symbols
Symbol Description

N total number of nodes in the weighted graph
m iteration step
c fly-out probability for random walk with restart
�ei N × 1 unit query vector, with all zeros except one at row qi

W = {wi,j} the edge weighted matrix (i, j = 1, ..., N)
D = {di,j} N ×N matrix, di,i = di, and di,j = 0 for i �= j

di the sum of the ith row of W
H the chosen center-piece subgraph
Q number of source query nodes

Q = {qi} set of query nodes (i = 1, ..., Q)

Q́ the first (Q− 1) query nodes of query set Q, Q́ = {qi}, (i = 1, .., (Q− 1))
∅ null query set, which contains no query node

r(i, j) goodness score for a single node j wrt query node qi

r(Q, j) goodness score for a single node j wrt query set Q
r(Q, (j, l)) goodness score for a single edge (j, l) wrt query set Q

ri,j steady-state probability of a single node j wrt query node qi

R Q×N matrix of [ri,j ]
r(Q, j, k) meeting probability of a single node j, wrt k(k = 1, .., Q) or more of the query nodes of Q
r(i, (j, l)) meeting probability of a single edge (j, l), wrt query node qi

r(Q, (j, l), k) meeting probability of a single edge (j, l), wrt k(k = 1, .., Q) or more of the query nodes of Q

simplicity, in this paper, we iterate Eq. 4 m times, where m
is a pre-fixed iteration number.

4.2 Combining individual scores
Here we want to combine the individual score r(i, j)(i =

1, ..., Q) to get r(Q, j), the goodness score for a single node
j wrt the query set Q. We propose to use the meeting prob-
ability r(Q, j, k) of random walk with restart. Furthermore,
by using different softAND coefficient k, we can deal with
different types of query scenario.

The most common query scenario might be that “given
Q query nodes, find the subgraph H the nodes of which
are important/good wrt ALL queries”. In this case, r(Q, j)
should be high if and only if there is a high probability that
ALL particles will finally meet at node j:

r(Q, j) � r(Q, j, Q) =

QY

i=1

r(i, j) (6)

Eq. 6 actually defines a logic AND operation in terms of
individual goodness scores: the node j is important wrt the
query set Q if and only if it is important wrt every query
node. Thus, we refer such query type as “AND query”.

A complemental query scenario is “OR query”: “given Q
queries, find the subgraph H the nodes of which are impor-
tant wrt at least ONE query”. In this case, r(Q, j) should
be high if and only if there is a high probability that at least
one particle will finally stay at node j:

r(Q, j) � r(Q, j, 1) = 1−
QY

i=1

(1− r(i, j)) (7)

Eq. 7 defines a logic OR operation in terms of individual
importance scores: the node j is important wrt the source
queries if and only if it is important wrt at least one source
query.

Besides the above two typical scenarios, the user might
also ask “given Q queries, find the subgraph H the nodes

of which are important wrt at least k(1 ≤ k ≤ Q) queries”.
We refer such query type as “K softAND query”. In this
case, r(Q, j) should be high if and only if there is a high
probability that at least k-out-of-Q particles will finally meet
at node j.

r(Q, j) � r(Q, j, k) (8)

To avoid exponential enumeration (which is O(2k)), Eq. 8
can be computed in a recursive manner:

r(Q, j, k) = r(Q́, j, k − 1) · r(Q, j) + r(Q́, j, k) (9)

where r(∅, j, 0) = 1(j = 1, ..., Q).
Intuitively, Eq. 8 defines a logic operation in terms of in-

dividual importance scores that is between logic AND and
logic OR. In this paper, we refer it as logic K softAND: the
node j is important wrt the source queries if and only if it
is important wrt at least k-out-of-Q source queries.

It is worth pointing out that both “AND query” and
“OR query” can be viewed as special cases of “K softAND
query”: “AND query” is actually “Q softAND query”; while
“OR query” is actually “1 softAND query”

4.3 Variation: normalization on W

To compute the goodness score r(i, j) and r(Q, j), we need

to construct the transition matrix W̃ for random walk with
restart. A direct way is to normalize W by column as Eq. 5.
However, as pointed out in [6], there might be the so called
“pizza delivery person” problem, that is, the node with high
degree is prone to receive too much attention (receiving too
high individual goodness score in our case). To deal with
this problem, we propose to normalize W as Eq. 10. The
normalized weighted graph W will be further used to for-
mulate the transition matrix W̃ by Eq. 5.

wj,l ← wj,l/(dj)
α (10)

for all j, l = 1, ..., N .
The motivation of normalization is as follows: for the high

degree node j, every edge (j, l)(l = 1, ...., N) is penalized by

407

Research Track Paper



(di)
α and vice versa. The coefficient α control the penal-

ization strength: bigger α indicates stronger penalization.
Note that the idea of penalizing the node with high degree
is similar with that of setting a universal sink node in [6].

5. THE “EXTRACT” ALGORITHM
The “EXTRACT” algorithm takes as input the weighted

graph W, the importance scores on all nodes, the budget
b and the softAND coefficient k; and produces as output
a small, unweighted, undirected graph H. The basic idea
is similar with the display generation algorithm in [6]: 1)
instead of trying to find an optimal subgraph maximizing
g(H) directly, we decompose it into finding key paths incre-
mentally; 2) by sorting the nodes in order, we can quickly
find the key paths by dynamic programming in the acyclic
graph.

However, we cannot directly apply the original display
generation algorithm since it can only deal with pair source
queries (and also the resulting subgraph is sensitive to the
order of the source queries). To deal with this issue, we
extend the original algorithm in the following aspects:

(1) Instead of finding a source-source path, at each step,
the algorithm will pick up a most promising destina-
tion node pd; and try to find a source-destination path
for each source query node.

(2) The order (which will be used in the dynamic program-
ming) is specified with each source query node.

(3) Key path discovery differs with the different query
types: for “AND query” the algorithm will discover Q
paths for all source nodes at each step; for “K softAND
query”, it only discovers k paths for the first k source
nodes; while for “OR query”, the algorithm will only
find 1 path at each step.

Before presenting the algorithm, we require the following
definitions:

• SPECIFIED DOWNHILL NODE. Node u is down-
hill from node v wrt source qi (v → di, u) if r(i, v) >
r(i, u);

• SPECIFIED PREFIX PATH. A specified prefix path
P (i, u) is any downhill path that starts from source qi

and ends at node u; that is, P (i, u) = (u0, u1, ..., un)
where u0 = qi, un = u, and uj → di, uj+1;

• EXTRACTED GOODNESS. The extracted goodness
is the total goodness score of the nodes within the
subgraph H: CF (H) =

P
j∈H r(Q, j).

• EXTRACTED MATRIX. Cs(i, u) is the extracted good-
ness score from source node qi to node u along the
prefix path P (i, u) so that:

1. P (i, u) has exactly s nodes not in the present out-
put graph H

2. P (i, u) extracts the highest goodness score among
all such paths that start from qi and end at u.

• ACTIVE SOURCE. For K softAND, the source node
qi is active wrt destination node pd if r(i, pd) ≥ r(k)(i, pd),

where r(k)(i, pd) is the kth largest value among r(i, pd), (i =

1, ..., Q). Note that the number of active source differs
with the query type1: for “OR query”, there is only
one active source while for “AND query”, all sources
are active. For a specific query type, an active source
qi might turn into inactive when the destination node
pd changes and vice versa.

The destination node pd can be decided by Eq. 11:

pd = argmaxj/∈Hr(Q, j) (11)

where H is the partially built output subgraph.
In order to discover a new path between the source qi and

the promising node pd, we arrange the nodes in descending
order of r(i, j)(j = 1, ..., n): {u1 = qi, u2, u3, ..., pd = un}.
(note that all nodes with smaller r(i, j) than r(i, pd) are ig-
nored). Then we fill the extracted matrix C in topological
order so that when we compute Cs(t, u), we have already
computed Cs(t, v) for all v → di, u. On the other hand, as
the subgraph is growing, a new path may include nodes that
are already present in the output subgraph, our algorithm
will favor such paths as in [6]. The complete algorithm to
discover a single path from source node qi and the destina-
tion node pd is given in table 3.

Table 3: Single Key Path Discovery
1. Let len be the maximum allowable path length
2. For j ← [1, ..., n]

2.1. Let v = uj

2.2. For s← [2, ..., len]
If v is already in the output subgraph

s′ = s
Else

s′ = s− 1
Let Cs(i, v) = maxu|u→di,v(Cs′(i, u) + r(Q, v))

3. Output the path maximizing Cs(i, pd)/s, where s �= 0

Based on the previous preparations, the EXTRACT al-
gorithm can be given in table 4.

Table 4: Our EXTRACT Algorithm
1. Initialize output graph H null
2. Let len be the maximum allowable path length
3. While H is not big enough

3.1. Pick up destination node pd by Eq. 11
3.2. For each active source node qi wrt node pd

3.2.1. use table 3 to discover a key path P (qi, pd)
3.2.2. add P (qi, pd) to H

4. Output the final H

6. SPEEDING UP CEPS
To compute r(i, j), we have to solve a linear system. When

the data set is large (or more precisely, when the total num-
ber of the edges in the graph is large), the processing time
could be long.

Note that Eq. 4 can be solved in closed form:

RT = (1− c)(I− cW̃)−1E (12)

1Since both “AND query” and “OR query” can be viewed
as special cases of “K softAND query”, the number of active
sources is actually k for all query types.
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Thus, an obvious way to speed up CEPS is to pre-compute
and store the matrix A = (I−cW̃)−1, then RT = (1−c)AE
can be computed on-line nearly real-time. However, in this
way, we have to store the whole N ×N matrix A, which is
a heavy burden when N is big.

As suggested by [26], the goodness score r(i, j)(j = 1, ..., N)
is very skewed, that is, most values of r(i, j) are near zero
and only a few nodes have high value. Based on this ob-
servation, we propose to pre-partition the original weighted
graph W into several partitions and only use the partitions
containing the source queries to run CEPS. In this paper,
we use METIS [17] as the partition algorithm.

The pseudo code for the accelerated CEPS is summarized
as follows:

Table 5: Fast CEPS
Input: the weighted graph W, the query set Q,

K softAND coefficient k, the budget b, and
the number of partitions p

Output: the resulting subgraph H
Step 0: pre-partition W into p pieces (one-time cost)
Step 1: pick up partitions of W that contain

all the query nodes to construct the new
weighted graph nW

Step 2:. run CEPS as in table 1 on nW

7. EXPERIMENTAL EVALUATION
In this section, we demonstrate some experimental results.

The experiments are designed to answer the following ques-
tions.

• Does the proposed goodness criterion make sense?

• Does the EXTRACT algorithm capture the most good-
ness score?

• Does the extra normalization step really help?

• how does the pre-partition balance the quality and re-
sponse time?

Data Set We use the DBLP data set to evaluate the pro-
posed method. To be specific, the author-paper information
is used to construct the weighted graph W: every author is
denoted as a node in W; and the edge weight is the number
of co-authored papers between the corresponding two au-
thors. On the whole, there is ≈ 315K nodes and ≈ 1, 834K
non-zero edges in W.

Source Queries To test the proposed algorithm, we se-
lect several people from different communities to compose
the source-query repository: 13 people from database and
mining; 13 people from statistical and machine learning; 11
people from information retrieval; and 11 people from com-
puter vision. Then the source queries are generated by ran-
domly selecting a small number of queries from the reposi-
tory.

Parameter Setting The re-starting coefficient c in Eq. 4
is set 0.5 and the iteration number m is set 50 since we do
not observe performance improvement with more iteration
steps. The maximum allowable path length len is decided by
the budget b and the number of active sources k as [b/k]. For
normalization coefficient α, a parametric study is provided
in Section 7.3. For other experiments, α = 0.5.

Evaluation Criterion Firstly, the resulting g(H) can be
evaluated by “Important Node Ratio (NRatio)”. That is,
“how many important/good nodes are captured by g(H)?”:

NRatio =

P
j∈H r(Q, j)

P
j∈W r(Q, j)

(13)

Complementally, we can also evaluate by “Important Edge
Ratio (ERatio)”. That is, “how many important/good edges
are captured by g(H)?”:

ERatio =

P
(j,l)∈H r(Q, (j, l))

P
(j,l)∈W r(Q, (j, l))

(14)

The goodness score r(Q, (j, l)) of an edge (j, l) is defined
similarly as the goodness score for a node: what is the prob-
ability that the specific edge (j, l) will be traversed simul-
taneously by all (or at least k) of the particles. Firstly, we
calculate the goodness score r(i, (j, l)) for an edge (j, l) wrt
a single query node qi:

r(i, (j, l)) =
1

2
· (r(i, j) · W̃l,j + r(i, l) · W̃j,l) (15)

Based on Eq. 15, we can easily define r(Q, (j, l)) according
to the specific query type. For example, for “AND query”,
r(Q, (j, l)) can be computed as Eq. 16; while for “OR query”
and “K softAND query”, r(Q, (j, l)) can be computed as
Eq. 17 and Eq. 18, respectively.

r(Q, (j, l)) � r(Q, (j, l), Q) =

QY

qi=1

r(i, (j, l)) (16)

r(Q, (j, l)) � r(Q, (j, l), 1) = 1−
QY

qi=1

(1− r(i, (j, l))) (17)

r(Q, (j, l)) � r(Q, (j, l), k)

= r(Q́, (j, l), k − 1) · r(Q, (j, l)) + r(Q́, (j, l), k)

(18)

where r(∅, (j, l), 0) = 1.
For all experiments except subsection 7.1, we run the pro-

posed algorithm multiple times and report the mean NRatio
as well as mean ERatio.

7.1 Evaluation on the goodness g(H): case study
As we mentioned before, connection subgraph is a spe-

cial case of center-piece subgraph (“AND query” with pair
source nodes ). Figure 2 shows the connection subgraph
with budget 4 for “Soumen Chakrabarti” and “Raymond T.
Ng”. It can be seen that both our method and the deliv-
ered current method output somewhat reasonable results.
It is worth pointing out that the subgraph by the delivered
current method is very sensitive to the order of the source
queries: comparing figure 2(a) and (b), there is only one
common node (“S. Muthukrishnan”). On the other hand,
if we compare figure 2(b) and (c), while most nodes are the
same for the two methods, It is clear that our method cap-
tures more strong connection: compared with figure 2(b),
the different node (“H.V. Jagadish”) in figure 2(c), 1) has
more connections (4 vs. 3) with the remaining nodes and
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(a) by delivered current method (+1 voltage for Raymond and 0 voltage for Soumen)

(b) by delivered current method (+1 voltage for Soumen and 0 voltage for Raymond sink)

(c) by the proposed method

Figure 2: Connection subgraph between Soumen Chakrabarti and Raymond T. Ng.

Figure 3: Center-piece subgraph among Lise Getoor, George Karypis, and Jian Pei.
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2) has more co-authored papers with those connected neigh-
bors than the corresponding node in figure 2(b) (“Zhiyuan
Chen”).

Figure 1 shows an example for multi-source queries. When
the user asks for 2− SoftAND, the algorithm outputs two
clear cliques (figure 1(a)), which makes some sense since
“Vladimir Vapnik” and “Michael I. Jordan” belong to statis-
tical machine learning community; while “Rakesh Agrawal”
and “Jiawei Han” are database and mining people. On the
other hand, if the user asks for “AND”, the resulting sub-
graph shows a strong connection with all four queries.

Figure 3 shows an example for “AND query”, with “George
Karypis”, “Lise Getoor” and “Jian Pei” as source nodes.
All three researchers are working on graphs. The nodes
of the retrieved “center-piece subgraph” are all database,
data mining and graph mining people, forming three groups:
the nodes close to “Lise Getoor” are related to the Univer-
sity of Maryland (“V.S. Subrahmanian” is a faculty mem-
ber there and he was the advisor of “Raymond Ng”). The
nodes close to “George Karypis” are faculty members at
Minnesota (“Vipin Kumar”, “Shashi Shekar”). The nodes
close to “Jian Pei” are professors at Simon Fraser (SFU)
or University of British Columbia (UBC), which are geo-
graphically nearby, both in Vancouver: “Jiawei Han” was a
faculty member at SFU and thesis advisor of “Jian Pei” ;
“Laks Lakshmanan” and “Raymond Ng” are faculty mem-
bers at UBC. Not surprisingly, the “center-pieces” of the
subgraph consist of “Raymond Ng”, “Jiawei Han”, “Laks
Lakshmanan”, which all have direct, or strong indirect con-
nections with the three chosen query sources.

7.2 Evaluation on “EXTRACT” algorithm
The performance of the “EXTRACT” algorithm is evalu-

ated by measuring both NRatio and ERatio as functions of
the budget b. Here, we fix the query type as “AND query”.

Figure 4(a) shows the mean NRatio vs. the budget b for
different numbers of source queries; while figure 4(b) shows
the mean ERatio vs. the budget b for different numbers of
source queries. Note that in both cases, our method captures
most of important nodes as well as edges by a small number
of budget b. For example, for 2 source queries, the result-
ing subgraph with budget 50 captures 95% important nodes
and 70% important edges on average; for 4 source queries,
the resulting subgraph with budget 20 captures 100% im-
portant nodes and 70% important edges on average. An
interesting observation is that for the same budget, the sub-
graph with more source queries captures higher NRatio as
well as ERatio than those with less source queries. This
is consistent with the intuition: generally speaking, finding
people that are important wrt all source queries becomes
more difficult when the number of source queries increases.
In other words, r(Q, j) becomes more skewed by increasing
the number of source queries.

7.3 Evaluation on normalization step
Here we conduct the parametric study for normalization

coefficient α. The mean NRatio vs. α is plotted in figure
5(a); and the mean iERatio vs. α is plotted in figure 5(b).

It can be seen that in most cases, the normalization step
does help to improve the performance of the resulting sub-
graph g(H). For example, the normalization with α = 0.5
helps to capture 17.7% more important nodes and 9.1% more
important edges for 2 source queries on average; while for 3
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Figure 4: Evaluation on “EXTRACT”

source queries, it captures 18.1% more important nodes and
7.6% more important edges on average.

7.4 Evaluation on speedup strategy
For large graph, the response time for importance score

calculation could be long. By pre-partition the original
graph and performing subgraph discovery only on the par-
titions containing the source queries, we could dramatically
reduce the response time. On the other hand, we might
miss a few important nodes if they do not lie in these parti-
tions. To measure such kind of quality loss, we use “Relative
Important Node Ratio (RelRatio)”:

RelRatio =
N̂Ratio

NRatio
(19)

where N̂Ratio and NRatio are “Important Node Ratio”
for the subgraph by pre-partition and by the original whole
graph, respectively.

We fix the budget 20 and the query scenario as “AND
query”. The mean RelRatio vs. response time is shown in
figure 6(a); and the mean response time vs. the number of
partitions is shown in figure 6(b). It can be seen that with
a little quality loss, the response process is largely speeded
up. For example, with ≈ 10% loss, the subgraph for 2 source
queries can be generated within 5 seconds on average; with
≈ 10% quality loss, the subgraph for 5 source queries can
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be generated within 10 seconds on average. On the other
hand, it might take 40s ∼ 60s without pre-partition. Note
that in figure 6 (b), even with a small number of partitions,
we can greatly reduce the mean response time.

8. CONCLUSION AND FUTURE WORK
We have proposed the problem of “center-piece subgraphs”,

and provided fast and effective solutions. In addition to the
problem definition, other contributions of the paper are the
following:

• The introduction and handling of K softAND queries,
which include AND and OR queries as special cases.

• EXTRACT, a fast novel algorithm to quickly extract a
subgraph with the appropriate connectivity and max-
imum “goodness” score

• The design and implementation of a fast, approximate
algorithm that brings a 6:1 speedup

• Experiments on real data (DBLP), illustrating that
our algorithm and “goodness score” indeed derive re-
sults that agree with intuition.

A very promising research direction is the use of paral-
lelism, to achieve fast responses on huge graphs. Another
one is to extend the concepts and algorithms to “multi-
graphs”, that is, graphs with different types of edges. For
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Figure 6: Evaluation on speeding up strategy

example, a social network, where one type of edge would in-
dicate “e-mail correspondence”, another would mean “tele-
phone contact”, and so on.
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APPENDIX
Here, we provide and discuss some variants on goodness
score calculation.

• Variant 1: calculate ri,j by manifold ranking

One potential problem with Eq. 4 is that such goodness
score might be asymmetric, that is ri,j �= rj,i. For social
network, this is OK since that person X is important/good
for person Y does not necessarily mean that person Y is
also important/good for person X. However, in some other
applications, symmetry might be a desirable property for the
goodness score. To deal with this problem, we can define ri,j

as manifold ranking score [28].
Formally, ri,j in this case can be computed by replacing

the transition matrix W̃ in Eq. 4 by graph Laplacian S:

RT = cRT × S + (1− c)E (20)

where S = D−1/2WD−1/2 is graph Laplacian.
Note that since S is symmetric, the individual goodness

score ri,j by Eq. 20 is always symmetric. That is, ri,j = rj,i.
However, in this case, the resulting goodness score ri,j is

no longer the steady-state probability , that is
PN

j=1 ri,j �= 1.
In our experiments, we find that the resulting subgraphs by
Eq. 4 and Eq. 20 are actually quite similar.

• Variant 2: calculate r(Q, j) by order statsitic

Let r(k)(i, j) be the order statistic of r(i, j), (i = 1, ..., Q).

That is, r(k)(i, j) is the kth largest value among r(i, j), (i =
1, ..., Q).

Then, we can also use r(k)(i, j) to get r(Q, j). For exam-
ple, we can use minimum order statistic as goodness score
for “AND query”:

r(Q, j) � r(Q)(i, j) = min(r(1, j), r(2, j), ..., r(Q, j)) (21)

The probabilistic interpretation of Eq. 21 is that the node
j is important wrt the source queries if and only if there is
at least some high probability for every particle to finally
stay at node j.

Similarly, the order statistic variants for “OR query” and
“K softAND query” can be defined as r(1)(i, j) and r(k)(i, j),
respectively.

413

Research Track Paper


