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Abstract

The perception system in autonomous vehicles is respon-

sible for detecting and tracking the surrounding objects.

This is usually done by taking advantage of several sens-

ing modalities to increase robustness and accuracy, which

makes sensor fusion a crucial part of the perception system.

In this paper, we focus on the problem of radar and cam-

era sensor fusion and propose a middle-fusion approach

to exploit both radar and camera data for 3D object de-

tection. Our approach, called CenterFusion, first uses a

center point detection network to detect objects by identi-

fying their center points on the image. It then solves the

key data association problem using a novel frustum-based

method to associate the radar detections to their corre-

sponding object’s center point. The associated radar de-

tections are used to generate radar-based feature maps to

complement the image features, and regress to object prop-

erties such as depth, rotation and velocity. We evaluate

CenterFusion on the challenging nuScenes dataset, where

it improves the overall nuScenes Detection Score (NDS) of

the state-of-the-art camera-based algorithm by more than

12%. We further show that CenterFusion significantly im-

proves the velocity estimation accuracy without using any

additional temporal information. The code is available at

https://github.com/mrnabati/CenterFusion.

1. Introduction

Autonomous vehicles are usually equipped with differ-

ent types of sensors to take advantage of their complimen-

tary characteristics. Using multiple sensor modalities in-

creases robustness and accuracy, but also introduces new

challenges in designing the perception system. Sensor fu-

sion is one of these challenges, which has motivated many

studies in 2D and 3D object detection [4, 10, 14, 19], se-

mantic segmentation [33, 16] and object tracking [1, 7] in

recent years.

Most of the recent sensor fusion methods focus on ex-

ploiting LiDAR and camera for 3D object detection. Li-

DARs use the time of flight of laser light pulses to calcu-

late distance to surrounding objects. LiDARs provide ac-

curate 3D measurement at close range, but the resulting

point cloud becomes sparse at long range, reducing the sys-

tem’s ability to accurately detect far away objects. Cam-

eras provide rich appearance features, but are not a good

source of information for depth estimation. These comple-

mentary features have made LiDAR-camera sensor fusion a

topic of interest in recent years. This combination has been

proven to achieve high accuracy in 3D object detection for

many applications including autonomous driving, but it has

its limitations. Cameras and LiDARs are both sensitive to

adverse weather conditions (e.g. snow, fog, rain), which can

significantly reduce their field of view and sensing capabil-

ities. Additionally, LiDARs and cameras are not capable of

detecting objects’ velocity without using temporal informa-

tion. Estimating objects’ velocity is a crucial requirement

for collision avoidance in many scenarios, and relying on

the temporal information might not be a feasible solution in

time-critical situations.

For many years, radars have been used in vehicles for

Advanced Driving Assistance System (ADAS) applications

such as collision avoidance and Adaptive Cruise Control

(ACC). Compared to LiDARs and cameras, radars are very

robust to adverse weather conditions and are capable of de-

tecting objects at very long range (up to 200 meters for auto-

motive radars). Radars use the Doppler effect to accurately

estimate the velocities of all detected objects, without re-

quiring any temporal information. Additionally, compared

to LiDARs, Radar point clouds require less processing be-

fore they can be used as object detection results. These fea-

tures and their lower cost compared to LiDARs, have made

radars a popular sensor in autonomous driving applications.

Despite radar’s popularity in the automotive industry,

few studies have focused on fusing radar data with other

sensors. One reason for this is the fact that there are not

many datasets containing radar data for autonomous driving

applications, which makes conducting research in this area

difficult. Additionally, due to inherent differences between

LiDAR and radar point clouds, applying or adapting exist-

ing LiDAR-based algorithms to radar point cloud proves to

be extremely difficult. Radar point clouds are significantly
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Figure 1. CenterFusion network architecture. Preliminary 3D boxes are first obtained using the image features extracted by the backbone.

The frustum association module uses the preliminary boxes to associate radar detections to objects and generate radar feature maps. The

image and radar features maps are then concatenated and used to refine the preliminary detections by recalculating depth and rotation as

well as estimating objects’ velocity and attributes.

more sparse than their LiDAR counter parts, making it un-

feasible to use for extracting objects’ geometry information.

Aggregating multiple radar sweeps increases the density of

the points, but also introduces delay into the system. More-

over, although radar point clouds are usually represented

as points in the 3D coordinate system, the reported vertical

measurement of the points are usually not accurate or even

non-existent, as most automotive radars only report the dis-

tance and azimuth angle to objects.

In order to effectively combine multiple sensing modali-

ties, a variety of sensor fusion schemes have been developed

[8] taking advantage of the hierarchical feature representa-

tion in neural networks. In an early fusion approach, the raw

or pre-processed sensory data from different sensor modal-

ities are fused together. With this approach, the network

learns a joint representation from the sensing modalities.

Early fusion methods are usually sensitive to spatial or tem-

poral misalignment of the data [8]. On the other hand, a late

fusion approach combines the data from different modali-

ties at the decision level, and provides more flexibility for

introducing new sensing modalities to the network. How-

ever, a late fusion approach does not exploit the full poten-

tial of the available sensing modalities, as it does not acquire

the intermediate features obtained by learning a joint repre-

sentation. A compromise between the early and late fusion

approaches is referred to as middle fusion. It extracts fea-

tures from different modalities individually and combines

them at an intermediate stage, enabling the network to learn

joint representations and creating a balance between sensi-

tivity and flexibility.

We propose CenterFusion, a middle-fusion approach to

exploit radar and camera data for 3D object detection. Cen-

terFusion focuses on associating radar detections to prelim-

inary detection results obtained from the image, then gen-

erates radar feature maps and uses it in addition to image

features to accurately estimate 3D bounding boxes for ob-

jects. Particularly, we generate preliminary 3D detections

using a key point detection network, and propose a novel

frustum-based radar association method to accurately asso-

ciate radar detections to their corresponding objects in the

3D space. These radar detections are then mapped to the

image plane and used to create feature maps to complement

the image-based features. Finally, the fused features are

used to accurately estimate objects’ 3D properties such as

depth, rotation and velocity. The network architecture for

CenterFusion is shown in Fig. 1.

We evaluate CenterFusion on the challenging nuScenes

[2] dataset, where it outperforms all previous camera-based

object detection methods in the 3D object detection bench-

mark. We also show that exploiting radar information sig-

nificantly improves velocity estimation for objects without

using any temporal information.

2. Related Work

2.1. Singlemodality Methods

Monocular 3D object detection methods use a single

camera to estimate 3D bounding boxes for objects. Many

studies have been reported, taking different approaches to

extract the depth information from monocular images. 3D

RCNN [11] uses Fast R-CNN [9] with an additional head

and 3D projection. It also uses a collection of CAD models

to learn class-specific shape priors for objects. Deep3DBox

[17] regresses a set of 3D object properties using a convo-

lutional neural network first, then uses the geometric con-

straints of 2D bounding boxes to produce a 3D bounding

box for the object. CenterNet [34] takes a different ap-

proach and uses a keypoint detection network to find ob-

jects’ center point on the image. Other object properties

such as 3D dimension and location are obtained by regres-

sion using only the image features at the object’s center

point.
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Figure 2. Difference between actual and radial velocity. For target

A, velocity in the vehicle coordinate system and the radial velocity

are the same (vA). For target B on the other hand, radial velocity

(vr) as reported by the radar is different from the actual velocity

of the object (vB) in the vehicle coordinate system.

LiDARs have been widely used for 3D object detection

and tracking in autonomous driving applications in recent

years. The majority of LiDAR-based methods either use

3D voxels [12, 35] or 2D projections [13, 5, 29, 31] for

point cloud representation. Voxel-based methods are usu-

ally slow as a result of the voxel grid’s high dimensionality,

and projection-based methods might suffer from large vari-

ances in object shapes and sizes depending on the projec-

tion plane. PointRCNN [25] directly operates on raw point

clouds and generates 3D object proposals in a bottom-up

manner using point cloud segmentation. These proposals

are refined in the second stage to generate the final detec-

tion boxes.

2.2. Fusionbased Methods

Most existing sensor fusion methods focus on the Li-

DAR and camera fusion problem. MV3D [4] extracts fea-

tures from the front view and Bird’s Eye View (BEV) rep-

resentations of the LiDAR data, in addition to the RGB im-

age. The features obtained from the LiDAR’s BEV are then

used to generate 3D object proposals, and a deep fusion net-

work is used to combine features from each view and pre-

dict the object class and box orientations. PointFusion [28]

processes the image and LiDAR data using a CNN and a

PointNet model respectively, and then generate 3D object

proposals using the extracted features. Frustum PointNet

[23] directly operates on the raw point clouds obtained from

an RGB-D camera and uses the RGB image and a 2D object

detector to localize objects in the point cloud.

Few studies have focused on fusing radars with other

sensors for autonomous driving applications. RadarNet [30]

fuses radar and LiDAR data for 3D object detection. It

uses an early fusion mechanism to learn joint representa-

tions from the two sensors, and a late-fusion mechanism to

exploit radar’s radial velocity evidence and improve the es-

timated object velocity. In [3], Chadwick et al. project radar

detections to the image plane and use them to boost the ob-

ject detection accuracy for distant objects. In [20] authors

use radar detections to generate 3D object proposals first,

then project them to the image plane to perform joint 2D

object detection and depth estimation. CRF-Net [22] also

projects radar detections to the image plane, but represents

them as vertical lines where the pixel values correspond to

the depth of each detection point. The image data is then

augmented with the radar information and used in a convo-

lutional network to perform 2D object detection.

3. Preliminary

3.1. Radar Point Cloud

Radars are active sensors that transmit radio waves to

sense the environment and measure the reflected waves to

determine the location and velocity of objects. Automo-

tive radars usually report the detected objects as 2D points

in BEV, providing the azimuth angle and radial distance to

the object. For every detection, the radar also reports the

instantaneous velocity of the object in the radial direction.

This radial velocity does not necessarily match the object’s

actual velocity vector in it’s direction of movement. Fig. 2

illustrates the difference between the radial as reported by

the radar, and actual velocity of the object in the vehicle’s

coordinate system.

We represent each radar detection as a 3D point in the

egocentric coordinate system, and parameterize it as P =
(x, y, z, vx, vy) where (x, y, z) is the position and (vx, vy)
is the reported radial velocity of the object in the x and y

directions. The radial velocity is compensated by the ego

vehicle’s motion. For every scene, we aggregate 3 sweeps

of the radar point cloud (detections within the past 0.25 sec-

onds). The nuScenes dataset provides the calibration pa-

rameters needed for mapping the radar point clouds from

the radar coordinates system to the egocentric and camera

coordinate systems.

3.2. CenterNet

CenterNet [34] represents the state-of-the-art in 3D ob-

ject detection using single camera. It takes an image

I ∈ R
W×H×3 as input and generates a keypoint heatmap

Ŷ ∈ [0, 1]
W

R
×

H

R
×C as output where W and H are the im-

age width and height, R is the downsampling ratio and C is

the number of object categories. A prediction of Ŷx,y,c = 1
as the output indicates a detected object of class c centered

at position (x, y) on the image. The ground-truth heatmap

Y ∈ [0, 1]
W

R
×

H

R
×C is generated from the ground-truth 2D

bounding boxes using a Gaussian kernel. For each bound-

ing box center point pi ∈ R2 of class c in the image, a

Gaussian heatmap is generated on Y:,:,c. The final value of

Y for class c at position q ∈ R2 is defined as [34]:

Yqc = max
i

exp(−
(pi − q)2

2σ2

i

) (1)
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Figure 3. Frustum association. An object detected using the image features (left), generating the ROI frustum based on object’s 3D

bounding box (middle), and the BEV of the ROI frustum showing radar detections inside the frustum (right). δ is used to increase the

frustum size in the testing phase. d̂ is the ground truth depth in the training phase and the estimated object depth in the testing phase.

Figure 4. Expanding radar points to 3D pillars (top image). Di-

rectly mapping the pillars to the image and replacing with radar

depth information results in poor association with objects’ cen-

ter and many overlapping depth values (middle image). Frustum

association accurately maps the radar detections to the center of

objects and minimizes overlapping (bottom image). Radar detec-

tions are only associated to objects with a valid ground truth or

detection box, and only if all or part of the radar detection pillar is

inside the box. Frustum association also prevents associating radar

detections caused by background objects such as buildings to fore-

ground objects, as seen in the case of pedestrians on the right hand

side of the image.

where σi is a size-adaptive standard deviation, controlling

the size of the heatmap for every object based on its size.

A fully convolutional encode-decoder network is used to

predict Ŷ .

To generate 3D bounding boxes, separate network heads

are used to regress object’s depth, dimensions and orienta-

tion directly from the detected center points. Depth is calcu-

lated as an additional output channel D̂ ∈ [0, 1]
W

R
×

H

R after

applying the inverse sigmoidal transformation used in Eigen

et al. [6] to the original depth domain. The object dimen-

sions are directly regressed to their absolute values in meter

as three output channels Γ̂ ∈ [0, 1]
W

R
×

H

R
×3. Orientation is

encoded as two bins with 4 scalars in each bin, following

the orientation representation in Mousavian et al. [18]. For

each center point, a local offset is also predicted to compen-

sate for the discretization error caused by the output strides

in the backbone network [34].

Given the annotated objects p0, p1, ... in an image, the

training objective is defined as below based on the focal loss

[15]:

Lk =
1

N

∑

xyc







(1− Ŷxyc)
α log(Ŷxyc) Yxyc = 1

(1− Yxyc)
β(Ŷxyc)

α log(1− Ŷxyc) otherwise
,

where N is the number of objects, Y ∈ [0, 1]
W

R
×

H

R
×C is

the annotated objects’ ground-truth heatmap and α and β

are focal loss hyperparameters.

4. CenterFusion

In this section we present our approach to radar and cam-

era sensor fusion for 3D object detection. The overall Cen-

terFusion architecture is shown in Fig. 1. We adopt [34] as

our center-based object detection network to detect objects’

center points on the image plane, and regress to other ob-

ject properties such as 3D location, orientation and dimen-

sions. We propose a middle-fusion mechanism that asso-

ciates radar detections to their corresponding object’s center

point and exploits both radar and image features to improve

the preliminary detections by re-estimating their depth, ve-

locity, rotation and attributes.

The key in our fusion mechanism is accurate association

of radar detections to objects. The center point object detec-

tion network generates a heat map for every object category

in the image. The peaks in the heat map represent possi-

ble center points for objects, and the image features at those

locations are used to estimate other object properties. To

exploit the radar information in this setting, radar-based fea-

tures need to be mapped to the center of their corresponding

object on the image, which requires an accurate association

between the radar detections and objects in the scene.
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4.1. Center Point Detection

We adopt the CenterNet [34] detection network for gen-

erating preliminary detections on the image. The image fea-

tures are first extracted using a fully convolutional encoder-

decoder backbone network. We follow CenterNet [34]

and use a modified version of the Deep Layer Aggregation

(DLA) network [32] as the backbone. The extracted image

features are then used to predict object center points on the

image, as well as the object 2D size (width and height), cen-

ter offset, 3D dimensions, depth and rotation. These values

are predicted by the primary regression heads as shown in

Fig. 1. Each primary regression head consists of a 3 × 3
convolution layer with 256 channels and a 1 × 1 convolu-

tional layer to generate the desired output. This provides

an accurate 2D bounding box as well as a preliminary 3D

bounding box for every detected object in the scene.

4.2. Radar Association

The center point detection network only uses the image

features at the center of each object to regress to all other

object properties. To fully exploit radar data in this pro-

cess, we first need to associate the radar detections to their

corresponding object on the image plane. To accomplish

this, a naı̈ve approach would be mapping each radar detec-

tion point to the image plane and associating it to an object

if the point is mapped inside the 2D bounding box of that

object. This is not a very robust solution, as there is not a

one-to-one mapping between radar detections and objects

in the image; Many objects in the scene generate multiple

radar detections, and there are also radar detections that do

not correspond to any object. Additionally, because the z

dimension of the radar detection is not accurate (or does

not exist at all), the mapped radar detection might end up

outside the 2D bounding box of its corresponding object.

Finally, radar detections obtained from occluded objects

would map to the same general area in the image, which

makes differentiating them in the 2D image plane difficult,

if possible at all.

Frustum Association Mechanism: We develop a frus-

tum association method that uses the object’s 2D bounding

box as well as its estimated depth and size to create a 3D

Region of Interest (RoI) frustum for the object. Having an

accurate 2D bounding box for an object, we create a frus-

tum for that object as shown in Fig. 3. This significantly

narrows down the radar detections that need to be checked

for association, as any point outside this frustum can be ig-

nored. We then use the estimated object depth, dimension

and rotation to create a RoI around the object, to further

filter out radar detections that are not associated with this

object. If there are multiple radar detections inside this RoI,

we take the closest point as the radar detection correspond-

ing to this object.

In the training phase, we use the object’s 3D ground truth

bounding box to create a tight RoI frustum and associate

radar detections to the object. In the test phase, the RoI frus-

tum is calculated using the object’s estimated 3D bounding

box as explained before. In this case, we use a parameter

δ to control the size of the RoI frustum as shown in Fig.

3. This is to account for inaccuracy in the estimated depth

values, as the depth of the object at this stage is solely deter-

mined using the image-based features. Enlarging the frus-

tum using this parameter increases the chance of including

the corresponding radar detections inside the frustum even

if the estimated depth is slightly off. The value of δ should

be carefully selected, as a large RoI frustum can include

radar detections of nearby objects.

The RoI frustum approach makes associating overlap-

ping objects effortless, as objects are separated in the 3D

space and would have separate RoI frustums. It also elim-

inates the multi-detection association problem, as only the

closest radar detection inside the RoI frustum is associated

to the object. It does not, however, help with the inaccurate

z dimension problem, as radar detections might be outside

the ROI frustum of their corresponding object due to their

inaccurate height information.

Pillar Expansion: To address the inaccurate height in-

formation problem, we introduce a radar point cloud pre-

processing step called pillar expansion, where each radar

point is expanded to a fixed-size pillar, as illustrated in Fig.

4. Pillars create a better representation for the physical ob-

jects detected by the radar, as these detections are now as-

sociated with a dimension in the 3D space. Having this new

representation, we simply consider a radar detection to be

inside a frustum if all or part of its corresponding pillar is

inside the frustum, as shown in Fig. 1.

4.3. Radar Feature Extraction

After associating radar detections to their corresponding

objects, we use the depth and velocity of the radar detec-

tions to create complementary features for the image. Par-

ticularly, for every radar detection associated to an object,

we generate three heat map channels centered at and inside

the object’s 2D bounding box, as shown in Fig. 4. The

width and height of the heatmaps are proportional to the

object’s 2D bounding box, and are controlled by a parame-

ter α. The heatmap values are the normalized object depth

(d) and also the x and y components of the radial velocity

(vx and vy) in the egocentric coordinate system:

F
j
x,y,i =

1

Mi











fi |x− cjx| ≤ αwj and

|y − ciy| ≤ αhj

0 otherwise

,

where i ∈ 1, 2, 3 is the feature map channel, Mi is a

normalizing factor, fi is the feature value (d, vx or vy), cjx
and cjy are the x and y coordinates of the jth object’s center
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point on the image and wj and hj are the width and height

of the jth object’s 2D bounding box. If two objects have

overlapping heatmap areas, the one with a smaller depth

value dominates, as only the closest object is fully visible in

the image.

The generated heat maps are then concatenated to the

image features as extra channels. These features are used

as inputs to the secondary regression heads to recalculate

the object’s depth and rotation, as well as velocity and at-

tributes. The velocity regression head estimates the x and

y components of the object’s actual velocity in the vehicle

coordinate system. The attribute regression head estimates

different attributes for different object classes, such as mov-

ing or parked for the Car class and standing or sitting for the

Pedestrian class. The secondary regression heads consist of

three convolutional layers with 3 × 3 kernels followed by

a 1 × 1 convolutional layer to generate the desired output.

The extra convolutional layers compared to the primary re-

gression heads help with learning higher level features from

the radar feature maps. The last step is decoding the regres-

sion head results into 3D bounding boxes. The box decoder

block uses the estimated depth, velocity, rotation, and at-

tributes from the secondary regression heads, and takes the

other object properties from the primary heads.

5. Implementation Details

We use the pre-trained CenterNet [34] network with the

DLA [32] backbone as our object detection network. DLA

uses iterative deep aggregation layers to increase the resolu-

tion of feature maps. CenterNet compares its performance

using different backbone architectures, with the Hourglass

network [21] performing better than others. We choose to

use the DLA network as it takes significantly less time to

train while providing a reasonable performance.

We directly use the released CenterNet model that is

trained for 140 epochs on the nuScenes dataset. This model

by default does not provide velocity and attribute predic-

tions. We train the velocity and attribute heads for 30

epochs, and use the resulting model as our baseline. The

secondary regression heads in our network are added on top

of the CenterNet backbone network, and are trained using

the image and radar features for an additional 60 epochs

with a batch size of 26 on two Nvidia P5000 GPUs.

During both training and testing, we reduce the image

resolution from the original 1600×900 pixels to 800×450

pixels. Data augmentation is used during training, with ran-

dom right-left flipping (with a probability of 0.5) and ran-

dom shifting (from 0 to 20 percent of image size). The same

augmentations are also applied to the radar point cloud in

reference to the camera coordinate system. We do not ap-

ply any scaling augmentation as it changes the 3D measure-

ments. At testing time, we only use flip test augmentation

where an image and its flipped version are fed into the net-

work and the average of the network outputs is used for

decoding the 3D bounding boxes. We do not use the multi-

scale test augmentation as used by CenterNet. The pillar

size is set to [0.2, 0.2, 1.5] meters in the [x, y, z] directions

and δ is set to increase the length of the RoI frustum by 20%

in the radial direction at test time.

We use the L1 loss for most of the regression heads, with

the exception of the center point heat map head which uses

the focal loss and the attributes regression head that uses the

Binary Cross Entropy (BCE) loss.

6. Results

We compare our radar and camera fusion network with

the state-of-the-art camera-based models on the nuScenes

benchmark, and also a LIDAR based method. Table 1

shows the results on both test and validation splits of the

nuScenes dataset. We compare with OFT [24], MonoDIS

[26] and CenterNet [34] which are camera-based 3D ob-

ject detection networks, as well as InfoFocus [27] which

is a LIDAR-based method. As seen in Table 1, CenterFu-

sion outperforms all other methods in the nuScenes NDS

score, which is a weighted sum of the mAP and the error

metrics. On the test dataset, CenterFusion shows a 12.25%

and 16.9% relative increase in the NDS score compared to

CenterNet and MonoDIS respectively. The LIDAR-based

method InfoFocus shows a better performance in the mAP

score compared to other methods, but is significantly out-

performed by CenterFusion in the orientation, velocity and

attribute error metrics. While CenterNet with the Hourglass

[21] backbone network results in a better mAP score com-

pared to CenterFusion (1.2% difference) on the test split, the

results on the validation split show that CenterFusion out-

performs CenterNet by 2.6% when both networks use the

same DLA [32] backbone. The validation set results also

show CenterFusion improving CenterNet in all the other

metrics. CenterFusion shows an absolute gain of 38.1% and

62.1% relative increase in the NDS and velocity error met-

rics compared to CenterNet, which demonstrates the effec-

tiveness of using radar features.

Table 2 compares the per-class mAP results for both test

and validation splits. While CenterNet with an Hourglass

backbone has a higher mAP than CenterFusion for most

classes in the test set, it is outperformed by CenterFusion

on the validation set where the DLA backbone is used for

both methods. The most improved classes on the validation

set are the motorcycle and car with 5.6% and 4.0% absolute

mAP increase respectively.

Fig. 5 demonstrates the 3D object detection results in

both camera and BEV. It shows the detection results from

CenterFusion (row 1 & 2) and CenterNet (row 3 & 4) for

4 different scenes. The radar point clouds are also shown

in the CenterFusion BEV results. Compared to CenterNet,

the results from CenterFusion show a better fit for 3D boxes
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Table 1. Performance comparison for 3D object detection on nuScenes dataset. mATE, mASE, mAOE, mAVE and mAAE stand for average

translation, scale, orientation, velocity and attribute errors respectively. ↑ indicates that higher is better and ↓ indicates that lower is better.

”C”, ”R” and ”L” specify camera, radar and LIDAR modalities respectively.

Modality Error ↓
Method Dataset C R L NDS ↑ mAP ↑ mATE mASE mAOE mAVE mAAE

InfoFocus [27] test X 0.395 0.395 0.363 0.265 1.132 1.000 0.395

OFT [24] test X 0.212 0.126 0.820 0.360 0.850 1.730 0.480

MonoDIS [26] test X 0.384 0.304 0.738 0.263 0.546 1.533 0.134

CenterNet (HGLS) [34] test X 0.400 0.338 0.658 0.255 0.629 1.629 0.142

Ours (DLA) test X X 0.449 0.326 0.631 0.261 0.516 0.614 0.115

CenterNet (DLA) [34] val X 0.328 0.306 0.716 0.264 0.609 1.426 0.658

Ours (DLA) val X X 0.453 0.332 0.649 0.263 0.535 0.540 0.142

Table 2. Per-class performance comparison for 3D object detection on nuScenes dataset.

Modality mAP ↑
Method Dataset C R L Car Truck Bus Trailer Const. Pedest. Motor. Bicycle Traff. Barrier

InfoFocus [27] test X 0.779 0.314 0.448 0.373 0.107 0.634 0.290 0.061 0.465 0.478

MonoDIS [26] test X 0.478 0.220 0.188 0.176 0.074 0.370 0.290 0.245 0.487 0.511

CenterNet (HGLS) [34] test X 0.536 0.270 0.248 0.251 0.086 0.375 0.291 0.207 0.583 0.533

Ours (DLA) test X X 0.509 0.258 0.234 0.235 0.077 0.370 0.314 0.201 0.575 0.484

CenterNet (DLA) [34] val X 0.484 0.231 0.340 0.131 0.035 0.377 0.249 0.234 0.550 0.456

Ours (DLA) val X X 0.524 0.265 0.362 0.154 0.055 0.389 0.305 0.229 0.563 0.470

in most cases, especially objects at a larger distance, such

as the far vehicle in the second scene. Additionally, the ve-

locity vectors estimated by CenterFusion show a significant

improvement compared to the CenterNet results, as seen in

the second and third scenes.

7. Ablation Study

We validate the effectiveness of our fusion approach by

conducting an ablation study on the nuScenes validation set.

We use the CenterNet model as our baseline, and study the

effectiveness of the pillar expansion, frustum association

and flip testing on the detection results. Table 3 shows the

overall detection results of the ablation study.

In the first experiment, we only apply pillar expansion

to the radar point clouds, and map the 3D pillars to the im-

age plane and obtain their equivalent 2D bounding boxes.

These boxes are then filled with the depth and velocity val-

ues of their corresponding radar detections and used as the

radar feature maps, as shown in Fig. 4. According to Table

3, this simple association method results in a 15.4% relative

improvement on the NDS score and 1.0% absolute improve-

ment on the mAP compared to the baseline.

In the next experiment we only use the frustum associa-

tion method by directly applying it on the radar point clouds

without converting them to pillars first. This improves the

NDS score by 25.9% relatively and mAP by 2.0%. Ap-

plying both pillar expansion and frustum association results

in a relative 35.5% and absolute 4.3% improvement on the

NDS and mAP scores respectively. Flip testing adds an-

other 3.3% improvement on the NDS score and 3.9% on the

mAP, resulting in a total of 37.8% and 8.4% improvement

on NDS and mAP compared to the baseline method.

Table 4 shows the per-class contribution of each step on

the mAP. According to the results, both pillar expansion and

frustum association steps have contributed to the improve-

ment of mAP in most object classes. The only class that

has not improved from the baseline is the bicycle class, in

which the CenterNet mAP score is better than CenterFusion

by 0.5%.

8. Conclusion

In summary, we proposed a new radar and camera fusion

algorithm called CenterFusion, to exploit radar information

for robust 3D object detection. CenterFusion accurately as-

sociates radar detections to objects on the image using a

frustum-based association method, and creates radar-based

feature maps to complement the image features in a middle-

fusion approach. Our frustum association method uses pre-

liminary detection results to generate a RoI frustum around

objects in 3D space, and maps the radar detection to the

center of objects on the image. We also used a pillar ex-

pansion method to compensate for the inaccuracy in radar

detections’ height information, by converting radar points

to fixed-size pillars in the 3D space. We evaluated our pro-

posed method on the challenging nuScenes 3D detection

benchmark, where CenterFusion outperformed the state-of-

the-art camera-based object detection methods.
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Table 3. Overall ablation study on nuScenes validation set. Improvement percentages in each row are relative to the baseline method. (PE:

Pillar Expansion, FA: Frustum Association, FT: Flip Test)

Method Cam Rad PE FA FT NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Baseline X - - - - 0.328 0.306 0.716 0.264 0.609 1.426 0.658

Ours X X X - - +15.4% +1.0% -2.0% +1.1% -4.4% -13.1% -68.6%

Ours X X - X - +25.9% +2.0% -2.8% +1.0% -7.4% -48.1% -75.9%

Ours X X X X - +34.5% +4.3% -5.3% +1.1% -10.0% -61.9% -78.0%

Ours X X X X X +37.8% +8.4% -9.4% -0.5% -11.6% -62.0% -78.3%

Table 4. Class-based ablation study results on nuScenes validation set.

Method Cam Rad PE FA FT Car Truck Bus Trailer Const. Pedest. Motor. Bicycle Traff. Barrier

Baseline X - - - - 48.4 23.1 34.0 13.1 3.5 37.7 24.9 23.4 55.0 45.6

Ours X X X - - +0.6 +0.7 -2.1 +0.9 +0.6 +0.9 +1.9 -2.5 +0.1 +0.8

Ours X X - X - +1.0 +1.0 -2.1 +0.9 +0.9 0.0 +2.1 -1.9 +0.2 +0.8

Ours X X X X - +2.8 +2.1 -1.2 +1.4 +1.1 +0.1 +3.8 -1.1 +0.4 +0.8

Ours X X X X X +4.1 +3.4 +2.7 +1.8 +1.8 +1.2 +5.5 -0.7 +1.3 +1.5

Figure 5. Qualitative results from CenterFusion (row 1 & 2) and CenterNet (row 3 & 4) in camera view and BEV. In the BEV plots,

detection boxes are shown in cyan and ground truth boxes in red. The radar point cloud is shown in green. Red and blue arrows on objects

show the ground truth and predicted velocity vectors respectively.
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jects as points. arXiv preprint arXiv:1904.07850, 2019.

[35] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End

Learning for Point Cloud Based 3D Object Detection.

arXiv:1711.06396 [cs], Nov. 2017.

1536


