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Centerline velocity decay of a circular jet in a counterflowing stream
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We use an advection hypothesis to analyze the decay of centerline velocity of a circular jet issuing

into a counterflowing stream. Working in the Lagrangian frame, we follow the locations and

velocity gradients of jet fluid particles along the jet central axis while the particles are being

advected backwards by the counterflow. The spatial velocity gradient along the jet centerline is thus

obtained and subsequently integrated to describe the spatial decay of axial velocities. Laser-doppler

velocity measurements are performed in the laboratory and the data are well predicted by our

analytical expression of centerline velocity decay. Looking from another view, our treatment

supports that the effect of an external axial flow stream on the jet flow field can be represented by

a certain degree of stretching or contracting of the jet in the axial direction. © 1998 American

Institute of Physics. @S1070-6631~98!01503-7#

I. INTRODUCTION

The investigation of jets in a stagnant ambient and in a

moving current is of practical importance in many branches

of engineering and science. The discharge of sewage and

effluents into the sea or an estuary is one typical application

in environmental engineering. The mean behavior of a circu-

lar jet in a stagnant ambient is quite well understood. Assum-

ing self-similarity in the zone of established flow down-

stream of the potential core, the integral model shows that

the centerline velocity exhibits a x21 dependence while the

jet width varies linearly with x ~e.g., Rajaratnam,1 Liepmann

and Laufer2!. For precision, the axial coordinate x starts from

a virtual origin which is upstream of the jet exit by a fraction

of the jet exit diameter. The same analysis has been applied

to a circular jet in a coflowing stream and the asymptotic

solutions show that in a weak coflowing stream, the jet ex-

hibits the same x dependence as the simple jet while in a

strong coflow, the centerline velocity and the jet width tend

to follow a x22/3 and x1/3 dependence, respectively.1 Avail-

able experimental data of jet in a coflow were reviewed by

Woods.3 Extensive experimental studies of a jet in a cross

flow were also reported by many authors, e.g., Andrepoulos

and Rodi.4 However, there has not been an analytical method

to describe the centerline velocity of a jet in a counterflowing

stream, that is, a circular jet which is issuing into the same

ambient fluid having a uniform flow in the opposing direc-

tion as the jet.

Experimental observations show that in a counterflow,

the jet penetrates an axial distance of lp and is then deflected

backwards.5 Along the penetrating distance, the jet centerline

velocity is expected to drop more rapidly than in a nonflow-

ing ambient and become stagnant at lp . This penetration

distance depends on the jet-to-current velocity ratio and a

linear dependence was suggested by Sekunkov6 and

Rajaratnam1 from dimensional considerations. Recently,

Yoda and Fiedler7 have used laser-induced fluorescence

~LIF! to study the structure and concentration field of the

counterflowing jet. They also found that the penetration dis-

tance increases with the velocity ratio.

In this paper, we attempt to analyze the centerline veloc-

ity decay in the counterflowing jet with a Lagrangian treat-

ment. By relative motion, a jet in counterflow is physically

equivalent to a towing jet in stagnant ambient. In this way,

we first solve for the shorter potential core length of the

counterflowing jet. We then consider the kinematics of a

fluid element issued from the end of the potential core into

the zone of established flow where fluid particles traveling

along the jet centerline still tend to have their velocities

dropping with x21. However, the velocity decay is modified

by the presence of the counterflow. The counterflow is pro-

posed to exert an advection effect on the fluid particles, thus

compressing distances between successive particles. Using

this advection hypothesis, we can define the velocities and

axial locations of two successive fluid particles which the jet

issues along its central axis in the zone of established flow.

The spatial derivative of particle velocity is thus obtained

and is integrated to give the centerline velocity decay.

II. FLOW ESTABLISHMENT IN THE POTENTIAL CORE

A jet flow field is conveniently divided into the potential

core region and the zone of established flow. In a stagnant

ambient, many studies suggested that the length of the po-

tential core, l , is independent of jet exit velocity and has a

value of 6.2 D.8 For a jet with exit velocity U j in a counter-

flow U0 , we can observe the flow with a frame of reference

moving with the counterflow. Now we have the jet issuing at

an exit velocity (U j1U0) into a stagnant ambient and the

nozzle is moving in the jet exit direction with U0 . Initial

instabilities in the shear layer and the subsequent vortex rol-

lup lead to the formation of vortex rings. The rings grow in

the shear layer by entrainment and pairing as they travel

downstream until their size becomes comparable to the ra-

dius of the jet. Then they break down at the end of the

potential core as reported by Liepmann et al.9 In the shear
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layer, the vortex rings can be assumed to travel with a ve-

locity U
v
5(U j1U0)/2 ~see Fig. 1!. A vortex ring then takes

a time t5l/U
v

to reach the end of the potential core from the

nozzle. In this time interval, the nozzle has advanced forward

by a displacement U0t , which is equal to lU0 /U
v

. Thus, the

potential core length lc as it appeared to an observer moving

with the nozzle is reduced to

lc5l2lU0 /U
v
5l~U j2U0!/~U j1U0!. ~1!

The shortening of the potential core of the jet in the presence

of a counterflow can be argued to be a consequence of the

interaction of forward jet momentum with the negative mo-

mentum of the counterflow, an issue which will be discussed

next.

For a round jet in a stagnant ambient, length scale analy-

sis and experimental data have established that downstream

of the potential core, the centerline velocity Uc in the jet

decays with an x21 dependence.8 The following expression

of Uc , in terms of the jet momentum flux M , applies in the

zone of the established flow:

Uc5BM 1/2/x , x.l . ~2!

The constant B has been found to have a value 7.0. In a

simple jet, momentum flux is conserved and its value is

equal to p/4D2U j
2. Since the centerline jet starts to drop

from U j at the end of the potential core, we choose the

following expression for Uc in terms of the potential core

length l by substituting M5p/4D2U j
2 into Eq. ~2!:

Uc5lU j /x , x.l , ~3!

where l56.2 D is the potential core length in stagnant am-

bient. Equations ~2! and ~3! are equivalent, with B57.0 and

l56.2 D.

In the presence of a counterflow, however, we cannot

use Eq. ~3! with the shorter potential core length lc in Eq.

~1!. The effect of the counterflow on the momentum flux

needs to be looked at and Eq. ~2! modified accordingly. Sim-

ply stated, the jet in a counterflow entrains fluids which car-

ries negative momentum and as a result, the forward momen-

tum flux M
*

, at the end of the potential core is smaller than

M .

In the zone of flow establishment, we model the growth

of jet shear layer by simple toroidal vortex rings which grow

linearly in size ~Fig. 1!. Forced vortex flow up to the vortex

radius is assumed. For a round jet in a stagnant ambient, the

peripheral velocity induced by the vortex is 1
2U j . At the end

of the potential core, the vortex ring has grown to a size

which extends the entire jet half-width there. Taking the jet

half-width as kD there, the angular velocity of the vortex at

the end of the potential core is given by the peripheral ve-

locity divided by the vortex radius,

v52
1
2U j / 1

2kD52U j /kD ,

where the negative sign indicates counterclockwise rotation.

The vortex ring is located with its center located at kD/2

from the jet center line, so that the circulation velocity varies

as with the radial coordinate as

U~r !52U j~r2kD/2!/kD , r<kD .

In the shear layer, the vortex has been traveling at a speed
1
2U j so that at the jet center line, the forward velocity is U j .

Adding a uniform velocity 1
2U j to the circular velocity field,

the radial velocity profile of the jet at the end of potential

core is

U~r !5~12r/kD !U j , r<kD . ~4!

The momentum flux at the end of the potential core is ob-

tained as

M5E
0

kD

@U j~12r/kD !#22prdr5~p/6 !U j
2~kD !2. ~5!

Now, we consider a counterflowing jet by taking a jet with

exit velocity (U j1U0) in stagnant ambient but with the

nozzle moving U0 forward. Thus, the forward momentum

flux at the end of the potential core, relative to the moving

nozzle, is

M
*

5E
0

r8
$@U j1U0!~12r/kD !2U0#%22prdr , ~6!

where r85kD(U j /(U j1U0)) is the radial position where

the velocity is U0 in Fig. 1~b!. Integrating

M
*

5~p/6 !U j
2@kDU j /~U j1U0!#2, ~7!

which is smaller than the forward momentum flux in Eq. ~5!
for a simple jet,

M
*

5@U j /~U j1U0!#2M .

Adopting a similar form as Eq. ~2! based on length scale

analysis, the centerline velocity decays in the zone of estab-

lished flow as

FIG. 1. Toroidal vortex rings modeled in the jet shear layer in the region of

flow establishment: ~a! in stagnant ambient; ~b! in a counterflow.
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Uc5BM
*
1/2/x5B@U j /~U j1U0!#M 1/2/x . ~8!

The expression can be simplified to a form similar to Eq. ~3!:

Uc5lMU j /x . ~9!

This characteristic length lM is defined by momentum con-

siderations. In order for Eq. ~9! to be equivalent the to Eq.

~8!, and noting that BM 1/2
5lU j from Eq. ~3!, the character-

istics length lM is related to the simple jet potential core

length by

lM5lU j /~U j1U0!.

It is noted that this length lM from momentum consider-

ation is longer than the counterflowing jet potential core

length lc as derived in Eq. ~1!. This suggests that for x21

decay, the axial coordinate x should start from an origin

further shifted by a position d
v

given by

d
v
5lM2lc5U0 /~U j1U0!l .

The centerline velocity decay expression in the zone of the

established flow of a jet in counterflow, Eq. ~9!, thus be-

comes

Uc5lMU j /x* for x.lc , ~10!

where

x*5x1d
v

. ~11!

In order to simplify the symbolic notation, the symbol x is

still adopted instead of x* in subsequent equations.

III. LAGRANGIAN FORMULATION IN THE ZONE OF
ESTABLISHED FLOW

In Sec. II, we established equations to account for the

effect of counterflow on the establishment of jet flow up to

the end of the potential core and the initial centerline veloc-

ity decay beyond the potential core. In counterflow, we

model a fluid particle issued along the jet centerline that will

first travel with a velocity U j but its velocity will decay as a

consequence of two effects. The first effect is due to normal

jet spreading so that the velocity tends to decay with x21 as

if in a stagnant ambient. The presence of the counterflow

exerts another effect which tends to advect the fluid particle

backwards with U0 so that the fluid particle will be pushed

backwards with a finite displacement. However, as it travels

downstream, it cannot be advected further backwards due to

the fact that successive fluid particles are being continuously

issued into the zone of established flow; momentum ex-

change will take place at the same time, resulting in a drop in

the particle velocity. With this hypothesis, we shall follow

the Lagrangian motion of the successive particles along the

jet centerline and work out the expression of the velocity

decay. It should be noted that in real situations, there exists a

transition region between the potential core and the zone of

established flow where the jet centerline velocity changes

smoothly from the jet exit velocity to the x21 decay in an

asymptotic manner.

Consider a fluid particle A, leaving the end of potential

core at time t50, and traveling afterwards with a velocity Uc

as given by Eq. ~10!. Accordingly, the distance which it has

traveled over any interval dt is given by

dx5Ucdt . ~12!

Now let us consider another fluid particle B which follows

particle A and leaves the end of potential core at time t

5dt so that it is now at a distance dx from A. From the

velocity–space equation of Eq. ~10! of a jet in a stagnant

ambient, the spatial gradient of jet centerline velocity is ob-

tained by differentiating Eq. ~10! as

dUc /dx52U jlMx22. ~13!

Thus, the velocity of particle A differs from that of B by

dU52U jlMx22dx . ~14!

In the time interval dt , A has traveled a distance dx as given

by Eq. ~12!, thus the spatial separation between particles A

and B is

xA2xB5U jlM /xdt .

Combining the above two equations ~with xA2xB5dx!, we

have

dU52~U jlM !2x23dt , ~15!

where x is taken as xB . However, due to the advection effect

suggested above, particle A is advected a distance U0dt

backward by the counterflow. Particle B, on the other hand,

is just at the end of the potential core and has not entered the

zone of established flow, thus it is not yet being affected by

the advection. Therefore, as shown in Fig. 2, their spatial

separation is reduced to

dx5xA2xB5~U jlM /xB2U0!dt . ~16!

Combining Eqs. ~15! and ~16!, we can obtain an expression

describing the spatial variation of particle velocity as

dU/dx5F~x !52U jlM /x2
2U0 /x1U0

2/~U0x2U jlM !.

~17!

Equation ~17! can only be applied up to xB at this point.

@Note that the velocity gradient of AB is chosen to be repre-

sented by B, the rear edge of the element AB, i.e., F(xB)#,
but we will now show that the function F is valid up to the

penetration distance.

We now treat AB as a single fluid element and trace it

downstream to a new position after some time dt such that B

will reach the previous location of A. Mathematically,

xB85xA , ~18!

where xB8 is the position of B at time t. According to the

hypothesis we suggest, the element AB decays under the 1/x

law ~normal jet decay in stagnant ambient! and undergoes an

advection. However, it cannot be advected further backwards

due to the fact that new elements behind AB are discharged

continuously. This prevents element AB from moving back-

wards. As a result of momentum exchange with neighboring

fluid elements, the velocity of the AB drops, say by dn, so as

to achieve continuity of velocity. Thus A will follow the
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velocity–space curve below as shown in Fig. 3 ~note that the

term U0dt is due to A advected backwards, so the velocity

space curve is shifted back by the value of U0dt!,

UA5U jlM /~xA1U0dt !2dn5K/~xA1U0dt !2dn ,
~19!

where K is used for U jlM here and in the coming equations

for simplicity. Similarly, B will travel with a velocity which

varies with distance as

UB5K/xB2dn . ~20!

@Detailed arguments of particles A and B following Eqs. ~19!
and ~20!, respectively, are given in the Appendix.#

At the new time t, which is dt from the previous time

dt , the new position xA8 , xB8 will be

xA8 5xA1UAdt5xA1@K/~xA1U0dt !2dn#dt , ~21!

xB85xB1UBdt5xB1~K/xB2dn !dt . ~22!

The new separation between particles A and B becomes

xA8 2xB85xA2xB1@K/~xA1U0dt !2K/xB#dt .

Using ~16!, this reduces to

xA8 2xB85~K/xB2U0!dt1@K/~xA1U0dt !2K/xB#dt

5@K/~xA1U0dt !2U0#dt .

As xA@U0dt ,

xA8 2xB85~K/xA2U0!dt .

From Eq. ~18!,

xA8 2xB85~K/xB82U0!dt . ~23!

The new difference in velocities of particles A and B is

dU5@K/~xA8 1U0dt !2dn#2~K/xB82dn !.

From Eq. ~23!,

xA8 5xB81~K/xB82U0!dt .

Thus,

FIG. 2. Backward advection of a fluid particle issued from the end of potential core.

FIG. 3. Interaction of the fluid element at the next time step after being issued from the end of potential core.
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dU5K/@xB81~K/xB82U0!dt1U0dt#2K/xB8 .

Assuming dt'dt , we have

dU52~K/xB8 !dt/@xB81~K/xB8 !dt#~xB8 !.

As xB8@(K/xB8 )dt ,

dU52dt/xB8
3. ~24!

Now the velocity gradient is obtained from Eqs. ~23! and

~24! as

dU/dx5F~xB8 !52U jlM /xB8
2
2U0 /xB81U0

2/~U0xB82U jlM !.

~25!

Thus, the expression of F(x) for the velocity gradient has

been shown to be valid at the new time dt when the fluid

element AB is at xB8 . A similar argument can be applied to a

subsequent time step to verify that the expression F(x) is

valid at any position along the jet centerline. The spatial

variation of centerline velocity can be found by integration:

Uc5E ~dU/dx !dx

5E @2U jlM /x2
2U0 /x1U0

2/~U0x2U jlM !#dx

5U jlM /x1U0 log~U jlM /x2U0!1C . ~26!

The constant C can be found with the initial condition Uc

5U j at x5lM as

C52U0 log~U j2U0!.

Thus the centerline velocity decay is obtained in terms of

U j , U0 , and the actual x* as given by Eq. ~11!:

Uc5U jlM /x*1U0 log~U jlM /x*2U0!

2U0 log~U j2U0!, x*.lM . ~27!

The penetration distance lp of the counterflowing jet is de-

fined as the point where the centerline velocity decays to

zero. The value of lp can be found from Eq. ~27!. Figure 4~a!
shows the centerline velocity decay curves predicted by this

equation for a number of velocity ratios U j /U0 . For the

lower three velocity ratios, experimental data of penetration

distances are available from Yoda and Fiedler,7 while experi-

ments on counterflowing jets at the other five velocity ratios

U j /U053.09, 5.03, 7.5, 10, and 15 are carried out in the

present study.

In order to examine whether there is a simple power law

of decay for the axial mean velocities, the predicted center-

line velocity decay curve are replotted in the log–log form in

Fig. 4~b!. At all velocity ratios, the velocities do not decay

with a constant exponent. Toward the penetration length, the

exponent of decay, if a power law is assumed, keeps on

increasing. Unlike a coflowing jet, in which the velocity de-

cay asymptotes to an x22/3 power law,2 the data here do not

follow any particular power decay law. The rate of decay

depends on the jet-to-current ratio; the smaller the ratio, the

more rapid is the decay. However, the data just downstream

of the potential core tend to follow an x21 law. This obser-

vation is more distinct at higher jet-to-current ratios where

the effect of the counterflowing current is weaker.

In Sec. IV, we shall describe our experimental results at

the higher velocity ratios.

IV. EXPERIMENT

We carried out some experiments in a

10 m30.45 m30.3 m wide laboratory flume. A counterflow-

ing jet was formed by issuing water from a circular nozzle

against the main flow stream of the flume. The horizontal

nozzle had an exit diameter of D510 mm and was fed from

a constant head tank. The nozzle was located horizontally at

the center of the flume and at the middepth of the main flow.

The jet velocities U j ranged from 3 to 15 times the magni-

tude of the counterflowing current. The jet Reynolds number

thus ranged from 3000 to 15 000. The ambient flow velocity

in the flume was kept constant at a fixed value of U0

510 cm/s, while the jet exit velocity U j was adjusted to give

a range of jet-to-current velocity ratios U j /U0 . To investi-

gate the effect of the finite width between the walls of the

flume on the spreading of the jet at higher velocity ratios,

experiments were repeated at U j /U057.5 and 15 with a

smaller jet nozzle of diameter 5.3 mm.

Velocities along the jet central axis were measured with

a DANTEC two-color fiber-optic laser-Doppler anemometer

~LDA!. Measurements were performed in backscatter mode

with a 3 W argon-ion laser and two counterprocessors

~DANTEC 55L90a! with frequency shift. The flow is seeded

using pollycrystalline powder which is neutrally buoyant

with a nominal diameter 10 mm.

Figure 5 shows the measurement data of axial mean ve-

locities U at the same five velocity ratios as in Fig. 4. The

FIG. 4. Prediction of centerline velocity decay of the jet in a counterflow.
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velocity decay curves as predicted by Eq. ~27! are also plot-

ted in Fig. 5. We can observe that our analytical model pre-

dicts the velocity decay satisfactorily at all velocity ratios

except at the start of the zone of established flow. These

discrepancies are expected because in this transition region,

the flow has not yet fully reached self-similarity. Beyond the

penetration distance, LDA measurements have been made at

locations as far downstream as where Uc becomes 0.8U0 in

the counterflow direction. The model prediction still agrees

well with the data there. In our model, we have assumed that

the 1/x decay of the centerline velocity extends to infinite

distance but it must be recognized that when the centerline

velocity approaches the counterflow velocity, the effect of

the counterflow becomes dominant over the jet flow and the

analysis will not be valid. Thus Eq. ~27! should only be

applied after the potential core length and before the position

where the centerline velocity becomes the ambient flow ve-

locity. The lateral mean velocities V were also measured but

are not shown because they all have very small values near

zero, which serve to show that the LDA measurements had

been performed on the jet central axis. A number of velocity

profiles across traverse sections of the jet have also been

measured and the results, not shown here, support the posi-

tion that the jet central axis chosen in the laboratory coordi-

nate falls very close to the actual jet central axis.

Previously, we have carried out laser-induced fluores-

cence ~LIF! measurements on the penetration of the circular

jet into the counterflow. The details have been reported in

Lam and Chan.5 Essentially, we marked the jet with a fluo-

rescent dye Rhodamine-G and illuminated a longitudinal sec-

tion of the jet with a laser sheet. Then we performed en-

semble averaging on the fluorescence levels over a large

number of flow images to obtain the time-averaged pattern of

jet penetration and spreading. An example of an averaged

LIF picture is shown in Fig. 6. Penetration distances at dif-

ferent velocity ratios have been measured from these LIF

pictures and are reproduced here in Fig. 7. In the present

investigation, we repeated LIF measurements at U j /U0

57.5 and 15 using a smaller nozzle with D55.3 mm, with

an aim to minimize the effect of the finite width of the labo-

ratory flume. As shown in Fig. 7, these penetration distance

data are in line with our previous main set of data. In the

present model, the penetration distance can be obtained from

Eq. ~27! as the distance at which the centerline velocity de-

cays to zero. The solid line in Fig. 7 shows the variation of

lp /D with velocity ratios, as predicted by our model. Also

shown is the empirical linear relationship lp /D52.4U j /U0

or 2.7U j /U0 , which was suggested by early studies in

Rajaratnam.1 It is evident that the LIF data lie more closely

on our prediction.

Experimental data of penetration distance at velocity ra-

tios as low as 1.3 up to 10 are available from Yoda and

Fiedler.7 Their data are included in Fig. 7. For the higher

ratios, the data agree with our model as well as with the

linear relationship lp /D52.7U j /U0 . For U j /U0 below 2, it

is obvious that the experimental data agree better with our

model. There has been another investigation by Morgan

et al.10 on the penetration of a turbulent jet into a counter-

flowing turbulent pipe flow which covered very high values

of velocity ratios. They suggested that based on the jet mo-

mentum, there exist two flow regimes in which the penetra-

tion distances vary with velocity ratios in a different manner.

In the high jet momentum regime, the jet is confined by the

FIG. 5. Comparison of the predicted centerline velocity decay with experi-

mental results.

FIG. 6. Ensemble averaged LIF picture. U j /U055.

FIG. 7. Dependence of penetration distance on jet-to-current velocity

ratio:—present prediction; h, LIF results from Lam and Chan ~Ref. 5!; n,

LIF results from Yoda and Fiedler ~Ref. 7!; m, LIF results with nozzle

diameter 5.3 mm.
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main counterflowing stream and the enclosing pipe to a re-

markable degree. It was suggested that the flow is in the low

jet momentum regime if the ratio Z between the momentum

flux of the jet and that of the main counterflowing stream is

below 0.25. Hence, we choose here to use their data of pen-

etration distances in the low jet momentum regime at

U j /U0,40 for their highest value of pipe-to-jet diameter

ratio of 83. As shown in Fig. 8, their experimental values of

lp /D at U j /U0.15 are also well predicted by our model. If

we consider the momentum of the counterflowing stream in

our laboratory flume, the momentum ratio Z is below 0.15

even at our highest velocity ratio of 15. Thus, our counter-

flowing jet experiments are well in the low jet momentum

regime. Actually, our model is not expected to predict the jet

penetration in the presence of significant confinement, the

centerline velocity in a simple circular jet has been shown to

drop in a manner other than the 1/x decay law.1

V. DISCUSSION

We base our treatment of the centerline velocity decay

of the axisymmetric jet in a counterflow on two physical

processes. We assumed that fluid elements are discharged as

if into a stagnant ambient and there is an advection effect

from the counterflow on the fluid elements. The first fluid

element leaving at the end of the potential core has a greater

velocity gradient than in a stagnant ambient. It is primarily

because its spatial width is reduced by the advection. With

these two effects, the physical model proposed predicts very

well the decay of mean centreline velocities.

We have not looked into the turbulence nature of the

counterflowing jets and thus cannot discuss whether there are

other flow interaction effects between the jet and the coun-

terflow. However, the LIF results of Lam and Chan5 sug-

gested that the spreading of the circular jet is enhanced by

the counterflow and a linear instability analysis of Lam

et al.11 suggested that the counterflow leads to selected am-

plification of jet shear-layer instabilities at lower frequencies

and at the axisymmetric azimuthal mode. We can apply the

simple assumption in this paper to explain these observa-

tions. Given that a section of the effluent jet fluid spreads in

the same way as in the same jet after it leaves the jet exit, the

countercurrent will compress the spatial coordinates so that

when one observes successive fluid sections spreading while

moving with the jet nozzle, one will see a larger spreading

rate than in the simple jet. The instability of the counterflow-

ing jet can similarly be explained by taking the effect of the

counterflow as contracting the jet in the axial direction.

Wavelengths of the most amplified modes are contracted so

that the selected instabilities occur at lower frequencies, and

higher order azimuthal modes are contracted to approximate

the axisymmetric mode.

For a circular jet in a coflow, Michalke and Hermann12

have explored the idea of eliminating the external flow de-

pendence of the jet flow by applying a stretching factor to the

axial direction. A constant stretching factor was proposed

and the resulting similarity was only approximate with re-

spect to the instabilities which were taken to represent the

large-scale turbulence structures of the jet. Our present treat-

ment is consistent with the argument that the jet flow field is

stretched or contracted in the axial direction by the external

coflow or counterflow and that it may be possible to repre-

sent the effect of the external flow by a stretching or con-

tracting of the axial coordinate. However, our treatment

shows that it is not possible to apply a simple stretching

factor of a constant value. Simple stretching or contracting

occurs in the Lagrangian frame of reference on the fluid par-

ticles. When translating the flow into the Eulerian frame, the

stretching effect becomes dependent on the local velocity

and the integrated distance of travel.

APPENDIX

In our analysis, the velocity of fluid particle such as

particle A is dropped by dn as a result of momentum ex-

change with neighboring fluid elements. The situation is very

similar to that described as follows. Consider a control vol-

ume with a width dx at a position x0 of a jet in a stagnant

ambient. If we impose a velocity 2dn to it, the velocity

gradient remains as dU/dx52K/x2 ~where K5U jlM!. The

velocities at x.x0 can be obtained by integrating the veloc-

ity gradient as

E
K/x02dv

U

dU5E
x0

x

2K/x2dx ,

U~x !5K/x2dv .

Thus, the velocity at the centerline will follow K/x2dn .
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