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CENTERED BODIES AND DUAL MIXED VOLUMES

GAOYONG ZHANG

Abstract. We establish a number of characterizations and inequalities for in-
tersection bodies, polar projection bodies and curvature images of projection
bodies in R" by using dual mixed volumes. One of the inequalities is between
the dual Quermassintegrals of centered bodies and the dual Quermassintegrals
of their central (n - l)-slices. It implies Lutwak's affirmative answer to the
Busemann-Petty problem when the body with the smaller sections is an inter-
section body. We introduce and study the intersection body of order i of a star
body, which is dual to the projection body of order i of a convex body. We
show that every sufficiently smooth centered body is a generalized intersection
body. We discuss a type of selfadjoint elliptic differential operator associated
with a convex body. These operators give the openness property of the class
of curvature functions of convex bodies. They also give an existence theorem
related to a well-known uniqueness theorem about deformations of convex hy-
persurfaces in global differential geometry.

0. Introduction
Let R" be the «-dimensional Euclidean space. A convex body K c R" is

a compact convex subset with nonempty interior. Let 3? denote the set of
convex bodies in R", and let 5£e denote the symmetric convex bodies with
respect to the origin. As Minkowski noted in the case of R3, the (n — 1)-
dimensional volume of the image of the orthogonal projection of K g 5? onto
a (n - l)-subspace is the support function of another convex body UK, called
the projection body of K. Projection bodies have received considerable atten-
tion in recent years (see, for example, [4, 11, 16, 24, 36, 38, 39, 45, 47]). Instead
of considering the projection of a convex body, Busemann [6] proved that the
(n - l)-dimensional volume of the intersection of K g 3£e with a (n - 1)-
subspace of Rn is the radial function of another convex body IK, called by
Lutwak the intersection body of K. The intersection body, which may be viewed
as the dual of the projection body, is an important tool in understanding the
sections of convex bodies. Lutwak studied intersection bodies by bis dual mixed
volumes. He denned intersection bodies for star bodies and related them to the
spherical Radon transform. Many analogous theorems to those on projection
bodies and mixed volumes were proved, see [25-28]. A slight extension of the
definition of intersection bodies was given by using measures (see [18]). It states
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that a centered body AT is an intersection body if the inverse spherical Radon
transform of the radial function of AT is a measure. Another slight extension of
the original definition is to introduce the intersection body of order i of a star
body by using Lutwak's dual Quermassintegrals (see (2.4)). This is dual to the
projection body of order i of a convex body. We will work with these extended
definitions and give characterizations for the intersection bodies by using dual
mixed volumes (Theorems 2.12 and 2.15). These characterizations are related
to the Busemann-Petty problem: If K, L£JTe, and IKCIL, does it follow
that the volumes of K and L satisfy V(K) < V(L) ? The relation says that
the existence of nonintersection convex bodies is equivalent to a negative an-
swer to the Busemann-Petty problem (see [13, 47]). Our characterizations for
intersection bodies can be considered as duals of some well-known characteri-
zations for projection bodies (see [16, 38, 39,45,46]). Lutwak [25] showed that
the Busemann-Petty problem has an affirmative answer if AT is an intersection
body. This result is implied by a geometric inequality about intersection bodies
(Corollary 2.18). More general inequalities of intersection bodies are derived
in Theorem 2.17. These inequalities are between the dual Quermassintegrals of
centered bodies and the dual Quermassintegrals of their central (n - l)-slices.
They are related to the maximal slice conjecture (Corollary 2.19).

In the same spirit of studying intersection bodies, a number of characteriza-
tions and inequalities for polar projection bodies and the curvature image of
projection bodies are established by dual mixed volumes in sections 3 and 4.
These involve centroid bodies and the affine surface area.

In section 5 we use LP estimates for the spherical Radon transform to show
that every centered body in Rn of class Ck, k = [*£*•] - 1, is a generalized
intersection body (Theorem 5.4). This implies that the class of generalized
intersection bodies is dense in the class of centered bodies (Corollary 5.5). It
is shown that the dual generating distribution has order at most f2^1] - 1
(Theorem 5.6).

In section 6 we discuss a type of selfadjoint elliptic differential operator as-
sociated with a convex body. These operators are applied to show the openness
of the class of curvature functions with Holder continuity (Theorem 6.8). A
consequence of the openness is a strengthening of Weil's theorem in [47] about
the denseness of the difference of j th surface area measures in the space Jte
of signed even measures (Corollary 6.11). Finally, we prove an existence the-
orem about deformations of convex hypersurfaces, which is a companion to a
well-known uniqueness theorem in global differential geometry (Theorem 6.14).

I am very grateful to Professor E. Lutwak for valuable references and conver-
sations during his visit to Temple University. I would like to express my thanks
to Professor E. Grinberg for bis constant encouragement and help. I also would
like to thank Professor P. Goodey and the referee for many helpful comments.

1. Preliminaries
Let Sn~l be the unit sphere in R". For a compact set K in R" which is

star shaped with respect to the origin, define the radial Junction px of K by
pK(u) = max{A > 0 : ku £ K}   for u£Sn~x.

If pk is continuous we shall call K a star body. A star body which is centrally
symmetric with respect to the origin will be called a centered body. We shall use
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CENTERED BODIES AND DUAL MLXED VOLUMES 779

S?, and S^ to denote respectively the set of star bodies and the set of centered
bodies. Obviously, for K, Le^,

KÇL   if and only if   pK < pl-
Hence, a star body is uniquely determined by its radial function.

Associated with a convex body K is its support Junction A* defined on R"
by

hK(x) = max«*, y) : y g K},
where (x, y) is the usual inner product of x and v in R". The support func-
tion Ajc is positively homogeneous of degree 1. We will usually be concerned
with the restriction of the support function to the unit sphere Sn~x.

If Kx, • ' - ,Kr£S? and kx,--- ,kr>0, then the Minkowski linear combi-
nation is

kXKx +■■■+ krKr = {kXXx +■■■+ krxr : x¡ G K¡}.
Note that if K, L £3i and a, ß > 0, then

haK+ßL = "Aje + ßht,
and

KÇL   if and only if  A* < A¿.
Hence, a convex body is uniquely determined by its support function.

Let V(K) denote the volume of K. The volume of kxKx + ■•■ + krKr is a
homogeneous n th-degree polynomial in the A,,

V(kiKx+--- + krKr) = ,£V(Kil,--- .J^JA/.-.-A,.,
where the sum is taken over all n-tuples (/,»••■ , in) whose entries are positive
integers not exceeding r. The coefficient V(K¡t ,■•■ , Kiñ) is nonnegative and
depends only on the bodies Kit, ■■■ , Kin. It is called the mixed volume of
*,,,-•• .A^.Let

Vi(K, L) = V(K,--- ,K, L,-- ,L).
n—i times i times

The Minkowski inequality states that if K, L g X, then
(1.1) V\(K,L)n>V(K)n-xV(L)

with equality if and only if K and L are homothetic.
Associated with the convex bodies Kx, ■•■ , K„-x £ 5£ is a unique positive

finite Borel measure on S"~x, S(Kx ,-•• , K„-x ;•), called the mixed surface
area measure of Kx, ■ ■ ■ , K„-x, such that for any K £ X there is the integral
representation (see, for example, [52, p. 275; 5, p. 64; 7, p. 166 and 10, p. 69])

(1.2) V(Kx, ■■■ ,K„-x, K) = i /        hK(u)dS(Kx,--- ,Kn-x;u).

The mixed surface area measure has the following properties (see, for instance,
[24, (1.5) and (1.6)])

S(Kx + Lx, K2, ■■■ , Af„_i ; •)
(1.3) =S(Kx,-- ,K„-X;-) + S(Lx,K2,--- ,*„_,;•),

S(kxKx, ••• , k„-xKn-x ',') — kx ■ ■ ■ kn~xS(Kx, ■•■ , Kn-x ; •).
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The surface area measure of order j of K is defined by
Sj(K; .)=£(*,-     ,K,B, ■■■ , B ; •),

j n-j-X

where B is the unit ball in R". In particular, S„-x(K\ •) is called the surface
area measure of K. Then by (1.2) we have

(1.4) V(L,K,--- ,K,B,--Ji) = \¡¡    hL(u)dSj(K;u)
j n-j-l

for all K, L£JT and 1 < j < n - 1.
A convex body K £ % is said to have a continuous positive curvature Junc-

tion of order j, fj(K ; •) : Sn~x —► (0, oo), if for each LeJ,we have

(1.5) V(L, K,--- ,K, B,-- ,B) = ±j    hL(u)fj(K; u)dS„-x(B;u).
j n-j-X

If the boundary d K is of class C2 and has positive Gaussian curvature, then
fj(K ; •) is the j th elementary symmetric function of the radii of principal cur-
vature. Denote by SF the class of convex bodies which have positive curvature
functions of order n -1. Let fa = fn-x (K ', •) ■ We call it the curvature Junction
of K.

The projection body of K, ILfv , is denned by

(1.6) hrXK(u) = \i    \(u,x)\dSn-x(K;x).

A body K £JTe is called a zonoid if its support function hK can be expressed
as

(1.7) hK(u) = \(     \(u,x)\dpK(x),

with an even positive finite Borel measure p& on Sn~x. The measure pk is
uniquely determined by K, and called the generating measure of K. In view
of (1.6), a projection body is a zonoid. Conversely, every centered zonoid is
a projection body (see [39, §10]). Denote by Z the set of projection bodies
(centered zonoids).

We follow Lutwak [25, 26] to define the dual mixed volumes. If Xx, • ■ - ,xr
G R", then xx + • • • +xr is defined to be the usual vector sum of jci , • • • ,xr,
provided xit ■•- ,xr all he in a 1-dimensional subspace of R", and as the
zero vector otherwise. If Kx, ■■- , Kr £ S" and kx, ■■• ,kT £ R, then the
radial Minkowski linear combination, Ai ATi + • • • +krKr, is denned by

kxKx+ - - - +krKr = {kxXx+ ■ ■ - +k,xr : x¡ £ K¡}.
We note that for AT, L £ S? and q, ß > 0,

PaKWL = apK + ßPL-

From this, one easily shows that for Kx,--- , Kr £ S", and Ai, • • • , kr > 0,
the volume of the radial Minkowski combination kxKx + - ■ ■ +ArAfr is a homo-
geneous n th-degree polynomial in the k¡,

V(kxKx + - ■ ■ UrKr) = Y, K-in^h • ■ ■ Ai.,
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CENTERED BODIES AND DUAL MIXED VOLUMES 781

where the sum is taken over all «-tuples (i'i, • • • , in) whose entries are positive
integers not exceeding r. The coefficient £/,.••»„ is nonnegative and depends
only on the bodies AT,,, - • • , Kin. It is written as V(K,t, •• • , K¡n ) and is called
the dual mixed volume of Kix, - - - , Kin. For simplicity, let du = dS„-x(B; u)
be the volume element of S"~x. We have the following integral representation
of dual mixed volumes:

(1.8) V(Kx,--,Kn) = ±- t    pKx(u)--pK„(u)du.n js*-\
The j th dual mixed volumes of K and L is

(1.9) V¡(K, L) = i /    PKiuy-'pLWdu,n JSn-l

where i may be any real number. In particular, we use i = -1..
The dual Minkowski inequalities are (see [25, (4.2), 26, (5.5)])

(1.10) Vx(K, L)n < V(K)n-xV(L),

(1.11) V-x(K, L)n > V(K)n+xV(L)-x.

Each inequality holds with equality if and only if K and L are dilations of
each other.

We will use some spaces of functions. Denote by Ck (Sn~x ) ( A = 0,1,2, • • • )
the space of real functions on S"~x whose Ath derivatives are continuous,
and Ck(S"-x) the subspace of even functions in Cfe(5n_1). Let Ck'a(S"-x)
(0 < a < 1) be the space of functions in Ck(Sn~x) whose A th derivatives are
Holder continuous of order a, and let Ck'a(S"~x) be the subspace of even
functions in Ck'a(Sn~x). All of these spaces are Banach spaces with the usual
uniform norms (see [15, §4.1; 1, p. 36]). For f,g£ C(Sn~x) = C°(S"-X),
define (/, g) by

(1.12) (f,g)=[    f(u)g(u)du.
JS"-'

Let C2°(Sn~x) be the space of infinitely differentiable even functions on S"~x.
Assume that C£°(Sn~x) is endowed with the topology of uniform convergence
of all derivatives. Let 2¡e(Sn~x) be the space of even distributions on S"~x ;
this is the dual of the space Cf°° (S"~ ' ). Denote by Jfe the space of even signed
finite measures on 5"_1, which is the dual space of Ce(S"~x). Finally, let

Srek<° = {K £ ST : hK G Ck'a(S"-x)}.

Note that for A > 2 we have
Srk'a = {K£Sf-.pK£CÏ'a(Sn-x)};

see [21, Part IV].

2. Characterizations and inequalities of intersection bodies

Let us start with the basic definition. The intersection body IK of a star body
K £ S? is defined as the centered body whose radial function is given by
(2.1) pIK(u)=vol„-x(Knu±)   for u£S"-x,
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where ux is the (n - 1 )-dimensional subspace of R" orthogonal to u (see
Lutwak [25]). We will consider some generalizations of this definition.

Lutwak introduced the dual Quermassintegrals of star bodies which are given
by (see [25])

(2.2) Wn-i(K) = V„-i(K, B) = I /     pK(u) dun JSn-l

for 0 < i < n, and W0(K) = V(K), Wn(K) = V(B) = k„ . Denote by vol,(.)
the /-dimensional volume. The importance of the dual Quermassintegrals lies
in the fact that the (n - i) th dual Quermassintegral of a star body K is pro-
portional to the mean of the /-dimensional volumes of the slices of K by the
/-dimensional subspaces of R", that is (see [25, (2.12)]),

(2.3) Wn-i(K) = ^ /      vo1,(A: n i) dpi(Z),
Ki JG{n,i)

where G(n, /) is the Grassmann manifold of /-dimensional subspaces of R",
and Pi the Haar measure on G(n, i), normalized by p¡(G(n, /)) = 1. For
K £ S?, the intersection KC\ ux is a star body in (n - l)-dimensional space.
Let w,_i_i(X n ux) be the (n - 1 - /) th dual Quermassintegral of Kn ux in
R"-1, which is called the dual (n - 1 - i)-girth of K in the direction u (see
[25]).

The intersection body of order i of a star body K, I¡K, is defined by

(2.4) pIiK(u) = *n-x-i(Knu±),    U£S"-X.

Hence, IK = IH-XK.
The intersection body of order / is closely related to the spherical Radon

transform. For / G C(S"~X), the spherical Radon transform of /, Rf, is
denned by

(2.5) (Rf)(u) = -1-r f f(v) ds(v),

where ds is the volume element of S"~x r\ux. By applying the spherical Radon
transform to the / th power of the radial function of a star body, we have

{RpiK){u) = -^-1 I pmds(v)

=s%1/ /       PK(v)dSi.x(B;v)dpi(^)
lKi   JG{n-X,i)JS"-1n(

= ÍE^i f        voUKnVdpid).
Ki    JG(n-X,i)

Hence, (2.3) and (2.4) give

(2.6) pllK(u) = (RpK)(u) = *„_,_!(* n u±).

When restricted to Q^S"-1), the spherical Radon transform R : C~(5n-1) ->
C£°(Sn~x) is a continuous bijection (see Helgason [22, p. 161]). It is also
selfadjoint, i.e., for f, g £ C(S"~X),

(2.7) (f,Rg) = (Rf,g).
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From the injectivity of R and (2.6), we conclude the result: If K, L £Sfie,
then I¡K = I¡L if and only if K = L. This is the counterpart of Chakerian's
uniqueness theorem about projection bodies of order / (see [11, Theorem 1;
39, Theorem 10.2]).

As observed by Goodey and Weil [17, p. 677], R is a continuous bijection
of 3e(Sn-x) to itself. For K £ 5^, we call the distribution R~xpx the dual
generating distribution of K, denoted by pu • A body K g S^ is called an
intersection body if the dual generating distribution p¡c is a measure. Let S
denote the set of intersection bodies. A body K £ ¿P*e is called a generalized
intersection body if the dual generating distribution ¡¡¡c is a signed measure.
These definitions of intersection body and generalized intersection body are
dual to the concepts of zonoids and generalized zonoids (see [18]). It is clear
that the / th intersection body I¡K of a star body AT is an intersection body. We
will show (in §5) that a sufficiently smooth intersection body is the intersection
body of a centered body.

In the following, we will use the notation

V(K, i; L, j; C) = V{K,--- ,*, L, ••• ,L, Ci+j+l ,-■■ ,Cn),
i j

in particular,

V(K,i;L,l;B)= V(K,--- ,K, L, B,      ,B),
i n—i—l

where B is the unit ball in R" . By using the Holder inequality, we have the
inequality (see [28, Theorem 1])

(2.8) V(K,i;L,j; C)i+' <V(K,i + j; C)'V(L,i + j; Cy
with equality if and only if K and L are dilations of each other. Inequality
(2.8) can be viewed as the dual Alexandrov-Fenchel inequality (see [11, (2.2)],
for the Alexandrov-Fenchel inequality).

Lemma 2.9. Let K, L£SP. Then ItK Ç I¡L ¿fand only if
V(K,i;N,\;B)<V(L,i;N,l;B)

for every N £^F.
Proof. For N G J*", let pN = R~xps be the dual generating measure of N.
Then, by (1.8) and (2.7),

nV(K,i;N, 1; B)-nV(L, /; N, \;B)
= (Pk>Pn)-(Pl>Pn)
= (RpK,R-xpf/)-(RpiL,R-xpN)

= /     (/>/,*(") - Pi,l{u)) dpN(u).
Js"-1

This proves the lemma.   D

By the definition of dual generating distribution and (2.7), we have

(2.10) flK(f) = (Pk, R~lf),       f 6 C?(S»-X).
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The distribution fiK is a measure if and only if pk(J~) > 0 for all / > 0,
/ G Cex,(S"-x), see [42]. Let g = R~xf. Then (2.10) gives that a body
K £ SPe is an intersection body if and only if

/     Px(u)g(u)du>0   whenever   Rg > 0, g £ Cex(Sn-x).

The following lemma is an extension of this. It was proved in [18] in a more
abstract setting. For self-containedness, we include a proof here.
Lemma 2.11. Let JV be a dense subset of Ce(Sn~x). Then a body K £^e is
an intersection body if and only if

(2.12) /     pK(u)g(u)du>0   whenever   Rg>0,g£jT.
Js"-1

Proof. Let J^ be any dense subset of Ce(Sn~x). We show that the set {g £
jy : Rg > 0} is dense in {g £ Ce(S"-x) : Rg > 0}. It is enough to show
{g £ JV : Rg > 0} is dense in {g £ Ce(S"-x) : Rg > 0}. Take g G {g G
Ce(S"-x) : Rg > 0}. There are g¡ G JT so that g¡ -» g in Ce(S"-x). We want
to show Rgi > 0 for / sufficiently large. Assume this is not true. Then there
exists a sequence {Xk} in S"~x which converges to a point x £ Sn~x and a
subsequence {gik} such that Rgik(xk) < 0. Since Rg £ Ce(S"~x) and Rgik
converges to Rg in Ce(Sn~x),

0 < Rg(x) < Rg(x) - Rgik(xk) = Rg(x) - Rg(xk) + Rg(xk) - Rgik(xk) — 0.
This is impossible. Therefore, the condition (2.12) is equivalent to

/     Px(u)g(u)du>0   whenever   Rg > 0, g £ Ce(S"-x).

Since Cex(S"~x) is dense in Ce(Sn~x), we conclude the lemma.   D

Henceforth, & always denotes a dense cone of 3£e . Let / G {1, 2, • • • , n —
1}.
Theorem 2.13. Let K £ S^e. IfK is an intersection body, then for all L, M £
S% there is the implication
(2.14) IiLCIiM    =*    V(L,i;K,\;B)<V(M,i;K,\;B).
Conversely, let M £ SF2 be fixed. If the implication (2.14) holds for all L g &,
then K is an intersection body.
Proof. By Lemma 2.9, the necessity is clear. Let M £ SF2 and q £ C2(Sn~x).
Then Pm - tq £ C2(Sn~x) is positive for t sufficiently small. Let Mt be the
centered body with radial function p\f-tq. The family of closed hypersurfaces

dMt:S"-x^R",    u—*pM(u)u-tq(u)u,    t €(-€,€),
is a deformation of dM. Note that dM has strictly positive Gauss curvature.
From the classical formula of Gauss curvature using local coordinates and the
compactness of S"~x, it is easy to see that the Gauss curvature of dMt is
strictly positive for t sufficiently small. Therefore, Mt £ SF2 for / sufficiently
small. From the identity

piAÍ-(pM-tq)i = ipi¿xqt-rO(t2)
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and the denseness of C2(S"~X) in Ce(Sn~x), we conclude that the set

^ = {cp'M- pL:c>0, L£JTe}

is dense in Ce(Sn~x). Let g = cp'M - p'L. Then

/    pK(u)g(u)du=V(M,i;K,l;B)- V^L,i;K,\;B).
JS"-iis

From (2.6) we have
--i»» —C   lRg = phM - PIi(c-MiLy

Therefore, (2.14) is equivalent to (2.12), and we obtain the theorem by applying
Lemma 2.11 to the above JF.   D

Theorem 2.15. Let K£5"e. IfK is an intersection body, then for all L, M £

V(L,i;K,l;B)      max »--w(W)
v       ' V(M, i;K,\;B) ~ «es»-' ̂ ....(A/nt^)

Conversely, let M £SF2 be fixed. If the inequality (2.16) holds for all L£&,
then K is an intersection body.
Proof. Obviously, the inequality (2.16) implies the implication (2.14). Hence
(2.16) is sufficient to guarantee that AT is an intersection body. If AT is an
intersection body with dual generating measure pK, then

V(L,i;K,\;B) = (pj, pK) = (RpL,R-xpK)
V(M,i;K,\;B)     (p¡m,Pk)     (Rp¡M,R-xpK)

. Us^PhL^dp^ü) ^ _  piiL(u)< max
SueS-'P'Mu)dpK(u)    «es— PiMu)

¿/„-x-ALnu-1)= max  .
u€S—1 W„_i_,(Af n m-1-)

Hence, (2.16) is necessary.   D

Theorem 2.17. If K£j and M£S*e, then

Wn.i-x(K) * wn_x-i(Knu±)< max —
.Wn_¡_x(M)\     "«es»-' w„.{_¡(M n«-1-)

with equality if and only if K and M are dilations of each other.
Proof. Let L = K in (2.16). From (2.2) and (2.8) we have

7±TV(L,i;K,\;B) > W^^K)
V(M, i;K,\;B)     Wn.i.x(M)^Wn.¡.x(K)^

This proves the theorem.   D

Let i = n-l in Theorem 2.17. We obtain

Wn-i-l{K)
L^-i-iiAOJ
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Corollary 2.18. IfK£^F and M G ¿^, then

V(K)] voi»_i(irn«x)
< max

[V(M)\      -«es-'voln-KMn«-1-)
with equality if and only if K and M are dilations of each other.

The above corollary implies that for K £ S and M £ S?e if

volB_i(A:n«-L)<vol„_1(A/nMx)   for all kg S""1

then
V(K) < V(M).

This result was proved by Lutwak ([25, Theorem 10.1]), which is an affirmative
answer to the Busemann-Petty problem if AT is an intersection body. On the
other hand, if we choose k > 0 so that

voln-x((kK)nu±)
max  -i-/,/„—¡T" = 1 >ueS-i   vol„_i(Af Oh-1)

then Lutwak's result gives Corollary 2.18. Hence, Corollary 2.18 can be viewed
as a reinterpretation of Lutwak's result. By taking M — B in Corollary 2.18,
we have

Corollary 2.19. If K is an intersection body, then there is the inequality
n-l

V(K)'-^ < ^- max \o\n-x(Knux)
Kn-x ues—i

with equality if and only if K isa ball.
Let M be the cube of volume 1 in Corollary 2.18.   Then we obtain for

K£S
V(KfTr < max vol„_,(tfn«x).

K€S"-'
It—I

This shows that k„" /k„_i < 1. Corollary 2.19 is related to the maximal slice
conjecture. This conjecture states that for K £ 3£e there exists a universal
constant c > 0 such that

V(K)1^1 <c max voU^Knu1-).
uÇS"-'

We suspect that c could be 1. For related problems, see [30].
From Theorem 2.13, we have the following

Theorem 2.20. If a convex body K G ST2 is not an intersection body, then there
exists a convex body L£& which is also not an intersection body so that

IiL c I¡K
but

ti-i^Xti-ifl).
Proof. Let M = K in (2.14). Since K is not an intersection body, there exists
a body L £ &> so that 7,L c I¡K, but

V(L, i;K, l;B)>V(K,i+l;B) = Wn_¡_x(K).
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From (2.8), we have
V(L, i;K, 1 ; B)i+X < V(L, /+ 1 ; B)lV(K, i+l;B)

= fy-i-m'fy-MiK).
Hence,

Wn-¡-x(K) <Wn-¡-x(L).   □
Corollary 2.21. If a body K £ SF2 is not an intersection body, then there exists
a body L£& which is also not an intersection body so that

ILcIK
but

V(K) < V(L).
It should be pointed out that the C°° case of Corollary 2.21 has been proved

by Gardner ([13, Theorem 3.1]), while without convexity it is due to Lutwak
([25, Theorem 12.2]).
Theorem 2.22. The Busemann-Petty problem has an affirmative answer in R" if
and only if each centered convex body in R" is an intersection body.
Proof. The sufficiency follows from Corollary 2.18. To prove the necessity, it
suffices to show that the existence of nonintersection bodies implies a negative
answer to the Busemann-Petty problem. Assume that K is not an intersection
body. From Theorem 2.13, there exists L £ S?2 so that
(2.23) /I ç IB   and   Vx(L,K)> Pi(B,K).
Conversely, (2.23) implies that K is not an intersection body. It follows that an
infinitesimal deformation of K is not an intersection body either. Therefore,
there exist nonintersection bodies in ST2, and Corollary 2.21 gives a negative
answer to the Busemann-Petty problem.   D

The sufficiency in Theorem 2.22 was actually proved by Lutwak (see [25]),
which represents the first step towards the full solution of the Busemann-Petty
problem. It is proved that no cube in R" ( n > 4 ) is an intersection body [48].
More generally, no polytope in R" ( n > 4 ) is an intersection body [49]. Then
the Busemann-Petty problem has a negative answer in R" ( n > 4 ). Gardner
[51] has proved that every centered convex body in R3 is an intersection body.
This gives a positive answer to the Busemann-Petty problem in R3. For the
details of the Busemann-Petty problem, see [2, 3, 6, 13, 14, 23, 48, 51].

3. Characterizations and inequalities of polar projection bodies
For a convex body K with the origin in its interior, the polar body K* of

K is defined by
K* = {y G R" : (x, y) < 1 for all x G A:}.

It is easy to verify that K** = K, and for u£Sn~x, that
A*.(") = Pk(u)~x

while
PK-(u) = hK(u)~x.

Let Z* = {K* : K £ Z} which is the set of polar projection bodies. The
following lemma is essentially part of a result of Weil ([44, Theorem 4]).
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Lemma 3.1. IfK,L£3£e, then KCL if and only if
VX(M, K) <VX(M, L)  forallM£JTe.

We recall the centroid body YK of a star body Ae^ defined by (see [35])

Anr(*) = -p™ J \{x, y)\dy.
This integral can be written as an integral over Sn~x (see, for example, [35])

^(M)=(ÏÏTïW)Ll<M'v>IMvr1^
The centroid bodies comprise an important subclass of zonoids. We refer the
reader to [26, 29, 30] for details.
Lemma 3.2. If K, L £ &, then YK ç YL if and only if
(3.3) V-x(K, M)/V(K) < V-x(L, M)/V(L),   for all M £ Z*.
Proof. For any Mo £ 3£e, let n*Afo = M. From the identity (see [26, Lemma
9.1])

(3.4) V-x(K,ITL)/V(K) = !^p-Vx(L,YK)   for K £&, L £&,

the inequality (3.3) becomes
Vx (Mo, YK) < Vx (Mo, YL),    for all Af0 € 3Fe.

We complete the proof by applying Lemma 3.1.   D

The necessity part of Lemma 3.2 was proved by Lutwak ([26, Lemma 9.2]).
The following lemma is a variant of Theorem 5.1 in [39]. One can give a similar
proof to that of Lemma 2.11. For a complete proof see [18].
Lemma 3.5. Let JF be a dense subset of Jfe. Then a Junction h £ Ce(S"~x) is
the support Junction of a projection body if and only if

[    h(u)dp(u) > 0   whenever    f    \(u, x)\ dp(x) > 0, p£jF.
Js"-1 Js"->

Lemma 3.6. Let h £ Ce(S"~x). If h is the support Junction of a projection body,
then for all L, M £& there is the implication

YMcYL    m+    (h,pnM+x)/V(M)<(h,pL+x)/V(L).

Conversely, let M £ SF2 be fixed. If the implication holds for all L £ &, then
h is the support Junction of a projection body.
Proof. From Lemma 3.2, the necessity is clear. To apply Lemma 3.5, we show
that the set

JT = [v(L)-xpnL+x -cV(M)-xpn¿x :oO,Lel(j

is dense in Jte. It is enough to show yF is dense in C2(Sn~x ) where the latter
is viewed as a subspace of Jte . Since M £ S?2 , for q £ C2(S"~X) the function
Pm + tq is the radial function of a body M, £ ST2 for l sufficiently small. We
have
(3.7) V(Mt)-xpnáx - V(M)-Xpn¿x = V(M)-2p2MTM(q)t + 0(t2),
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where

TM(q) = (n+ \)V(M)p"M-2q - p£l f    p^(u)q(u)du,    q £ C2(S"~X).

If we can show the set ^ = {Tu(q) : q £ C2(Sn~x)} is dense in Jte, then by
(3.7) JV is dense in Jfe. Assume ¿f~ is not dense in Jle. By the Hahn-Banach
theorem, there exists a nontrivial / G Ce(Sn~x) so that

Js*
fTM(q) du = 0,    for all q G C2(Sn~x).

/S—
Hence

0=/     fTM(q)du= I     TM(f)qdu
for all q £ C2(Sn~x). Therefore, / G kerTV. By integrating both sides of
PmTm(P) = 0 over Sn~x, we obtain

(n+\)V(M) i     p"M~xfdu-nV(M) f     p^xfdu = fi.

This gives

/£-'/<*«-0.
JS"

By Tif(f) = 0, we have / = 0. This is a contradiction. From Lemma 3.5, we
finish the proof of the theorem.   D

Let h = PxX in Lemma 3.6 and use the formula for the support function of
a centroid body. We obtain a characterization of polar projection bodies.
Theorem 3.8. Let K £ 5£e. If K isa polar projection body, then for all L,M £
&* there is the implication

(3.9)        TAfCTL    =>    V-x(M,K)/V(M)<V-x(L,K)/V(L).
Conversely, let M £Sf2 be fixed. If the implication (3.9) holds for all L£&,
then K is a polar projection body.
Theorem 3.10. Let K£3£e. If K isa polar projection body, then for all L, M £
S"

V.x(L,K) Jx€L\(u,x)\dx
(iAl) V_l(M,K)-u?s™Jx€M\(u,x)\dx-

Conversely, let M £Sf2 be fixed. If the inequality (3.11) holds for all L£&,
then K is a polar projection body.
Proof. Since (3.11) implies (3.9), the sufficiency is clear. To show the necessity,
let K = Y\*Q. Then from (3.4)

V-x(L,K)       V-x(L,Y\*Q) =   Vx(Q,YL)V(L)
V-x(M,K)     V.x(M,U'Q)     Vx(Q,YM)V(M)

_ Js- UxçL\(u,x)\dx)dSn-x(Q;u)
' Is-* Ux€M\(u,x)\dx)dsn-x(Q; u)
.      .    ¡xeL\(u,x)\dx
> min -f-¡~.-   ,  .   D
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Corollary 3.12. Let K£Z* and M £S?e. Then

(3.13)
V(K)
V(M)_

with equality if and only if K and M are dilations of each other.
Proof. Note that if K £ Z* then (3.11) is true for any M £ 3Fe. Let L = K
in (3.11). Then

V-x(L,K) < V(K) _\V(Ky'
>a±l. \-i V(M)V_x(M,K)~ V(M)°?V(K)~i

This gives (3.13).   D

Corollary 3.14. If K £ SF2 is not a polar projection body, then there exists
L£& which is also not a polar projection body such thai

YKcYL
but

V(K) > V(L).
Proof. Let M = K in (3.9). Since K is not a polar projection body, there
exists a convex body L £ £° so that

YKcYL
but

V(L)>V_x(L,K).
From the dual Minkowski inequality (1.11), we obtain

V(K)>V(L).   D
This corollary was proved by Lutwak ([26, Proposition 9.6]) when K and L

are star bodies whose radial functions are C°° .

4. Affine surface area and the curvature image of projection bodies

Define
W = {K£Sre;f~^ =hQ,   for some Q £ Z}.

This is an important affine invariant class of convex bodies, called curvature
images of projection bodies, see Lutwak [26]. In order to characterize the cur-
vature image of a projection body, we define the affine surface area of K £&,
¿(AT), by

(4.1) A(K)= !    fa(u)¿rdu.
JS"-1

For K, L£SF, and / G R, Lutwak [27] defined the /th mixed affine surface
area of K and L, At(K, L), by

(4.2) Ai(K, L) = /    fa(u)^fL(u)^ du,
and proved that
(4.3) A-x(K,L)n>A(K)n+xA(L)-1

with equality if and only if K and L are homothetic.
As a consequence of Lemma 3.5, it is easy to show the following (see [19])
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Lemma 4.4. Let h £ Ce(Sn~x). If h is the support function of a projection body,
then for all L, M£STe there is the implication

TIM ç TIL    =>     /    h(u)dS„-x(M;u)< í    A(u)a\S„_,(L; u).
Js«-i Js"-i

Conversely, let M £Sfe be fixed. If the implication holds for all L g &, then h
is the support Junction of a projection body.

Let A = /£" "+1 in Lemma 4.4. It gives the following
Theorem 4.5. Let K £ SFt. If K G 2T, then for all L,M £ Sfe there is the
implication
(4.6) TIM C ILL    =»    A-x(M, K) < A-x(L, K).
Conversely, let M £SFe be fixed. If the implication holds for all L£SFe, then
K£W.

From Theorem 4.5 and inequality (4.3), we have the following corollary
which was proved by Lutwak ([26, Proposition 8.11]) when AT has a C°° cur-
vature function.
Corollary 4.7. If K£Sre\W, then there exists L £ 9¡ x W such that

TTKcUL
but

A(K) > A(L).
Proof. Let M = K in Theorem 4.5. If K £ S% n W, then there exists L£SFe
so that ILK c ILL, but

a(K) = a.x(k,k)>a.x(l,k).
Hence, by (4.3) we get

A(K) > A-x(L, K) > A(L)^A(K)~",
that is, A(K) > A(L).   D

Theorem 4.8. Let K£9g. IfK £W, thenforall L,M £&i
Í4Q1 A-i(L,K) volB-,(L|^)
K     ' A-x(M, K) - «S— vol„_,(M|u-L)'
Conversely, let M £ S?e be fixed. If the inequality holds for all L £ Sfe, then
ATG2T.
Proof. By (4.6), the condition (4.9) is sufficient to guarantee that K £ 3F.
Conversely, let f%     - hç. for some Q£Z. Then

A-x(L, K)       (fL,hQ)
A-x(M,K)     (fM,hQY

Since every centered zonoid is a projection body, let Q = TlQo for some oo €
3íe. We have

(fa,hQ) = Vx(L,TlQo)       Vx(gp, ILL)
(fiu, hQ)     Vx (M, nßo)      Vi (ßo, TIM)

Js-vola-iíHa-1 ) dSn-x(Qo;u) voU.^Ll^)- > mm -
/5„_, voln.x(M\u^)dSn.x(Qo\ u) - «es- vol„_,(A/|i^-)

This proves the theorem.   D
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Corollary 4.10. // K G 3T and M £SFe, then
, OilA(K) > min ™ln-x(K\u±)

~a€S— VOln-iiA/lM-1-)[A(M).
with equality if and only if K and M are homothetic.
Proof. By (4.3) we have

A-x(L,K) A(K) A(K)
A-x(M, K) - A(M)°?A(K)-X"      [A(M)

This proves the corollary.   D

The above corollary implies that for K £ W and M £ SÇ if
vol„_i(A:|M-1-)>voln_,(A/|M-L)   for all «er1,

then
A(K) > A(M).

This result is due to Lutwak ([26, Theorem 8.9]).
Corollary4.11. IfK£W,then

(     \a±^
A(K)^ > WJL min voL.-.W«-1)

-    k„_i    «es—

with equality if and only if K is a ball.
For affine inequalities about the projection body and the affine surface area,

see Lutwak [29].

5. Generalized intersection bodies
For / G C(S"~X), the cosine transform of /, Cf, is defined on S"~x by

(Cf)(u) = \l     \(u,v)\f(v)dv   for u G S"-x.
J. Js"-i

By Fubini's theorem, the cosine transform is selfadjoint, i.e., for /, g £ C(Sn~x ),

(/, Cg) = (Cf, g).
When restricted to C^°(Sn~x), the cosine transform,

C : Cï°(S"-x) —* C~(S"-X),

is a continuous bijection (see Schneider [38]). Then the cosine transform C is a
continuous bijection of 2¡e(S"~x) to itself, when 3¡e(Sn~x) is given the strong
topology (see Goodey and Weil [17, p. 677]). For K £ Xe, the distribution
C~xhfc is called the generating distribution of K, and denoted by px. From
(1.7), a convex body K £3fe is a zonoid if and only if p¡c is a measure, and is
a generalized zonoid if and only if pk is a signed measure. By using spherical
harmonics, Schneider [38] proved that if / G Ck(S"~x) (k = n + 2 when n
is even and A = n + 3 when n is odd), then there exists g £ Ce(Sn~x) such
that Cg = /. This implies that the class of generalized zonoids is dense in the
class of centered convex bodies (see [38]). Schneider's techniques have inspired
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many works, in particular, on projection bodies and intersection bodies (see
[17,25]).

By using the techniques for projection bodies in [17], we apply the LP es-
timates for the spherical Radon transform to show that every centered body
in R" of class C*, k = [*£i] - 1, is a generalized intersection body. This
implies that the class of generalized intersection bodies is dense in the class
of centered bodies. Since Sn~x is compact, every distribution on Sn~x is of
finite order. It turns out that the dual generating distribution has order at most
[*£*■] - 1. For dual mixed volume characterizations of generalized intersection
bodies, see [18]. The approach of this section using the LP estimates of the
spherical Radon transform and the Sobolev embedding theorem was suggested
by E. Grinberg.

Let L2(Sn~x) be the space of even L2-functions on Sn~x. Denote by
L2(S"~X), s > 0, the Sobolev spaces on S"~x. The spherical harmonic ex-
pansion ¿~0y¡ of f £ L2(Sn~x) satisfies (see [43, (4.5)])

ii/iii = E(i+/Wiiii < «>.
i=0

For s < 0, the Sobolev space L2(Sn~x) is defined as the dual space of Ll^S""').
Strichartz [43] proved that the spherical Radon transform

(5.1) /?:Li2(5B-1)^L2+2_2(5»-1)

is a bijection. He also proved that there is a constant b such that

(5.2) b-x\\Rf\\L       < \\f\\Ll < b\\Rf\\L
'*~r 1+t-

Since S"~x is compact, there is the inclusion
(5.3) Ck(S"-x)cLl(Sn-x)   forA>0.

From (5.1) and (5.3), we can find conditions which force the dual generating
distribution to be an L2 function.
Theorem 5.4. IfK£^ehas the radial Junction pK £ Ck(Sn~x), k = [*$1] -1,
then K is a generalized intersection body.

Corollary 5.5. The generalized intersection bodies are dense in the class of cen-
tered bodies.

Goodey and Weil [17] showed that for a centered convex body K the gener-
ating distribution pk has degree at most ^ - For the dual generating distri-
bution (see §2) we have the following result.

Theorem 5.6. If K is a centered body in R", then the dual generating distribu-
tion pk = R~xPk is a generalized junction of class L\_n(Sn~x), and hence it

has order at most f2^] - 1.
Proof. Since (5.1) is a bijection, for / G Ll_2(S"-x) there is g G L2(S"-X) so
that f = Rg. From the Holder inequality and (5.2), we have

\(Pk , R~lf)\ < WPKhUh < A||PIC||2||/I|L..2 •
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We extend pk to the linear functional on L2_2(S"~X) defined by

/—> (PK,R~xf).
Then pK is a continuous functional on L2_2(Sn~x), i.e., pK £ L\_H(Sn~x).
Let A = [sfi] - 1. Then A > ^. From (5.3), we have the inclusion of dual
spaces

Ck(S"-x)* D L2k(S"-x)* = Lik(S"-x).

Hence,
pK£Ck(S"-x)*,

that is, pk has order at most A.   □

Lemma 5.7. If f £ Ce,+k-x(S"-x), then there exists g £ Ck(Sn~x) such that
Rg = f.
Proof. By the Sobolev embedding theorem (see [1, p. 35]), we have

[¿(S*-1) C Ck(Sn~x),    fors>k + ^y-î-.

Since (5.1) is a bijection, it suffices to show the inclusion
Q+k-\Sn-x)cL22(Sn-x)

for some s > k + ^y1. From (5.3) one can choose s = A + § .   O

The above lemma implies the following

Theorem 5.8. If a centered body K suchthat p¡c £C¡!~x(Sn~x) is an intersection
body, then K is the intersection body of another centered body.

Let A be the Laplacian on S"~x. By using the relation (n - l)R =
(A + n - \)C (see Goodey and Weil [17]) and the Remark 6.7(i) (the operator
Lm, x =A + n- \ is independent of M ), we conclude the following results: If
/ £Ck+n+x(S"-x), then there exists g £ Ck(S"-x) such that Cg = f.

6. Curvature functions
In this section we discuss a type of selfadjoint elliptic differential operator

associated with a convex body. These operators are applied to show the openness
of the class of curvature functions with Holder continuity. A consequence of the
openness is a strengthening of Weil's theorem in [47] about the denseness of the
difference of j th surface area measures in Jte. Finally, we prove an existence
theorem about deformations of convex hypersurfaces, which is a companion to
a well-known uniqueness theorem in global differential geometry.

If fj(M; •) is the 7'th elementary symmetric function of radii of princi-
pal curvature of M £ 9?, then S¡(M; •) = fj(M; •)$„_,(£; •). For g £
C2(Sn~x) let M(t) be the convex body with support function h\¡ + tg. We
consider the operator

LM,j(g) = 21. fj(M(t);.),    g£C2(S"-x).
t=o
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Let {ex,--- , e„-x} be an orthonormal frame on Sn~x. Let (A,*) be the
Hessian matrix of hM with respect to the frame. Then the eigenvalues of the
matrix (A,* + Aj/Í,*) are the radii of curvature of M (see, for example, [20,
Part rv, 32, p. 37]). Let cik = hik + hMSik . The radii of principal curvature of
M(t) are the eigenvalues of the matrix (c¡k(t)) = (hik + Aj/á,* + tgik + tgôik),
where (&•*) is the Hessian of g. Hence

d
dt

fiuiA- \- V dfj(M(t);-)dcik(i
J^'^fatW)-dT

dfj(M(t);-)dcik(t)
dcik(t)

dfj(M;.)
i,k=l

and we obtain

z=0

n-X

=   ̂ °_JJ^>{gik+gSijh
i,k=l       °Cik

LMJ(g)= £ dfA£.',')gik + in-j)fj-x(M;.)g.
i,k=X lk

Therefore, the operator LM,¡ is a linear differential operator of second order.
Diagonalize c,fc so that cik = r,«Jlfc, where r, are the radii of curvature of Af.
Then the matrix

(dfj(M;-)\ = /dfj(M;.)5\

is positive definite, that is, LM,j is elliptic.
For g g C2(S"-X) there exist A,LeJe so that g = hK - ht. By using

(1.3), we have

Sj(M(t);-)
/=odt

= j[S(K, M,--- ,M, B,      ,B; •) - S(L, M,--- ,M, B, ■■■ ,B; •)].
j-\ n-j-X j-X n-j-X

Hence

LMJ(g)S„-x(B;-)
= j[S(K,M,--- ,M,B,--   ,B;.)-S(L,M,--- ,M,B,  ■   ,*;•)]•

j-X n-j-X j-X n-j-l

This gives

/     g(u)LMJ(f)(u)dSn-i(B; u) = /     f(u)LMJ(g)(u)dSn-i(B; u) = 0
JS"- ' JS— '

for all g, f £ C2(Sn~x). This shows that LMj is formally self adjoint. Note
that for j — 1 we have LM. i = A + n - 1, where A is the Laplacian on Sn~x.

Lemma 6.1. If M £ S?2'a, then the operator
(6.2) LMJ : C2'a(S»-x) — Q(S"-X)

is bijective.
Proof. The injectivity of the operator Lmj follows from the equality condi-
tions of the Alexandrov-Fenchel inequality (see [52, p.  359; 19]). To prove
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the surjectivity, first assume hM £ Q^S"-1). Then LMj is an elliptic and
formally selfadjoint operator with C°° coefficients. We have (see, for example,
[50, p. 258])

C°°(Sn-x) = imLujehaLUj.
Hence, Lmj is surjective. Also, one can use the argument of Cheng and Yau
([12, p. 508]) to show

Lmj : Ck+2>a(Sn~x) —> Ck>a(S"-x)

is surjective for k sufficiently large.
If hM £ C2,a(Sn-x), then LMj has C°-coefficients. We can write LM as

lm,j - Sa*a* + S °idi + c
where d¡, d¡k are the covariant derivatives on the sphere Sn~x and c is a
function on S"~x. Choose positive number o > 0 so that c-<r < 0. Consider
the equation
(6.3) (LMJ-o)g = f,    f£C?(S"-x).
Approximate the coefficients of this equation by C°°-coefficients,

{LMv,j-o)g = Y,aïkdikg + Y<bVidœ + ^-a)g = f>>>    "-L*.- .
where hMu € Cf(Sn~x) and hMv - hM uniformly in C¡'a(S*-x). Each
equation has a unique solution gv g C%°(Sn~x). We show that the solutions
{#„} are uniformly bounded in C2'a(Sn~x). Since c" -* c and c-a < 0,
there exists a constant Co < 0 so that c" - a < cq . Assume that g„ attains
its maximum at xx. Then the Hessian (dlkgv(xx)) is seminegative. Hence,
2Z^kdikgu(xx) < 0. If gv(xx) > 0, then

cogAxx) > (c" - o)gv(xx) > Mxx).
Hence

(6.4) gv(xx)<\c0\-l\Mxi)\.
This is obviously true if g„(xx) <0. Assume that gv attains its minimum at
xo ■ Then the Hessian of gv at x0 is semipositive. If gv(xo) < 0, then

c0g*(xo) < (c" - o)g„(xo) < fv(Xo).
Hence

(6.5) -g»(xo)<\co\-l\Mxo)\.
Also, this is true if gv(xo) > 0. Therefore, (6.4) and (6.5) give that

ii*,iic-< iconi/.iico.
By Schauder interior estimates (see [1, p. 88; 15, §6.1]) and the compactness
of S"~x, the sequence {#„} is uniformly bounded in C2'a(Sn~x). Hence, the
functions gv and their first and second derivatives are equicontinuous. From
the Ascoli-Arzelà theorem, there is a convergent subsequence in C2(Sn~x).
Hence the equation (6.3) has a solution u £ C2'a(S"~x). Therefore, the oper-
ator

LM,j - o : C2'°(S»-X) — C?(S"-X)
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is surjective. In view of the maximum principle (see [1, p. 96; 15, §3.2]), it is
easy to see that this operator is also injective. Note that above argument implies
that the inverse operator

(LMj - o)-x : C?(S"-X) —> C¿'°(S"-X)

sends every uniformly bounded sequence of functions in C?(S"~X) to a se-
quence of functions in C2'a(Sn~x) which has a uniformly convergent subse-
quence, that is, (Lmj - o)~x is compact. Therefore, the inverse operator

(LMj - o)~x : C?(Sn-x) — C?(S»-X)

is also compact. Consider the equation
(6.6) g + o(LMJ-o)-xg = (LMj-o)-xf,    f£Q(Sn~x).

By applying Fredholm alternates to (Lmj-o)~x on the Banach space C?(Sn~x),
we conclude that (6.6) has a solution g £ Cf (Sn~x) because the homogeneous
equation has only trivial solution.   Since (Lmj - o)~xg, (Lmj - a)~xf G
C2'a(S"~x), we conclude that the equation

LMjg = f,    f£Ce>(S"-i),
has a solution g £ C2'a(Sn~x). Therefore, (6.2) is surjective.   D

Remark 6.7. (i) By regularity theorems (see [1, p. 85]), the operator
Lmj : Ck+2'a(Sn'x) — Ck'a(S"-x)

is bijective if M £ S%k+2'a for A > 0. From the proof of Lemma 6.1 one can
see that if one drops the symmetry assumption on M then Lemma 6.1 takes
the form

Ca(S"-x) = imLuj ® kerLj*,,,
where

Lmj : C2'a(S"-x) —» Ca(S"-x),    M £ ST2>a,

and \xtLmj consists of first order spherical harmonic functions.
(ii) In two dimensions Lemma 6.1 is due to D. Hubert and is related to the

Minkowski problem (see Nirenberg [31, §15]). The ellipticity, selfadjointness
and injectivity of Lmj are well-known (see [32, 34]). The author has not
found a proof for the surjectivity of Lmj in the literature. The above proof
is apparently not straightforward. All these properties of Lmj are used by
Pogorelov in his work on the Minkowski problem (see [37, pp. 46-49 and 60-
61]).

The bijectivity of the operator Lmj can be applied to show the openness of
the class of curvature functions fj(M ; •) with Holder continuity, and to prove
existence and uniqueness theorems about the deformation of M £ S?2,a which
preserves normals.
Theorem 6.8. Let f¡ be the jth curvature function of a convex body M £S%2'a.
Then there exists a neighborhood U of fj in Cf(S"~x) such that every function
in U is the jth curvature function of a convex body in !?2'a.
Proof. Define an operator

Fj : C2'a(S"-x) —» Ca(Sn~x).
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Let (h¡k) oe the Hessian matrix of A G C2'a(S"~x) with respect to a normal
frame on Sn~x. Then Fj(h) is defined as the sum of all j-rowed principal
minors of the matrix (A,* + hôik) • If A is the support function of a body
M £ SF2-a, then F¡(h) is the j th curvature function fj(M; •) of M. We want
to show that for a function / in a neighborhood of fj(M; •) in C?(S"~X),
one can always solve the equation A} (A) = /, where A is the support function
of a body in SF2'a. As is well known (see [41]), it suffices to show that the
linearized operator Lmj of Fj at hM is surjective. From Lemma 6.1, we
conclude Theorem 6.8.   O

If j = n-\ and M G SFe5, Theorem 6.8 has proved by Cheng and Yau [12,
§4], while the case of n - 3 is due to Nirenberg [31, §15].
Corollary 6.9. Every junction in C?(S"~X) is a difference of j th curvature Junc-
tions of convex bodies in SF2'a.
Proof. For f£ Cf(Sn~x) and M£&2'a, fj(M; -)+tf converges to f(M; •)
in Q(S"-X) when / -» 0. By Theorem 6.8, there exists M(t) £S^2'a so that
fj(M(t) ; •) = fj(M; •) + tf when t is sufficiently small. Hence
(6.10) f = fj(t-í>M(t);>)-fj(tiiM;.).   D

The formula (6.10) gives the following corollary, which is a strengthening of
Weil's Theorem 3.5 in [46].
Corollary 6.11. Let M £ S%2'a and j £ {1, • • • , n - 1}. Then the set

{Sj(L; •)-cSj(M; •):c>0,l6^i}
is dense in J?e.

We turn to the deformation of hypersurfaces. Let A!" be a hypersurface of
class C2 in R", and let i : X —► R" be the isometric embedding. A defor-
mation of A" is a 1-parameter family of hypersurfaces X(t) which is defined
by
(6.12) i(t) = i + tZ,    -£</<£,
where Z : X —► R" is of class C2. For M £ SF2, the boundary dM is
a hypersurface of class C2 which has positive Gaussian curvature. At each
point x £ dM there exists a unique outer normal vector u g S"~x . This
gives a diffeomorphism from dM to Sn~x, called the Gauss map of dM. We
can parameterize x(u) £ dM via the Gauss map, which is called the normal
parameterization of dM. Then the deformation (6.12) of dM can be written
as
(6.13) x(u,t) = x(u) + tZ(u),    -e<t<e.
It defines a family of convex bodies M(t) £ SF2. A deformation is called sym-
metric if Z(u) is even. If x(u, t) is the normal parameterization of dM(t),
the deformation (6.13) is said to preserve normals. Denote by Sfj the varia-
tion of the j th curvature function of M. If a deformation of dM preserves
normals and satisfies Of■■ = 0, then the deformation is trivial, i.e., dM(t) is a
translation of dM. This is a well-known uniqueness theorem in global differ-
ential geometry. For references and generalizations, see [33, 34]. We prove the
related existence theorem.
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Theorem 6.14. Let f be the j th curvature Junction of a convex body M £
SF2'a. Then for any f£Cf(Sn~x) there exists a unique symmetric deformation
of M which preserves normals such that Sf¡ = /.
Proof. Let g be the unique solution to the equation Lm j(g) = f ■ Construct a
family of convex bodies Mx(t) with support function hM + tg. Obviously, this
family of convex bodies gives a symmetric deformation of M which preserves
normals. We have

«-afj(M(t);-) = LMj(g) = f.
(=0

Let x(u) G dM be the normal parameterization. Let M(t),

x(u,t) = x(u) + tZ(u)£dM(t),    -e<t<e,
be any symmetric deformation of M which preserves normals and satisfies
Sfj = f. Then the support function of M(t) is hM + t(Z, u). Hence,

L„j((Z,u)) = f.
This implies (Z, u) — g.   Consequently, M(t) and Mx (t) have the same
support function, that is, they are congruent.   D
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