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Abstract We prove a version of the local Reeb-Thurston stability theorem for sym-
plectic foliations.

Introduction

A symplectic foliation on a manifold M is a (regular) foliation F endowed with a
2-form ω on T F whose restriction to each leaf S of F is a symplectic form

ωS ∈ �2(S).

Equivalently, a symplectic foliation is a Poisson structure of constant rank.
In this paper we prove a normal form theorem for symplectic foliations around

embedded leaves. The result uses the cohomological variation of ω at the leaf S,
which is a linear map (see Sect. 1 for the definition)

[δSω]x : ν∗
x −→ H2(˜Shol), x ∈ S, (1)

where ν denotes the normal bundle of T F , and ˜Shol is the holonomy cover of S. The
cohomological variation arises in fact from a linear map:

δSωx : ν∗
x −→ �2

closed(˜Shol). (2)
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The local model for the foliation around S, which appears in the classical results of
Reeb and Thurston, is the flat bundle (˜Shol × νx )/π1(S, x), where π1(S, x) acts on
the second factor via the linear holonomy

dh : π1(S, x) −→ Gl(νx ). (3)

The flat bundle can be endowed with leafwise closed 2-forms, which are symplectic
in a neighborhood of S; namely, the leaf through v ∈ νx carries the closed 2-form
j1
S (ω)v whose pull-back to ˜Shol × {v} is

p∗( j1
S (ω)v) = p∗(ωS) + δSωx (v).

Our main result is the following:

Theorem 1 Let S be an embedded leaf of the symplectic foliation (M,F , ω). If the
holonomy group of S is finite and the cohomological variation (1) at S is a surjective
map, then an open neighborhood of S is isomorphic as a symplectic foliation to an
open neighborhood of S in the flat bundle (˜Shol × νx )/π1(S, x) endowed with the
family of closed 2-forms j1

S (ω) by a diffeomorphism which fixes S.

This result is not a first order normal form theorem, since the holonomy group and
the holonomy cover depend on the germ of the foliation around the leaf. The first order
jet of the foliation at S sees only the linear holonomy group Hlin (i.e. the image of dh)
and the corresponding linear holonomy cover denoted by ˜Slin . Now, the map (2) is
in fact the pull-back of a map with values in �2

closed(
˜Slin). This remark, an extension

to noncompact leaves of a result of Thurston (Lemma 2), and Theorem 1 imply the
following first order normal form result:

Corollary 1 Under the assumptions that S is embedded, π1(S, x) is finitely generated,
Hlin is finite, H1(˜Slin) = 0 and the cohomological variation

[δSω]x : ν∗
x −→ H2(˜Slin)

is surjective, the conclusion of Theorem 1 holds.

Related phenomena

Our result is clearly related to the normal form theorem for Poisson manifolds around
symplectic leaves from [4]. Both results have the same conclusion, yet the conditions
of Theorem 1 are substantially weaker. More precisely, for regular Poisson manifolds,
the hypotheses of the main result in loc.cit. are (see Corollary 4.1.22 and Lemma
4.1.23 [7]):

• the leaf S is compact,
• π1(S, x) is finite,
• the cohomological variation is an isomorphism, when viewed as a map

[δSω]x : ν∗
x −→ H2(˜Suni ),

where ˜Suni is the universal cover of S.

123



Reeb-Thurston stability for symplectic foliations

There is yet another essential difference between Theorem 1 and the result from
[4], namely, even in the setting of Corollary 1, the results presented here have first
order assumptions only in the world of symplectic foliations, and not in that of Poisson
structures. The information that a Poisson bivector has constant rank is not detectable
from its first jet. In fact, the conditions of Theorem 1 allow for Poisson-deformations
which increase the rank. To explain this phenomenon, let us consider the simplified
setting:

• S is compact and simply connected.

Then, by Corollary 2.7 in [8], the local normal form result from [4] holds under the
weaker assumptions:

• [δSω]x is surjective, and its kernel is at most one-dimensional.

These conditions have an interpretation in the context of stability of symplectic leaves,
from [3]. Namely, for S as above (i.e. compact and simply connected), we have an
isomorphism (see the proof of Lemma 2.6 in [8])

H2
π,S(M) ∼= coker([δSω]x ) ⊕

2
∧

ker([δSω]x ), (4)

where H•
π,S(M) denotes the Poisson cohomology restricted to S (see [3]); thus the

conditions are equivalent to H2
π,S(M) = 0. By Theorem 2.2 [3], H2

π,S(M) = 0 implies
that S is strongly stable, i.e. any Poisson structure close to π has a leaf symplectomor-
phic to (S, ωS). Now, the hypotheses of Theorem 1 take care of the first component
in (4). The second component controls deformations which change the rank of the
Poisson structure. Concretely, v,w ∈ ker([δSω]x ) are linearly independent, and πlin,S

is the linearized Poisson structure at S, then we can interpret πlin,S +εv∧w, ε > 0, as
a deformation which increases the rank by two (see the proof of Theorem 2.3 in [3]).
Of course, we do not allow such deformations in the context of symplectic foliations.

Motivated by a question of the referee, we included in the end of the paper some
remarks on global aspects of symplectic foliations with surjective cohomological vari-
ation.

A weaker version of Theorem 1, in which the leaf is assumed to be of finite type,
is part of the PhD thesis [7] of the second author.

1 The local model and the cohomological variation

In this section we describe the local model of a symplectic foliation around a leaf,
and introduce the cohomological variation of the symplectic structures. In the case of
general Poisson manifolds, the local model was first constructed by Vorobjev [12]. The
approach presented here is more direct; for the relation between these two constructions
see [7].

Let (M,F) be a foliated manifold, and denote its normal bundle by

ν := T M/T F .
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Then ν carries a flat T F connection, called the Bott connection, given by

∇ : �(T F) × �(ν) −→ �(ν), ∇X (Y ) := [X, Y ],

where, for a vector field Z , we denote by Z its class in �(ν). For a path γ inside a leaf
S, parallel transport with respect to ∇ gives the linear holonomy transformations:

dh(γ ) : νγ (0)
∼→ νγ (1).

This map depends only on γ modulo homotopies inside S with fixed endpoints. Apply-
ing dh to closed loops at x , we obtain the linear holonomy group

Hlin,x := dh(π1(S, x)) ⊂ Gl(νx ).

The linear holonomy cover of a leaf S at x , denoted by ˜Slin,x is the covering space
corresponding to the kernel of dh; thus it is a principal Hlin,x bundle over S. Also,
˜Slin,x can be defined as the space of classes of paths in S starting at x , where we identify
two such paths if they have the same endpoint and they induce the same holonomy
transport.

The Bott connection induces a foliation Fν on ν whose leaves are the orbits of dh;
i.e. the leaf of Fν through v ∈ νx covers the leaf S through x , and is given by

˜Sv := {dh(γ )v : γ is a path in S starting at x}.

Therefore, ˜Slin,x covers of the leaves of the foliation Fν above S via the maps

pv : ˜Slin,x −→ ˜Sv, pv([γ ]) = dh(γ )v, v ∈ νx . (5)

The local model of the foliation around the leaf S is the foliated manifold

(νS,FνS ), where FνS := Fν |νS .

The linear holonomy induces an isomorphism between the local model and the flat
bundle from the Introduction

(˜Slin,x × νx )/Hlin,x
∼→ νS, [γ, v] 
→ pv([γ ]).

Consider now a symplectic structure ω on the foliation F , i.e. a 2-form on T F

ω ∈ �2(T F)

whose restriction to each leaf is symplectic. We first construct a closed foliated 2-form
δω on (ν,Fν), which represents the derivative of ω in the transversal direction. For
this, choose an extension ω̃ ∈ �2(M) of ω and let

�(X, Y ) := dω̃(X, Y, ·), X, Y ∈ T F .

Since ω is closed along the leaves of F , �(X, Y ) ∈ ν∗, thus � ∈ �2(T F; ν∗).

123



Reeb-Thurston stability for symplectic foliations

Now, the dual of the Bott connection on ν∗ induces a differential d∇ on the space
of foliated forms with values in the conormal bundle �•(T F; ν∗); this can be given
explicitly by the classical Koszul formula

d∇ : �•(T F; ν∗) −→ �•+1(T F; ν∗),

d∇η(X0, . . . , X p) =
∑

i

(−1)i∇Xi η(X0, . . . , ̂Xi , . . . , X p)+

+
∑

i< j

(−1)i+ jη([Xi , X j ], X0, . . . , ̂Xi , . . . , ̂X j , . . . , X p),

for η ∈ �p(T F; ν∗), Xi ∈ �(T F). Denote the resulting cohomology by H•(F; ν∗).
It is easy to see that � is d∇ -closed. In fact, this construction can be preformed in

all degrees, and it produces a canonical map (see e.g. [2])

dν : H•(F) −→ H•(F; ν∗),

which maps [ω] to [�]. Also, if ω̃ + α is a second extension of ω (where α vanishes
along F), then � changes by d∇λ, where λ ∈ �1(T F; ν∗), is given by

λ(X) := ιXα for X ∈ T F .

Note that there is a natural embedding

J : �•(T F; ν∗) −→ �•(T Fν), J (η)v := p∗(〈η, v〉)|T Fν
, v ∈ ν,

where p : ν → M is the projection. It is easy to see that under J the differential d∇
corresponds to the leafwise de Rham differential dFν

on the leaves of Fν . In particular,
we obtain a closed foliated 2-form

δω := J (�) ∈ �2(T Fν),

which we call the vertical derivative of ω. Since δω vanishes on M (viewed as the
zero section), it follows that p∗(ω) + δω is nondegenerate on the leaves in an open
neighborhood of M ; thus

(ν,Fν, p∗(ω) + δω)

is a symplectic foliation around M .
Consider now a symplectic leaf S. Restricting p∗(ω) + δω to the leaves above S,

we obtain closed foliated 2-forms along the leaves of the FνS , denoted by

j1
S (ω) := p∗(ωS) + δSω ∈ �2(T FνS ),
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where ωS := ω|S and δSω := δω|νS . Any open neighborhood of S in

(νS,FνS , j1
S (ω))

on which j1
S (ω) is symplectic will be regarded as the local model of the symplectic

foliation around S; i.e. we think about the local model as a germ of a symplectic
foliation around S.

In order to define the cohomological variation of ω, consider first the linear map

δSωx : νx −→ �2
closed(˜Slin,x ), v 
→ p∗

v(δSω), (6)

where the map pv is the covering map defined by (5). By the discussion above, choosing
a different extension of ω changes p∗

v(δSω) by an exact 2-form; hence the cohomology
class [p∗

v(δSω)] is independent of the 2-form � used to construct δSω. The induced
linear map to the cohomology of ˜Slin,x , will be called the cohomological variation
of ω at S

[δSω]x : νx −→ H2(˜Slin,x ), v 
→ [p∗
v(δSω)].

In the Introduction we denoted the lifts of [δSωx ] to the holonomy cover ˜Shol , respec-
tively to the universal cover ˜Suni of S, by the same symbol.

Up to isomorphism, the local model is independent of the choices involved.

Proposition 1 Different choices of � ∈ �2(T F , ν∗) satisfying dν[ω] = [�] produce
local models that are isomorphic around S by a diffeomorphism that fixes S.

The proof of this result is deferred until the end of next section, because it uses Lemma
5, which is a foliated version of the Moser Lemma.

2 Five lemmas

In this section we prove some auxiliary results used in the proof of Theorem 1.

Reeb Stability around noncompact leaves

Consider a foliated manifold (M,F) and let S be an embedded leaf. The classical
Reeb Stability Theorem (see e.g. [9]) says that, if the holonomy group Hhol is finite
and S is compact, then a saturated neighborhood of S in M is isomorphic as a foliated
manifold to the flat bundle

(˜Shol × T )/Hhol ,

where T is a small transversal that is invariant under the holonomy action of Hhol .
Since actions of finite groups can be linearized, it follows that the holonomy of S equals
the linear holonomy of S. So, some neighborhood of S in (M,F) is isomorphic as a
foliated manifold with the flat bundle from the previous section

(˜Slin × νx )/Hlin . (7)
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Generalizations to noncompact leaves of the Reeb stability theorem were studied
before (see [1,6] and the references therein). The goal in these works is to produce
saturated neighborhoods of embedded leaves (also called proper leaves in foliation lit-
erature) which are isomorphic to the flat bundle (7). For this, finiteness of the holonomy
group is not sufficient [6]. Results are known to hold only in low dimensions [1], for
compact ambient manifolds, and with extra restrictions on the topology of the leaf.
Below, we show that the direct generalization of the Reeb Stability Theorem for non-
compact leaves does work, but at the expense of giving up on the conclusion that the
neighborhood be saturated. The proof is a careful adaptation to the noncompact case
of the proof of the classical result from [9].

Lemma 1 Let (M,F) be a foliation and let S ⊂ M be an embedded leaf. If S has
finite holonomy, then an open neighborhood of S in M is isomorphic as a foliated
space to an open neighborhood of S in the local model (7), by a diffeomorphism which
fixes S.

Proof Since the holonomy is finite, it equals the linear holonomy, and we denote
H := Hhol = Hlin and ˜S := ˜Shol = ˜Slin .

The assumption that S be embedded allows us to restrict to a tubular neighborhood;
so we assume that the foliation is on a vector bundle p : E → S (with E ∼= νS), for
which S, identified with the zero section, is a leaf. Then the holonomy of paths in S is
represented by germs of a diffeomorphism between the fibers of E .

Each point in S has an open neighborhood U ⊂ E satisfying

• S ∩ U is 1-connected,
• for x ∈ S ∩ U , Ex ∩ U is a connected neighborhood of x ,
• for every x, y ∈ S ∩ U , the holonomy along any path in S ∩ U connecting them is

defined as a diffeomorphism between the spaces

hy
x : Ex ∩ U

∼→ Ey ∩ U.

Let U be locally finite cover of S by open sets U ⊂ E of the type just described,
such that for all U, U ′ ∈ U, U ∩ U ′ ∩ S is connected (or empty), and such that each
U ∈ U is relatively compact.

We fix x0 ∈ S, U0 ∈ U an open set containing x0, and denote by

V := Ex0 .

Consider a path γ in S starting at x0 and with endpoint x . Cover the path by a chain
of open sets in U

ξ = (U0, . . . , Uk(ξ)),

such that there is a partition

0 = t0 < t1 < · · · tk−1 < tk = 1,
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with γ ([t j−1, t j ]) ⊂ U j . Since the holonomy transformations inside U j are all trivial,
and all the intersections Ui ∩ U j ∩ S are connected, it follows that the holonomy of γ

only depends on the chain ξ and is defined as an embedding

h(γ ) = hx
x0

(ξ) : O(ξ) ↪→ Ex ,

where O(ξ) ⊂ V is an open neighborhood of x0, which is independent of x ∈ Uk(ξ).
Denote by Z the space of all chains in U

ξ = (U0, . . . , Uk(ξ)), with Ul ∩ Ul+1 �= ∅.

Denote by K the kernel of π1(S, x0) → H . The holonomy cover ˜S → S can be
described as the space of all paths γ in S starting at x0, and two such paths γ1 and
γ2 are equivalent if they have the same endpoint, and the homotopy class of γ −1

2 ◦ γ1
lies in K . The projection is then given by [γ ] 
→ γ (1). Denote by x̃0 the point in ˜S
corresponding to the constant path at x0. So, we can represent each point in ˜S (not
uniquely!) by a pair (ξ, x) with ξ ∈ Z and endpoint x ∈ Uk(ξ) ∩ S.

The group H acts freely on ˜S by pre-composing paths. For every g ∈ H fix a chain
ξg ∈ Z , such that (ξg, x0) represents x̃0g. Consider the open set

˜O0 :=
⋂

g∈H

O(ξg) ⊂ V,

on which all holonomies hx0
x0(ξg) are defined, and a smaller open set ˜O1 ⊂ ˜O0 around

x0, such that hx0
x0(ξg) maps ˜O1 into ˜O0. Hence the composition

hx0
x0

(ξg) ◦ hx0
x0

(ξh) : ˜O1 ↪→ V,

is well defined. Since the germs of hx0
x0(ξg) ◦ hx0

x0(ξh) and hx0
x0(ξgh) are the same, by

shrinking ˜O1 if necessary, we may assume that

hx0
x0

(ξg) ◦ hx0
x0

(ξh) = hx0
x0

(ξgh) : ˜O1 ↪→ V, ∀ g, h ∈ H. (8)

Consider the following open set

O :=
⋂

g∈H

hx0
x0

(ξg)(˜O1).

Then O ⊂ ˜O1, and for h ∈ H , we have that

hx0
x0

(ξh)(O) ⊆
⋂

g∈H

hx0
x0

(ξh) ◦ hx0
x0

(ξg)(˜O1)

=
⋂

g∈H

hx0
x0

(ξhg)(˜O1) =
⋂

g∈H

hx0
x0

(ξg)(˜O1) = O.
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So hx0
x0(ξh) maps O to O , and by (8) it follows that the holonomy transport along ξg

defines an action of H on O , which we further denote by

h(g) := hx0
x0

(ξg) : O
∼→ O.

Since H is a finite group acting on O with a fixed point x0, by Bochner’s Linearization
Theorem, we can linearize the action around x0. So, by shrinking O if necessary, the
action is isomorphic to the linear holonomy action of H on V . In particular, this implies
that O contains arbitrarily small H -invariant open neighborhoods of x0.

Since U is a locally finite cover by relatively compact open sets, there are only
finitely many chains in Z of a certain length. Denote by Zn the set of chains of length
at most n. Let c ≥ 1 be such that ξg ∈ Zc for all g ∈ H .

By the above, and by the basic properties of holonomy, there exist open neighbor-
hoods {On}n≥1 of x0 in O:

· · · ⊂ On+1 ⊂ On ⊂ On−1 ⊂ · · · ⊂ O1 ⊂ O ⊂ V,

satisfying the following:

(1) for every chain ξ ∈ Zn , On ⊂ O(ξ),
(2) for every two chains ξ, ξ ′ ∈ Zn and x ∈ Uk(ξ) ∩ Uk(ξ ′) ∩ S, such that the pairs

(ξ, x) and (ξ ′, x) represent the same element in ˜S, we have that

hx
x0

(ξ) = hx
x0

(ξ ′) : On ↪→ Ex ,

(3) On is H -invariant,
(4) for every g ∈ H , ξ ∈ Zn and x ∈ Uk(ξ) ∩ S, we have that

hx
x0

(ξg ∪ ξ) = hx
x0

(ξ) ◦ h(g) : On+c ↪→ Ex .

Denote by ˜Sn the set of points in x̃ ∈ ˜S for which every element in the orbit
x̃ H can be represented by a pair (ξ, x) with ξ ∈ Zn . Note that for n ≥ c, ˜Sn is
nonempty, H -invariant, open, and connected. Consider the following H -invariant open
neighborhood of ˜S × {x0}:

V :=
⋃

n≥c

˜Sn × On+c ⊂ ˜S × V .

On V we define the map

˜H : V −→ E, ˜H(̃x, v) := hx
x0

(ξ)(v),

for (̃x, v) ∈ ˜Sn × On+c, where (ξ, x) is pair representing x̃ with ξ ∈ Zn and x ∈ Uk(ξ).
By the properties of the open sets On , ˜H is well defined. Since the holonomy transport is
by germs of diffeomorphisms and preserves the foliation, it follows that ˜H is a foliated
local diffeomorphism, which sends the trivial foliation on V with leaves V ∩ (

˜S ×{v})
to F |E .
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We prove now that ˜H is H -invariant. Let (̃x, v) ∈ ˜Sn × On+c and g ∈ H . Consider
chains ξ and ξ ′ in Zn representing x̃ and x̃ g respectively, with x ∈ Uk(ξ) ∩ Uk(ξ ′) ∩ S.
Then ξ ′ and ξg ∪ ξ both belong to Zn+c and (ξ ′, x), (ξg ∪ ξ, x) both represent x̃ g ∈ ˜S.
Using properties 2) and 4) of the open sets On , we obtain H -invariance:

˜H(̃xg, h(g−1)v) = hx
x0

(ξ ′)(h(g−1)v) = hx
x0

(ξg ∪ ξ)(h(g−1)v)

= hx
x0

(ξ) ◦ h(g) ◦ h(g−1)v = hx
x0

(ξ)(v) = ˜H(̃x, v).

Since the action of H on V is free and preserves the foliation on V , we obtain an
induced local diffeomorphism of foliated manifolds:

H : V/H ⊂ (˜S × V )/H −→ E .

We prove now that H is injective. Let (̃x, v), (̃x ′, v′) ∈ V be such that

˜H(̃x, v) = ˜H(̃x ′, v′).

Denoting by x = p( ˜H(̃x, v)) = p( ˜H(̃x ′, v′)), we have that ˜H(̃x, v), ˜H(̃x ′, v′) ∈ Ex .
Hence x̃ and x̃ ′, both lie in the fiber of ˜S → S over x , thus there is a unique g ∈ H with
x̃ ′ = x̃ g. Let n, m ≥ c be such that (̃x, v) ∈ ˜Sn × On+c and (̃x ′, v′) ∈ ˜Sm × Om+c,
and assume also that n ≤ m. Consider ξ ∈ Zn and ξ ′ ∈ Zm such that (ξ, x) represents
x̃ and (ξ ′, x) represents x̃ ′. Then we have that

hx
x0

(ξ)(v) = hx
x0

(ξ ′)(v′). (9)

Since both (ξ ′, x) and (ξg ∪ ξ, x) represent x̃ ′ ∈ ˜S, and both have length ≤ m + c,
again by the properties 2) and 4) we obtain

hx
x0

(ξ ′)(v′) = hx
x0

(ξg ∪ ξ)(v′) = hx
x0

(ξ)(h(g)(v′)).

Since hx
x0

(ξ) is injective, (9) implies that v = h(g)(v′). So, we obtain

(̃x, v) = (̃x ′g−1, h(g)(v′)),

which proves injectivity of H. ��
Thurston Stability around noncompact leaves

To obtain the first order normal form result (Corollary 1), we will use the following
extension to noncompact leaves of a result of Thurston [11].

Lemma 2 Let S be an embedded leaf of a foliation such that Klin, the kernel of
dh : π1(S, x) → Hlin, is finitely generated and H1(˜Slin) = 0. Then the holonomy
group Hhol of S coincides with the linear holonomy group Hlin of S.
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Proof Denote by V := νx , the normal space at some x ∈ S. The linear holonomy
gives an identification of the normal bundle of S in M with the vector bundle (˜Slin ×
V )/Hlin . Passing to a tubular neighborhood, we may assume that the foliation F is
on (˜Slin × V )/Hlin , and that its linear holonomy coincides with the holonomy of the
flat bundle, i.e. the first order jet along S of F equals the first order jet along S of flat
bundle foliation. Consider the covering map

p : ˜Slin × V −→ (˜Slin × V )/Hlin .

The leaf ˜S0 := ˜Slin × {0} of the pull-back foliation p∗(F) on ˜Slin × V satisfies:

(1) ˜S0 has trivial linear holonomy;
(2) H1(˜S0) = 0;
(3) π1(˜S0) ∼= Klin is finitely generated.

Thurston shows in [11] that, under the assumption that ˜S0 is compact, the first two
conditions imply that the holonomy group of ˜S0 vanishes. It is straightforward to check
that Thurston’s argument actually doesn’t use the compactness assumption, but it only
uses condition (3); and we conclude that also in our case the holonomy at ˜S0 of p∗(F)

vanishes.
Now consider a loop γ in S based at x such that [γ ] ∈ Klin . This is equivalent to

saying that γ lifts to a loop in ˜Slin , hence to a loop γ̃ in ˜S0. The holonomy transport
along γ̃ induced by p∗(F) projects to the holonomy transport of γ induced by F ,
and since the first is trivial, so is the latter. This proves that Klin is included in the
kernel of π1(S, x) → Hhol , and since the other inclusion always holds, we obtain that
Hhol = Hlin .

Foliated cohomology of products

Let M and N be two manifolds. Consider the product foliation T M × N on M × N ,
with leaves

M × {y} ⊂ M × N , y ∈ N .

We denote the complex computing the corresponding foliated cohomology by

(

�•(T M × N ), d
)

.

The elements of �•(T M × N ) can be regarded as smooth families of forms on M :

η = {

ηy ∈ �•(M)
}

y∈N with dη =
{

dηy ∈ �•+1(M)
}

y∈N
.

Denote the corresponding cohomology groups by

H•(T M × N ).

We need two versions of these groups associated to a leaf M × {x}, for a fixed
x ∈ N . Denote the subcomplex of foliated forms vanishing on M × {x} by
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(

�•
x (T M × N ), d

)

,

and the associated cohomology by

H•
x (T M × N ).

Finally, consider the complex of germs at M × {x} of foliated forms

(

�•
gx

(T M × N ), d
)

.

This space is the quotient of �•(T M × N ) by the space of foliated forms that vanish
on some open neighborhood of M ×{x} in M × N . The leafwise de Rham differential
induces a differential on �•

gx
(T M × N ). Denote the resulting cohomology by

H•
gx

(T M × N ).

Let C∞
x (N ) denote the space of smooth functions on N vanishing at x , and let C∞

gx
(N )

denote the space of germs of smooth functions on N around x .
These three versions of foliated cohomology come with natural pairings with the

homology of M , which yield maps:

� : H•(T M × N ) −→ Hom(H•(M); C∞(N )),

�x : H•
x (T M × N ) −→ Hom(H•(M); C∞

x (N )), (10)

�gx : H•
gx

(T M × N ) −→ Hom(H•(M); C∞
gx

(N )).

We explain the third map; the first two are constructed similarly. Consider an element
[η] ∈ Hq

gx (T M × N ), which is represented by a foliated q-form η which is closed on
some open set containing M × {x}. The corresponding linear map:

�gx ([η]) : Hq(M) −→ C∞
gx

(N )

is constructed as follows. Represent an element [c] ∈ Hq(M) as c = ∑

i aiσi , where
σi : �q → M are smooth q-simplices. Define

〈η, c〉 ∈ C∞(N ), y 
→
∑

i

ai

∫

�q

(σi × {y})∗(η).

The germ at x of the function 〈η, c〉 is independent of the choice of the representatives,
yielding a well-defined element �gx ([η])([c]) := 〈[η], [c]〉 ∈ C∞

gx
(N ).

Lemma 3 The maps from (10) are linear isomorphisms.

Proof Denote the constant sheaves on M associated to the groups C∞(N ), C∞
x (N )

and C∞
gx

(N ) by S1, S2 and S3, respectively. By standard arguments, the de Rham
differential along M induces resolutions Si → C•

i by fine sheaves on M :

C•
1(U ) := �•(T U × N ), C•

2(U ) := �•
x (T U × N ), C•

3(U ) := �•
gx

(T U × N ).
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Hence, the foliated cohomologies from (10) are isomorphic to the sheaf cohomologies
with coefficients in S1, S2 and S3 respectively. On the other hand, for any vector space
V , denoting by V the constant sheaf on M , one has a natural isomorphism:

�V : H•(M; V )
∼→ Hom

(

H•(M); V
)

. (11)

Hence, we obtain isomorphisms:

� : H•(T M × N )
∼→ Hom(H•(M); C∞(N )),

�x : H•
x (T M × N )

∼→ Hom(H•(M); C∞
x (N )), (12)

�gx : H•
gx

(T M × N )
∼→ Hom(H•(M); C∞

gx
(N )).

We still have to check that these maps coincide with those from (10). For this we will
exploit the naturality of the maps in (11).

In the first case, consider the evaluation map evy : C∞(N ) → R, for y ∈ N . This
induces a sheaf map evM

y : S1 → R into the constant sheaf over M , which is covered
by a map evM

y : C•
1 → �•

M into the standard de Rham resolution of R. Hence the map
H•(M;S1) → H•(M; R) induced by evy becomes

H•(T M × N )
evM

y−→ H•(M), [ω] 
→ [ω|M×{y}].

By naturality of (11), it follows that the following square commutes:

H•(T M × N )
�−→ Hom

(

H•(M); C∞(N )
)

↓evy ↓evy

H•(M)
�R−→ Hom

(

H•(M); R
)

.

Since �R is the usual isomorphism given by integration, and by the explicit description
of the map �, this implies that � = �.

For the second map in (10) and (12) we proceed similarly, but using the inclusion
i : C∞

x (N ) → C∞(N ) instead of evy . This gives rise to a sheaf map S2 → S1 which
lifts to their resolutions, and then we obtain a commutative square

H•
x (T M × N )

�x−→ Hom
(

H•(M); C∞
x (N )

)

↓i ↓i

H•(T M × N )
�−→ Hom

(

H•(M); C∞(N )
)

.

Using also that � = �, this implies the equality �x = �x .
Similarly, for the third map in (10) and (12), but using the projection map p :

C∞(N ) → C∞
gx

(N ) (instead of the inclusion), we obtain a commutative square
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H•(T M × N )
�−→ Hom

(

H•(M); C∞(N )
)

↓p ↓p

H•
gx

(T M × N )
�gx−→ Hom

(

H•(M); C∞
gx

(N )
)

.

Again, since � = �, we obtain that �gx = �gx . This concludes the proof. ��
We will use the following consequences of Lemma 3 (the first appeared in [5]).

Corollary 2 Let η ∈ �q(T M × N ) be a foliated q-form such that ηy ∈ �q(M)

is exact for all y ∈ N. Then there exists θ ∈ �q−1(T M × N ) such that dθ = η.
Moreover, if ηx = 0 for some x ∈ N, then one can choose θ such that θx = 0.

Proof In the first case, we need that [η] = 0 in H•(T M × N ), and in the second, that
[η] = 0 in H•

x (T M × N ). Since 〈[ηy], [c]〉 = 0, for all [c] ∈ Hq(M) and all y ∈ N ,
the description of the maps � and �x and Lemma 3 imply the result. ��
Corollary 3 Let η be a closed foliated q-form defined on some open neighborhood
U ⊂ M × N of M ×{x}. Then there exists a closed foliated q-form η̃ on M × N, such
that η|

˜U = η̃|
˜U , for some open set ˜U ⊂ U containing M × {x}.

Proof First, we claim that the projection p : �•(T M × N ) → �•
gx

(T M × N ) induces
a surjective map in cohomology. By the description of the maps � and �gx , we have
a commutative diagram

H•(T M × N )
�−→ Hom

(

H•(M); C∞(N )
)

↓p ↓p

H•
gx

(T M × N )
�gx−→ Hom

(

H•(M); C∞
gx

(N )
)

.

By Lemma 3, the horizontal maps are isomorphisms, and since the vertical map on
the right is surjective, so is the vertical map on the left.

Consider a foliated q-form η′ ∈ �q(T M×N ), such that η′|U ′ = η|U ′ for some open
neighborhood U ′ ⊂ U of M × {x}. Then η′ defines a class [η′] ∈ Hq

gx (T M × N ). By
the above, there is a closed foliated q-form η′′ ∈ �q(T M×N ), such that [η′′] = [η′] ∈
Hq

gx (T M × N ). Thus, there is some foliated q − 1-form θ and an open neighborhood
˜U ⊂ U ′ of M × {x} such that η′|

˜U = (η′′ + dθ)|
˜U . The closed foliated q-form

η̃ := η′′ + dθ satisfies the conclusion: η̃|
˜U = η|

˜U . ��
Equivariant submersions

We prove that submersions can be equivariantly linearized.

Lemma 4 Let G be compact Lie group acting linearly on the vector spaces V and
W . Consider f : V → W a smooth G-equivariant map, such that f (0) = 0. If f is
a submersion at 0, then there exists a G-equivariant embedding χ : U ↪→ V , where
U is an invariant open around 0 in V , such that χ(0) = 0 and

f (χ(v)) = d f0(v), for v ∈ U.
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Proof Since G is compact, we can find a G-equivariant projection pK : V → K ,
where K := ker(d f0). The differential at 0 of the G-equivariant map

( f, pK ) : V −→ W × K , v 
→ ( f (v), pK (v))

is (d f0, pK ). So ( f, pK ) is a diffeomorphism when restricted to some open U0 in V
around 0, which we may assume to be G-invariant. Define the embedding as follows

χ : U ↪→ V, χ := ( f, pK )−1 ◦ (d f0, pK ),

where U := (d f0, pK )−1(U0). Clearly U is G-invariant, χ is G-equivariant and
χ(0) = 0. Since

( f (χ(v)), pK (χ(v))) = (d f0(v), pK (v)),

we also have that f (χ(v)) = d f0(v). ��
The Moser Lemma for symplectic foliations

The following is a version for symplectic foliations of the Moser Lemma.

Lemma 5 Let (M,F , ω) be a symplectic foliation. Consider a foliated 1-form

α ∈ �1(T F),

that vanishes on an embedded saturated submanifold Z of M. Then ω + dFα is
nondegenerate in a neighborhood U of Z, and the resulting symplectic foliation

(U,F |U , ω|U + dFα|U )

is isomorphic around Z to (M,F , ω) by a foliated diffeomorphism that fixes Z.

Proof Since α vanishes on Z and Z is saturated, it follows that also dFα vanishes on
Z . Thus, there is an open V around Z such that ω + dFα is nondegenerate along the
leaves of F |V . Moreover, by the classical tube lemma from topology, we may choose
V such that

ωt := ω + tdFα ∈ �2(T F)

is nondegenerate along the leaves of F |V , for all t ∈ [0, 1]. Consider the time depen-
dent vector field Xt on V , tangent to F , determined by

ιXt ωt = −α, Xt ∈ �(T F |V ).

Since Xt vanishes along Z , again by the tube lemma, there is an open O ⊂ V around
Z , such that the flow �t

X of Xt is defined up to time 1 on O . We claim that �1
X gives
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the desired isomorphism. Clearly �1
X preserves the foliation and is the identity on Z .

On each leaf S, we have that

d

dt
�t∗

X (ωt |S) = �t∗
X (L Xt ωt |S + dFα|S) = �t∗

X (dιXt ωt |S + dα|S) = 0.

Thus �t∗
X (ωt |S) is constant, and since �0

X = Id, we have that

�1∗
X ((ω + dFα)|S) = ω|S .

So, �1
X is an isomorphism between the symplectic foliations

�1
X : (O,F |O , ω|O)

∼→(U,F |U , ω|U + dFα|U ),

where U := �1
X (O). ��

We conclude this section with:

Proof of Proposition 1 A second 2-form is of the form

�′ = � + d∇λ,

for some λ ∈ �1(T F; ν∗). We apply the Lemma 5 to the symplectic foliation

(ν,Fν, p∗(ω) + δω),

and the foliated 1-form α := J (λ) which vanishes along M . The resulting diffeomor-
phism is foliated. In particular, above any leaf S of F , the diffeomorphism sends the
local model corresponding to � to the local model corresponding to �′. ��

3 Proof of Theorem 1

Since the holonomy of S is finite, it coincides with the linear holonomy. Consider
x ∈ S and denote by V := νx , by H := Hhol = Hlin , and by ˜S := ˜Shol = ˜Slin .
Applying Lemma 1, we obtain that some neighborhood of S in M is diffeomorphic as
a foliated manifold to an open U around S in the flat bundle

(˜S × V )/H.

The symplectic leaves correspond to the connected components of Sv ∩ U , where

Sv := (˜S × Hv)/H, v ∈ V .
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We claim that there exists ω1, a closed foliated 2-form on (˜S × V )/H that extends
ω|U1 , for some open U1 ⊂ U around S. For this, consider the projection

p : ˜S × V −→ (˜S × V )/H,

and denote by ˜U := p−1(U) and by ω̃ := p∗(ω), which is a closed foliated 2-form on
the product foliation restricted to ˜U . By Corollary 3, there is a closed extension ω̃0 of
ω̃|

˜U0
, where ˜U0 ⊂ ˜U is an open around ˜S × {0}. Define ω̃1 by averaging over H

ω̃1 := 1

|H |
∑

g∈H

g∗(ω̃0).

Since ω̃ is invariant, it follows that ω̃1 coincides with ω̃ on ˜U1 := ⋂

g∈H g˜U0. Since
ω̃1 is invariant, it is of the form ω̃1 = p∗(ω1), where ω1 is a closed foliated 2-form on
(˜S × V )/H , which extends the restriction to U1 := p(˜U1) of ω.

We will identify foliated q-forms η on (˜S × V )/H , with smooth H -equivariant
families {ηv ∈ �q(˜S)}v∈V , where ηv := p∗(η)|

˜S×{v}.
We compute now the variation of ω at S. Since ω and ω1 coincide around S, they

have the same variation at S. Using the extension of ω (or equivalently of ω1) that
vanishes on vectors tangent to the fibers of the projection to S, we see that the variation
δSω is given by the H -equivariant family:

δSωv := d

dε
ωεv|ε=0 ∈ �2(˜S),

The local model is represented by the H -equivariant family of 2-forms:

j1
S (ω)v = p∗(ωS) + δSωv ∈ �2(˜S).

Consider the H -equivariant map

f : V −→ H2(˜S), f (v) = [ω1,v] − [p∗(ωS)].

Smoothness of f follows from Lemma 3. Clearly, f (0) = 0 and its differential at 0 is
the cohomological variation

d f0(v) = [δSω]v, ∀ v ∈ V .

By our hypothesis, f is a submersion at 0. So we can apply Lemma 4 to find an
H -equivariant embedding

χ : U ↪→ V,

where U is an H -invariant open neighborhoods of 0 in V , such that

χ(0) = 0 and f (χ(v)) = d f0(v).
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By H -equivariance, χ induces a foliation preserving embedding

χ̃ : (˜S × U )/H ↪→ (˜S × V )/H, χ̃([y, v]) = [y, χ(v)]

that restricts to a diffeomorphism between the leaf Sv and the leaf Sχ(v). The pullback
of ω1 under χ̃ is the H -equivariant family

ω2 = {ω2,v := ω1,χ(v)}v∈U .

We have that

[ω2,v] − [p∗(ωS)] = [ω1,χ(v)] − [p∗(ωS)] = f (χ(v)) = d f0(v) = [δSω]v.

Equivalently, this relation can be rewritten as

ω2,v = j1
S (ω)v + αv,∀v ∈ U,

where {αv}v∈U is an H -equivariant family of exact 2-forms that vanishes for v = 0.
By Corollary 2, p∗(α) is an exact foliated form on ˜S × U , and moreover, we can
choose a primitive ˜β ∈ �1(T˜S × U ) such that ˜β0 = 0. By averaging, we may also
assume that ˜β is H -equivariant, thus it is of the form ˜β = p∗(β) for a foliated 1-form
on β on (˜S × U )/H that vanishes along S. We obtain:

ω2 = j1
Sω + dβ.

Applying Lemma 5, we conclude that, on some open around S, j1
Sω and ω2 are related

by a foliated diffeomorphism. Now, ω2 and ω1 are related by χ̃ , and ω1 and ω have
the same germ around S. This concludes the proof.

Proof of Corollary 1

Schreier’s Lemma says that a subgroup of finite index of a finitely generated group
is also finitely generated (see e.g. Sect. 5.6 in [10]). Hence, Klin is finitely generated.
By Lemma 2, Hhol = Hlin , in particular Hhol is finite, and so we are in the setting of
Theorem 1.

Some global considerations

A natural question, which was proposed by the referee, is that of giving a version of
the global Reeb stability for symplectic foliations. In this last section, we discuss an
interesting aspect of this problem, namely, that the appropriate compactness conditions
are incompatible with the surjectivity of the cohomological variation. The argument
used is similar to the one in Sect. 2.1 of [8].

We consider a symplectic foliation (M,F , ω), and we assume that all leaves of
F are compact with finite holonomy group; in particular, this setting includes the
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conclusion of the classical global Reeb stability. This allows us to define a smooth
volume map on M , which is constant on the leaves:

vh : M −→ (0,∞), vh(x) := |Hx |
∫

Sx

ωk
Sx

,

where Hx is the holonomy group of the leaf (Sx , ωSx ) through x . To see that this
map is indeed smooth, write locally the foliation as the flat bundle (˜Sx × V )/Hx , and
represent ω by an Hx -equivariant smooth family of 2-forms {ωv ∈ �2(˜Sx )}v∈V . The
pullback of the map vh to ˜Sx ×V is simply the volume map (y, v) 
→ ∫

˜Sx
ωk

v , which is
clearly smooth. Next, we claim that if the cohomological variation is onto, then vh is
submersion. In the local model, the pullback to ˜Sx × V of the map vh is decomposable
as

V
v 
→[ωv]−→ H2(˜Sx )

[η]
→[η]k

−→ H2k(˜Sx )

∫

˜Sx−→ R.

The derivative of the first map is the cohomological variation, which is surjective; at
η := ω0, since [η]k �= 0, the derivative in the direction of [η] is nonzero, thus it is
surjective; and finally, the last map is an isomorphism. This argument, implies that vh
is a submersion. In particular, we conclude that M cannot be compact.
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