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Abstract

Finding the source of forged Internet Protocol (IP)
datagrams in a large, high-speed network is diffi-
cult due to the design of the IP protocol and the
lack of sufficient capability in most high-speed, high-
capacity router implementations. Typically, not
enough of the routers in such a network are capa-
ble of performing the packet forwarding diagnostics
required for this. As a result, tracking-down the
source of a flood-type denial-of-service (DoS) attack
is usually difficult or impossible in these networks.

CenterTrack is an overlay network, consisting of IP
tunnels or other connections, that is used to selec-
tively reroute interesting datagrams directly from
edge routers to special tracking routers. The track-
ing routers, or associated sniffers, can easily de-
termine the ingress edge router by observing from
which tunnel the datagrams arrive. The datagrams
can be examined, then dropped or forwarded to the
appropriate egress point.

This system simplifies the work required to deter-
mine the ingress adjacency of a flood attack while
bypassing any equipment which may be incapable
of performing the necessary diagnostic functions.

1 Introduction

While the Internet Protocol is simple and effective,
it lacks an obvious way to ensure that the address
contained in the source address field of each packet
is actually representative of where the packet origi-
nated [1]. IP alone does not address this security is-
sue. Consequently, an attacker can forge the source
address of an IP packet from any site on the Internet
which is not subject to some sort of source valida-
tion mechanism. Examples of such mechanisms are
egress filtering (by the originating site) and ingress

filtering (by the backbone provider) [2]. As of the
time of this writing, source address validation is not
yet in general practice on the Internet.

Furthermore, there are no quality-of-service or re-
source restriction mechanisms that are practical or
in general use that prohibit an attacker from con-
suming all available bandwidth on a network con-
nection.1 Due to their trivial nature, packet flood
attacks are not only possible, but they have become
quite common.

A flood attack differs from other types of DoS at-
tacks in that it requires constant and rapid trans-
mission of packets to the victim in order to be ef-
fective. Some DoS attacks, such as the “ping of
death” [3] and similar attacks, merely require that
a single “killer packet” reach the victim. This pa-
per addresses the issue of tracking (tracing) flows of
forged packets rather than individual forged pack-
ets. Tracking individual forged packets is generally
infeasible and thus other methods, such as patching
vulnerable systems, are commonly used to protect
against the killer packet class of attacks.

Internet Service Providers (ISPs) and their cus-
tomers are frequently the victims of various types
of packet flood attacks. Included in the category
of packet flood attacks are “Smurf” [4], “Fraggle”
[5], TCP SYN Flood [6], and others. Not only is
it possible for the attacker to arbitrarily alter the
source address field of the attack packets without
penalty, many of these attacks actually require that
the source address be faked in order to be effective.

Because the source address field is almost always
forged in these attacks, it is non-trivial to determine
their true origin. Often, the packet forwarding di-
agnostic functions necessary to determine the true
source of the attack are not available due to hard-

1Even if there were, the lack of validation of the IP headers
would probably allow an attacker to bypass such mechanisms
by forging packets which would appear to conform to the
network usage policy.



ware resource limitations or software implementa-
tions which lack the appropriate features.

As if the situation could not possibly get any worse,
the amazing success of the Internet has increased
the number of Internet hosts which are vulnerable
to unauthorized access. This condition makes dis-
tributed denial-of-service (DDoS) attacks [7] more
feasible than they might have been at one time. In
effect, attackers cannot only hide their identity and
exploit amplification methods, but also increase the
number of hosts used in an attack from a single host
to hundreds or thousands of hosts.

This paper presents several different approaches to
the problem of tracing the ingress adjacency of rea-
sonably large flows of forged IP packets. It then
details a specific solution based on IP tunnels (such
as GRE) [8, 9], Border Gateway Protocol (BGP)
[10, 11, 12], an Interior Gateway Protocol (IGP)
such as Open Systems Interconnect Intermediate
System to Intermediate System (IS-IS) [11, 13, 14],
and diagnostic features on a subset of routers in the
network backbone. Lastly, the benefits and limita-
tions of the method are discussed along with the ap-
plicability to DDoS attacks. Methods of preventing
such attacks, through source validation for example,
are not discussed in this document.

2 Assumptions and
Definitions

If two routers are physically or virtually connected
and this connection is used to exachange IP packets,
then the two routers are considered to be adjacent.
The connection between the two routers is referred
to as an adjacency. Adjacency capacity refers to a
router’s capacity to handle all of the required con-
nections, routing sessions, bandwidth, and anything
else needed to maintain a certain number of adja-
cencies.

In the examples, it is assumed that we are track-
ing attacks across a hypothetical ISP backbone net-
work. There are two basic classifications of routers
used: backbone routers and external routers. Back-
bone routers are routers which are part of the ISP
backbone network. External routers are routers
which are not part of the ISP backbone network;
they could belong to a customer or another ISP.

Backbone routers are sub-classified by what they
are adjacent to. Edge routers are backbone routers
that are adjacent to one or more external routers.
Transit routers are backbone routers which are only
adjacent to other backbone routers.

In addition to these routers, we will present a special
case of router called a tracking router which is con-
ceptually adjacent only to edge routers and other
tracking routers. An adjacency between a tracking
router and an edge router, or a tracking router and
another tracking router, is called a tracking adja-
cency.

Because the example network is an ISP network, it
is assumed that attacks originate outside of the net-
work and that they are targeted at a victim outside
of the network. Therefore, the malicious packets
that comprise the attack will be transmitted across
the edge of the network twice: once at the ingress
edge adjacency (the source of the attack), and once
at the egress edge adjacency (the destination of the
attack), where edge adjacency refers to an adjacency
between an edge router and an external router. The
ingress edge router is therefore the edge router which
has the ingress edge adjacency, and conversely the
egress edge router is the edge router which has the
egress edge adjacency.

Attack signature refers to some pattern which can
be used to help distinguish malicious packets from
normal traffic. At the very least, an attack signature
is defined by the IP address or address range of the
entity that is being attacked. Often it is not possible
to determine an attack signature that only matches
malicious packets. A good attack signature will pre-
dominantly match malicious packets but may also
match a certain amount of legitimate traffic.

Input debugging refers to the diagnostic features re-
quired to determine from which adjacency a packet
matching an attack signature on an individual
router arrived. In other words, input debugging is
any feature that will reveal which previous hop the
attack is coming from or through.

A tracking hop is one invocation of input debugging
on a particular router. It could also be described
as the act of querying a specific router for input de-
bugging information matching a particular attack
signature. The number of tracking hops is often
referred to in terms of d or dt where d is the maxi-
mum hop diameter of the backbone network and dt
is the hop diameter of the CenterTrack overlay net-



work. There is no fixed relationship between d and
dt since either network could be of an arbitrary hop
diameter, but dt < d for any useful implementation
of CenterTrack.

3 Finding a Solution

3.1 Possible Solutions

We originally considered several possible solutions
to the problem of tracking forged packets. Several
of the ideas that were given consideration are sum-
marized below.

• Hop-by-hop: This is the method used by the
DoSTrack2 script. Input debugging is per-
formed on the edge router closest to the victim
in order to determine which adjacency on that
router originated the attack packets. Once the
adjacency is identified, the process is repeated
on that adjacent router. This method is ap-
plied recursively until the edge of the network is
reached and the edge ingress adjacency is iden-
tified. This requires up to d tracking hops.

• Hop-by-hop from center: Traffic for the victim
is rerouted to a router at the top level of the
network (effectively in the “center” with regard
to hop diameter) and then discarded. That
router effectively becomes the victim, and hop-
by-hop tracking is performed starting with that
router. This requires at most d/2 + 1 hops.
Though it is theoretically unnecessary to dis-
card the traffic in order to perform the diag-
nostics, it is usually non-trivial or impossible
to route the traffic through a particular router
and out of the network through the egress ad-
jacency.

• Hop-by-hop through overlay network: This is
the method employed by CenterTrack. An
overlay network is created which links all edge
routers to a central tracking router or a simple
network of tracking routers. Dynamic routing
is employed which causes only the traffic des-
tined for the victim to be routed through the

2DoSTrack is a Cisco-specific perl script that implements
this method. The last official version would not work on any
routers configured to use Cisco Express Forwarding, which
includes most Cisco routers used by large ISPs today. It is
no longer officially distributed or supported by its authors.

overlay network. Hop-by-hop tracking is then
used, starting with the tracking router closest
to the victim. This requires up to dt + 1 track-
ing hops.

• Traffic flow measurement3 on edge adjacencies:
All edge routers provide some level of traffic
flow measurement data on all edge adjacen-
cies. This data must contain, at a minimum,
source address, destination address, adjacency,
and approximate number of packets. This data
is then searched, based on the attack signature,
to determine the ingress adjacency of the at-
tack. This requires no tracking hops per se,
but it does require a (potentially very large)
database search.

Additional areas of research were suggested by other
researchers after the original consideration of the
problem at UUNET. Two of the more promising
ideas, packet marking [15, 16] and ICMP traceback
generation [17], are similar to logging traffic flow in-
formation except that only a small percentage of the
traffic is sampled and traffic flow path information
is transmitted to the flow destination instead of a
system managed by the network operator. These
solutions require significant new protocol develop-
ment and, while they would provide solutions that
are superior to the one discussed in this paper, they
are oriented toward a longer-term horizon. A good
comparison of various proposals is provided in [16].

3.2 Advantages and
Disadvantages

A brief summary of the advantages and disadvan-
tages of each method presented above is described
below.

• Hop-by-hop: This method is transparent to
the victim and attacker since interrupting the
flow of legitimate traffic and alterations to rout-
ing are typically unnecessary. This method re-
quires input debugging features on every router

3See [18] for more information on Traffic Flow Measure-
ment. We are assuming a relatively simple static rule set for
this comparison. For an example of a traffic flow measure-
ment system, see the documentation on cflowd [19].

Others are investigating methods which require the con-
figuration of generalized attack signatures on the monitoring
systems to reduce the amount of data that is generated and
provide for the possibility of active enforcement [20, 21, 22].



in the network. Even if the software functions
exist, the hardware resources may not exist es-
pecially on multi-gigabit routers operating at
full capacity. There are currently no standards
for input debugging. This method does not
scale well to DDoS attacks due to the large
number of operations required.

• Hop-by-hop from center: The primary advan-
tage is that the number of hops required to
complete the process is reduced by about 1/2
over the previous method. Otherwise, this
method suffers from the same limitations as the
previous method. In addition, legitimate traffic
usually must be discarded along with the mali-
cious traffic, and routing changes are required.

• Hop-by-hop through overlay network (Center-
Track): With this method, specialized diag-
nostic features are now required only on edge
routers and special-purpose tracking routers.
Heavily-loaded high-speed transit routers no
longer require such features. Also, the number
of hops required to perform tracking is typi-
cally reduced to 2 or 3. Because this method
requires that an overlay network be created, it
increases the complexity of the network and in-
troduces additional administration tasks. Re-
quired routing changes may have a global im-
pact on the network if not performed properly;
this introduces greater operational risk. While
this method is better suited to DDoS attacks
than plain hop-by-hop (in terms of number of
operations) it is still not ideal. The additional
overhead of encapsulating packets is incurred
on a larger number of edge routers when used
to route a DDoS attack, increasing the poten-
tial for collateral damage.

• Traffic flow measurement on edge adjacencies:
No network configuration or rerouting is re-
quired in order to track malicious flows of traf-
fic; the collected information is simply searched
based on the attack signature. Also, because
the data are retained for some period of time,
the source of an attack can be determined after
it has already stopped. All edge routers must
be capable of performing the required account-
ing function, and (in the absence of a manage-
able, scalable, dynamic configuration method)
this function must be performed by all of the
edge routers all of the time. The accounting
functions generate a tremendous amount of in-
formation which consumes network bandwidth.
The data must be collected at one location or a

small, manageable number of locations in order
to be searched effectively. This method does,
however, have the best scaling properties with
respect to DDoS attacks.

3.3 Design Goals

In choosing and designing a system, the following
requirements were taken into account:

• Must be able to identify the source adjacency
of the vast majority of DoS floods without in-
terrupting the flow of legitimate traffic.

• Must be as vendor independent as possible, us-
ing standard protocols (such as BGP, GRE,
etc.) where possible.

• Must utilize existing products or products that
will be available in the near future (several
months).

• Should limit the number and complexity of fea-
tures required on transit routers.

• Should introduce as little additional network
complexity as possible.

• Should introduce minimal additional opera-
tional risk to the backbone.

• The tracking process should be fast and consist
of few individual configuration operations.

• Cost and deployment time should be minimal.

It is worth noting that moderate or large scale (more
than 10 distributed attackers) DDoS attacks were
not a concern when we originally determined our
requirements. As a result, scalability to DDoS at-
tacks was not a design goal for this system.

3.4 Other Factors Considered

In addition to the design goals, a number of factors
were taken into consideration when deciding which
solution to pursue. A few of them are mentioned
below.

• Router vendors often do not implement the
required software functionality for hop-by-hop



tracking or traffic flow measurement, particu-
larly on multi-gigabit platforms.

• Router vendors typically do not design routers
with the necessary resources for packet tracking
diagnostic and accounting functions; routers
are designed to forward packets rather than an-
alyze them. This is particularly true of the
highest-end routers.

• Currently it is impossible in most IP network
routing architectures to force traffic for a par-
ticular destination through an arbitrary transit
router using dynamic routing protocols.

• Dynamic routing processes are often suscep-
tible to being disrupted with unintended an-
nouncements or other data which can severely
disrupt a network.

• Traffic flow measurement, especially in large
networks, typically generates a massive amount
of data which is difficult to store and search, re-
quires a massive configuration operation, or re-
quires intelligent meters that can dynamically
configure themselves.

3.5 The CenterTrack Decision

We have concluded that the two most promising
methods are hop-by-hop tracking through an over-
lay network and traffic flow measurement. Because
the functionality required for hop-by-hop tracking
through an overlay network is more readily available
and practical in a large network within the desired
time frame, we decided to consider that approach
first.

4 CenterTrack Design Issues

We have designed a model for an overlay network
that we call “CenterTrack,” as well as a specific
method of implementing it. This model calls for a
central tracking system that is built “virtually ad-
jacent” to all edge routers. Edge routers, as well as
the equipment that comprises the tracking system,
must be able to perform input debugging. A few of
the design issues are presented below.

4.1 Tracking Adjacencies

The tracking system must be adjacent to all edge
equipment. This can be accomplished using physi-
cal connections, layer 2 virtual connections (VCs),
or IP tunnels. Physical connections are very cost-
prohibitive. Layer 2 VCs are dependent on a par-
ticular contiguous layer 2 technology, such as ATM
or Frame Relay, which must be accessible by both
the tracking system and the edge routers. Design
changes which alter the network over which VCs are
built may require a rebuild of the tracking network.

IP tunnels can always be built over the existing IP
network. Because IP is available to all edge routers,
and is not likely to be eliminated from the design of
an ISP backbone network, the tunnels can survive
underlying network changes. This reduces the num-
ber of problems inherent in managing the tracking
network.

4.2 Routing Architecture

In order to be practical and effective, some system of
dynamic routing must exist between the edge equip-
ment and the tracking system. The system depends
on ease of routing updates to edge equipment in or-
der to pinpoint the desired edge router.

At the same time, however, the ability of the overlay
network to disrupt normal routing must be reduced
as much as possible. A poor implementation could
make it too easy for a small error to severely disrupt
the network.

An Interior Gateway Protocol, such as IS-IS or
OSPF [11, 23], could be used to handle dynamic
routing updates between the tracking system and
the edge routers, but this would require that the
tracking network be treated as an integral part of
the backbone network. The lack of administrative
distinction between the tracking network and the
backbone network would pose a risk to normal op-
eration.

Less risk is involved if a strong administrative dis-
tinction exists between the overlay network and the
real network. IGPs typically do not allow as much
administrative distinction to be made between dif-
ferent parts of the network. Because of this, we
decided that designing the network as an external



autonomous system using BGP to handle routing
updates would pose less risk while accomplishing
the same result.

4.3 Scalability Issues

4.3.1 Single Tracking Router

In a small implementation, the tracking system
would consist of a single router with tunnels con-
necting it to all edge routers. If the number of edge
routers is larger than the number of tracking ad-
jacencies serviceable from a single router, multiple
routers are necessary.

4.3.2 Single-Level Full Mesh

If we have NC tracking routers that can each handle
C tracking adjacencies then we have CNC tracking
adjacencies available. Since the number of edges
required to fully mesh all nodes in an undirected
graph isNC(NC−1)/2, the same number of adjacen-
cies are required to fully mesh all tracking routers.
Therefore, this leaves

NE =
⌈
CNC −

NC(NC − 1)
2

⌉

NE tracking adjacencies available for use by edge
routers. Using the quadratic formula to solve for
NC we find that,

NC =

⌈
(C +

1
2

)−
√

(C +
1
2

)2 − 2NE

⌉

for a single level full mesh network of tracking
routers, if each tracking router can handle C track-
ing adjacencies. This means that diminishing re-
turns are observed when adding additional track-
ing routers until the number of tracking routers
reaches a maximum of d(C − 1)/2e. After that
point, adding additional tracking routers actually
reduces the number of available tracking adjacen-
cies for edge routers.
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Figure 1: This graph shows how single-level full
mesh CenterTrack networks composed of 10, 20, and
30 routers (NC) scale in terms of edge routers (NE)
with respect to individual tracking router capacity
(C).

4.3.3 Two-Level Hierarchy

If we take the full mesh of adjacencies between
tracking routers and replace it with a set of adjacen-
cies to a second-level “hub” tracking router, we now
have a two-level hierarchy with one router at the top
level. In this sort of network, NC(NC − 1)/2 adja-
cencies between tracking routers and other tracking
routers are replaced withNC−1 adjacencies to a sin-
gle CenterTrack transit router. This increases the
diameter of the CenterTrack network by an addi-
tional hop, frees-up NC(NC −1)/2− (NC −1) adja-
cencies, requires another router, and does not result
in much additional edge router capacity(NE) if NC
is a small percentage of C. If NC is at its single-
level full-mesh maximum of d(C − 1)/2e, then mov-
ing to this topology effectively doubles the number
of tracking adjacencies available for edge routers. In
addition, it doubles the maximum possible number
of tracking routers. (Achieving maximum capacity
requires approximately C/2 routers in a single-level
full mesh and approximately C routers in a two-level
hierarchy.) Figure 2 provides a comparison.

Due to the additional hop introduced, the poor dis-
tribution of workload, and the introduction of a sin-
gle point of failure with this design, it is more desir-
able to use a single full mesh with a small number of
tracking routers that can each handle a large num-
ber of tracking adjacencies. The two-level topol-
ogy is usually only worth considering if the network
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Figure 2: Maximum scalability comparison of dif-
ferent topologies given tracking routers with a ca-
pacity of C. This represents the absolute maximum
number of edge routers that could be supported.

grows faster than router capacity and NC is reach-
ing its limit.

4.4 Tracking Router Capabilities

Tracking routers must be able to perform input de-
bugging. They must also be able to handle sufficient
tracking adjacencies (using IP tunnels) such that
adjacencies can be built between the CenterTrack
system and all edge routers without requiring more
than a manageable number of tracking routers.

Assuming that you want to manage no more than
NC tracking routers, and you have (or expect to
have) NE edge routers, each tracking router must
have a tracking adjacency capacity of:

C =
⌈
NC − 1

2
+
NE
NC

⌉

4.5 Edge Router Capabilities

Edge routers also must support input debugging
and some acceptable method of IP-over-IP tunnel-
ing. Unlike the tracking routers, each edge router is
only required to maintain one tunnel.
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Figure 3: Conceptualized network diagram with
two-level backbone.

5 Implementation

5.1 Example Network

The test lab network in Figure 4 is a gross sim-
plification of the current UUNET backbone design.
In this network, the “CT” routers are the Center-
Track routers (also referred to as tracking routers)
the “TR” and “XR” routers are transit routers, and
the “GW” routers are edge routers. The TR routers
represent the top level in the transit router hierar-
chy, and the XRs represent the bottom level. (In a
full-scale network, the two TR routers would be a
larger full mesh of TR routers and each XR router
would be replaced with a regional full mesh of XR
routers. See Figure 3.) The CT routers are physi-
cally connected at the top level.

An IP tunnel exists between the two CT routers,
creating the simplest instance of a full mesh. IP tun-
nels exist between the CT router in each hub/region
and the GW routers in each hub/region. In this
way, all edge routers are reachable from each other
through the overlay network created by the CT
routers.

In BGP routing terms, the backbone routers are in
AS 65444, while CT routers are in a separate AS,
65445.
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Figure 4: Test Lab Network. This is an extremely simplified version of the UUNET North America back-
bone. A much larger mesh of TR routers and several separate meshes of XR routers exist in the actual
backbone.

5.2 Dynamic Routing With Tunnels

If a router determines, usually due to a routing
announcement, that a tunnel’s endpoint address is
reachable through the tunnel itself, then the tun-
nel becomes useless. This problem is called tunnel
collapse. In order to keep this from happening, it
is necessary to ensure that no tunnel endpoint ad-
dress can be announced as being reachable through
a tunnel. The easiest way to do this is to number
tunnel termination interfaces out of a distinct range
of addresses called the tunnel termination address
space, and use this range to filter the routing an-
nouncements. In IP terms, the tunnel termination
addresses would be used in the outer IP header of a
tunnel packet.

In addition, we do not want traffic that should be
using the overlay network to be routed directly out
of a tracking router’s physical interface without be-
ing encapsulated. For this reason, tunnel interfaces
should be numbered out of a distinct address range,

called the tunnel interface address space. (The least-
specific, i.e. shortest, prefix for this block should be
routed to a discard next-hop to prevent matching a
default route.)

With these address ranges defined, the rules can be
summarized as follows:

• Tunnel interfaces never announce or accept
prefixes from the tunnel termination address
space.

• The tracking router’s physical interfaces never
announce or accept prefixes that are part of the
tunnel interface address space.

Configuring the route announcement filtering in this
manner will prevent tunnels from collapsing, and
will ensure that packets intended to transit the over-
lay network will not bypass it.



5.3 Tracking Router
Physical Connection

Each tracking router must be physically connected
to the backbone. It is possible to accomplish the
routing part of this with static routing, or EBGP if
desired.

In both cases, a primary loopback address is cre-
ated on the tracking router to serve as an endpoint
for tunnels. The primary loopback address must
be numbered out of the tunnel termination address
space. Also, in both cases, the prefix for the entire
tunnel interface address space is routed to a discard
next-hop. This is so that any packets destined for an
unknown address in that range will not match the
default route and be forwarded out of the physical
adjacency.

5.3.1 Static Routing

When static routing is employed, the tracking
routers have a default route to the backbone
through their physical adjacency. The primary loop-
back is statically routed to the tracking router from
the adjacent backbone router.

5.3.2 BGP Routing

If used, BGP should only announce the primary
loopback of the tracking router. Only a default
route is announced to the tracking router from the
backbone.

5.4 Tunnel Termination

Once the tracking routers are physically connected
to the network and their primary loopbacks are
reachable from the backbone, it becomes possible
to create the tunnels. The primary loopbacks of
the tracking routers are used as the termination in-
terfaces for tunnels. While physical interface ad-
dresses could be used, using the primary loopback
interfaces allows for more flexibility with physical
interface numbering.

5.5 Tunnel Numbering Methods

On most router implementations, tunnels can be
numbered or unnumbered. Using the numbered
method, /30 blocks out of the tunnel interface ad-
dress space are assigned to each tunnel. This causes
each tunnel interface to have a different IP ad-
dress. Using the unnumbered method, a special-
purpose secondary loopback interface is created on
each router that will terminate a tunnel. This over-
lay loopback is numbered from the tunnel interface
address space. Rather than numbering the tunnels
themselves, the routers learn or are configured to
know what overlay loopback is reachable through
each tunnel.

The numbered method uses more address space and
requires approximately as much configuration as
the unnumbered method. The unnumbered method
uses less address space and is easier to manage be-
cause each router only has one next-hop IP address
rather than one for every tunnel that terminates on
the router. We will assume that the unnumbered
method is being used.

5.6 Tracking System IGP and IBGP

Once tunnels have been built such that all of the
tracking routers are fully meshed over tunnels, an
IGP4 should be used to distribute link-state infor-
mation about the tunnels and establish reachability
information for the tracking system’s overlay loop-
back interfaces. The IGP should only advertise the
overlay loopback addresses. In particular, if the pri-
mary loopbacks are advertised then tunnels will col-
lapse.

Because EBGP will be used by all tracking routers
to announce routes to the edge routers, all track-
ing routers must have IBGP sessions established
with each other. Filters must be applied to prevent
the primary loopback addresses from being learned
through IBGP. If filters are not applied, then the
tunnels will collapse.

4In our test implementation, IS-IS was used for this.



5.7 Edge Tunnels

Edge tunnels between the edge routers and the
tracking routers are built in the same manner as the
internal tunnels used to mesh the tracking routers
together. An overlay loopback is created on each
edge router, and a static route for the tracking
router overlay loopback is added to establish reach-
ability of the tracking router through the tunnel.
Similarly, a static route is added on the tracking
router which establishes reachability of the edge
router’s overlay loopback through the tunnel. In
this manner, connectivity is established which can
be used to establish an EBGP session.

The static routes were unnecessary on the internal
tunnels because an IGP was being used. An IGP
is not used with the edge routers to avoid conflict
with the backbone IGP.

5.8 Edge Tunnel EBGP Sessions

EBGP is configured, using the overlay loopback ad-
dresses, between each edge router and the corre-
sponding tracking router. The following filters are
used:

1. The edge routers are configured:

(a) to accept all prefixes from the tracking
system that are not within the tunnel ter-
mination address space.

(b) to set the BGP local-preference attribute
high so that the additional AS hop in-
troduced into the path will not cause the
route to be ignored in favor of a competing
route with the same prefix length.

(c) not to announce any prefixes to the track-
ing system.

2. The tracking routers are configured:

(a) to ignore all prefixes originating from any
edge routers.

(b) to only advertise local prefixes (except
those in the tunnel termination address
space) to the edge routers.

6 Usage

6.1 Static Routes

To use CenterTrack, the packets to be tracked must
be flowing over the CenterTrack network. To accom-
plish this, static routes are added on two routers.

• A static route5 for the victim, pointing through
the egress edge adjacency, is added on the
egress edge router. This ensures that a more
specific route learned from CenterTrack will not
take precedence over the normal egress path.

• A static route for the victim, pointing through
the tunnel to the egress edge router, is added on
the tracking router adjacent to the egress edge
router. This route is announced via IBGP to
the other tracking routers, and then announced
to all edge routers via EBGP.

Once routing converges, all6 traffic for the victim
will take a path through the overlay network.

It is important that all traffic continue to be routed
to the victim because the victim generally still wants
to receive legitimate traffic. Due to limitations of
most IP forwarding implementations and dynamic
routing protocols, it is not possible to only reroute
the traffic matching a complex attack signature.
Therefore all traffic for a victim must be rerouted
through the overlay network, and all the complex
pattern matching against an attack signature must
be done in the input debugging process. Filters
might also be placed on the tracking routers to deny
passage to the attack packets if the edge routers are
unable to perform the required filtering.

6.2 Hop-by-Hop Tracking

Once traffic has been rerouted, it is possible to em-
ploy hop-by-hop tracking to find the source of the
attack. The process for tracking an attack from a
single source is described below. (This paper does

5Arbitrary length prefix, usually a host route.
6Well, not quite. Traffic entering the network at the egress

edge router will never be transmitted across the CenterTrack
network. In other words, if the egress router is also the ingress
router then the traffic will never be routed over the overlay
network.



not address issues related to automating this pro-
cess in software.)

1. The initial starting point is the tracking router
closest to the victim.

2. Input debugging is performed on the current
router.

(a) If no attack is seen from any of the tunnels,
then the attack must be originating from
something (another customer or peer) ad-
jacent to the egress edge router. Input
debugging is then performed on the egress
edge router to find the source. The pro-
cess ends.

(b) If an adjacency is identified as the source
of the attack, then

i. If the adjacency connects to a back-
bone router or tracking router, repeat
step 2 on the corresponding router.
(This router becomes the “current
router.”)

ii. If the adjacency connects to an exter-
nal router, we have found the ingress
adjacency and the process ends. Fil-
ters can be applied, the attacking site
contacted, etc.

An attack from multiple sources can also be tracked
using this method; where multiple source adjacen-
cies are identified, each one must be investigated
separately (possibly in parallel) until multiple edge
adjacencies are identified. This capability is useful
since multiple source attacks are quite common; at-
tackers often “team up” to tackle a single victim, es-
sentially creating a small-scale “manual” DDoS at-
tack. However, this method is not scalable with re-
gards to DDoS attacks in general unless the method
is highly automated.

6.3 Packet Capture

Full packet capture can be useful for analyzing a new
attack in detail and recording evidence of an attack
for use in prosecution. Even though most routers
are not capable of full packet capture, it is still pos-
sible to use this system to help “sniff” most traffic,
for a specific destination, that enters the backbone.
This could be accomplished by using systems capa-
ble of full packet capture as the tracking routers,

Tracking Router

Packet Capture System

Network

Physical
Connection

Carrying Tunnels

Figure 5: Using a sniffer in conjunction with a track-
ing router. This would be useful when the tracking
router cannot perform all of the desired traffic anal-
ysis functions.

or by attaching specialized sniffers on the physical
connections between the tracking routers and the
backbone, as show in Figure 5. It cannot be guar-
anteed that all traffic for a given destination can
be sniffed in this manner because, if the source and
destination are connected to the same edge router,
traffic will not transit the tracking network.

Aside from packet capture, a separate system could
also be used to perform the input debugging func-
tion if, for example, a particular tracking router is
desirable for its ability to perform IP encapsulation
but lacking in diagnostic functions. Effectively this
would distribute the tracking router functionality
between two machines.

7 Problems and Limitations

7.1 Attacks from Within

This system is not very useful for tracking attacks
that originate from within the backbone itself. How-
ever, an attack that originates from a transit router
that is directly connected to an edge router is equiv-
alent to an attack that originates from outside of



the backbone, and it can be tracked just as easily.
This system does not simplify the process of track-
ing attacks originating from within the backbone
and more than one hop away from an edge router.

7.2 Attacks on Backbone Routers

It is difficult or impossible to use this system to
help track an attack in which a backbone router is a
victim. Attempting to reroute traffic destined to a
backbone router interface over the tracking network
would cause tunnel collapse or routing loops.

7.3 “Stepping Stone” Routers

An attacker can bypass the overlay network by
“bouncing” the attack off of one of the transit
routers. For example, an attacker sends ICMP echo
request packets to TR1.HUB1 and forges the source
address as the address of a victim.

7.4 Tunnel Overhead

Assuming the attacker were to use the smallest pos-
sible IP packet with a 20 byte header and an empty
payload, the additional IP header used to encap-
sulate the packet would increase the packet size by
over 100%. Though the bandwidth consumed by the
attack at the edge adjacency would not be affected,
this would effectively double the bandwidth utiliza-
tion of the attack as it transited the backbone in
encapsulated form. Therefore, the overlay network
can be exploited to amplify the effects of the DoS
attack on the backbone itself.

One possible solution to this is some sort of asym-
metric load sharing of the rerouted flow between the
overlay network and the physical backbone. This
might allow, for example, 10% of the desired packet
flow to be transmitted over the CenterTrack net-
work while the rest is transmitted normally over the
backbone. We have not yet thoroughly investigated
methods for accomplishing this.

7.5 Tunnel Authentication

If the tunnels are not authenticated in some way,
attackers can exploit the overlay network to further
conceal the source of their attack. With some eas-
ily guessable knowledge of the tunnel endpoints, the
tunnel packets themselves can be forged, effectively
inserting arbitrary packets into a tunnel from afar.
While some weak authentication features of GRE
might help with this, they have been removed from
the latest version of the RFC [8, 9] and are unim-
plemented in many newer routers. Using the IPSEC
authentication header in tunnel mode [24, 25] pro-
vides a solution to this problem, but IPSEC is
not widely implemented on general purpose high-
capacity IP routing equipment at the current time.
Using layer 2 VCs can also solve this problem, but
such connections suffer from previously stated dis-
advantages.

7.6 Visibility

Because all traffic to the victim is rerouted over an
unusual path, the attacker could detect that the sys-
tem is being used by using traceroute or a similar
tool. This visibility can be limited by configuring
the tracking routers in some manner so that they
will not send ICMP TTL Exceeded messages. If this
is done, the attacker may notice that something has
changed, but will have less information about ex-
actly what is going on. It is also possible to have
the tracking routers respond with bogus TTL Ex-
ceeded messages in order to misrepresent the actual
network path.

7.7 Distributed DoS Attacks

It is not obvious how scalable this approach is with
regards to large DDoS attacks. The number of op-
erations required to track-down all of the ingress
points is slightly larger than the number of ingress
points, which could be very large. Also, the over-
head of tunnel encapsulation could dangerously am-
plify the effects of a DDoS attack on the network
backbone.



8 Conclusions

The hop-by-hop tracking method employing input
debugging is basically sound. However, a simplified
tracking network connecting all edge routers via a
small number of hops provides an optimized envi-
ronment for using hop-by-hop tracking. Further-
more, building the tracking network as an overlay
network, using IP tunnels, allows the tracking net-
work to survive changes to the backbone architec-
ture at a minimal cost of increased complexity and
bandwidth usage.

While a single tracking router may be sufficient for
small networks, a single level fully-meshed network
of tracking routers is required for large ISP back-
bones. A two-level system can be used, but the ex-
tra hop that is introduced generally outweighs the
scaling benefits.

In addition to tracking forged packets, the system
can be used for full packet capture provided that the
necessary capabilities exist at the tracking routers.
This is useful for detailed analysis of attacks.

There are a number of weaknesses in the system
which limit its applicability and effectiveness in
many situations. However, many of these problems
have yet to be overcome in practice. More work is
needed to determine the usefulness of this approach.

9 Experiences

CenterTrack has been successful in lab testing but
has not yet been implemented in production. We
are planning to deploy such a system at some point
in the future, however.
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