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ABSTRACT: 

 

Advances in digitalization technologies lead to rapid and massive changes in infrastructure management. New collaborative pro-

cesses and workflows require detailed, accurate and up-to-date 3D geodata. Image-based web services with 3D measurement func-

tionality, for example, transfer dangerous and costly inspection and measurement tasks from the field to the office workplace. In this 

contribution, we introduced an image-based backpack mobile mapping system and new georeferencing methods for capture previ-

ously inaccessible outdoor locations. We carried out large-scale performance investigations at two different test sites located in a city 

centre and in a forest area. We compared the performance of direct, SLAM-based and image-based georeferencing under demanding 

real-world conditions. Both test sites include areas with restricted GNSS reception, poor illumination, and uniform or ambiguous 

geometry, which create major challenges for reliable and accurate georeferencing. In our comparison of georeferencing methods, 

image-based georeferencing improved the median precision of coordinate measurement over direct georeferencing by a factor of 10-

15 to 3 mm. Image-based georeferencing also showed a superior performance in terms of absolute accuracies with results in the 

range from 4.3 cm to 13.2 cm. Our investigations showed a great potential for complementing 3D image-based geospatial web-

services of cities as well as for creating such web services for forest applications. In addition, such accurately georeferenced 3D 

imagery has an enormous potential for future visual localization and augmented reality applications. 

 

 

1. INTRODUCTION 

Ongoing progress in digitalization leads to rapid and massive 

changes in infrastructure management. The establishment of 

three-dimensional collaborative processes and workflows with 

stakeholders from multiple domains require detailed accurate 

and up-to-date 3D geodata. Image-based mobile reality captur-

ing techniques in combination with cloud technologies, such as 

presented by Nebiker et al. (2017), hold the potential to provide 

such data and services in a rapid, cost-efficient and user-

friendly manner. First image-based outdoor mobile mapping 

systems (MMS) date back to the early 1990ies (Novak, 1991; 

Schwarz et al., 1993). Burkhard et al. (2012) present a stereo 

image-based MMS and performed accuracy investigations using 

different types of industrial cameras. In order to capture urban 

environments with a maximal coverage, image-based MMS 

have evolved into systems with (multi-) panorama camera con-

figuration (Meilland et al., 2015). Blaser et al. (2017) present a 

MMS configuration with two tilted panorama cameras, which 

constitute multiple stereo systems to the sides in order to cap-

ture entire façades of the buildings. 

 

However, most MMS use LiDAR as primary sensors and cam-

eras as complimentary sensors in order to generate textured 

point clouds (Heuvel et al., 2006; Puente et al, 2013). Nebiker 

et al. (2015) discuss some the advantages of image-based over 

LiDAR-based MM data in terms of temporal coherence in the 

acquisition and density of information. Current developments in 

the field of MM are moving towards updating already existing 

3D databases in indoor spaces (Hasler et al., 2019; Kostoeva et 

al., 2019; Saran et al., 2019) as well as in outdoor environments 

(Hasler et al., 2020) using consumer devices (smartphones and 

tablets). 

 

Other work has focused on accuracy improvement within 

GNSS-denied areas. Jende (2019), for example, improved the 

trajectory in urban areas in a largely automated process using 

aerial imagery. While his investigations yield accuracies at the 

decimetre level, Cavegn et al. (2019) obtained accuracies at the 

centimetre level by applying image-based georeferencing using 

constrained bundle-adjustment and ground control points. 

 

In recent years, some portable as well as indoor MMS came 

onto the market. Lehtola et al. (2017) provide a comparison of 

numerous state-of-the-art LiDAR-based indoor MMS. By con-

trast, Tang et al. (2015) conducted performance investigations 

in forests using SLAM positioning and show an improvement of 

the accuracy by 38 % compared to direct georeferencing. Our 

very first investigations with an image-based backpack MMS in 

a forest area failed due to a too large image capturing interval 

above 2 m and the lack of robust alternative georeferencing 

methods such as image-based georeferencing with constrained 

bundle-adjustment (Wittmer, 2017). 

 

In conjunction with the development of new georeferencing 

methods, Blaser et al., (2018) present the development of a 

portable image-based MMS and provide accuracy analysis in 

indoor environments with promising results within the centi-

metre range. Blaser et al. (2019) confirmed the high accuracy 

potential in a challenging underground environment. 
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In this contribution we first expand our earlier image-based 

backpack MMS with direct georeferencing. Thus, with direct 

georeferencing, SLAM-based georeferencing (Blaser et al., 

2018) and image-based georeferencing (Cavegn et al., 2018) 

three independent georeferencing approaches are now available, 

which we evaluate at two large-scale outdoor test sites. Thereby, 

we even focus on areas not accessible to vehicles, which often 

have restricted GNSS reception, poor illumination and difficult 

geometric conditions (e.g. narrow streets in the city centre or 

small footpaths in the forest). Finally, we discuss the results of 

the different georeferencing methods and the suitability of our 

high-performance backpack MMS for outdoor use. 

 

 

2. MOBILE MAPPING SYSTEMS AND METHODS 

2.1 State-of-the-art portable and indoor systems 

Several portable MMS already exist for data acquisition in in-

accessible and often GNSS restricted environments. Most of 

them focus on capturing a 3D LiDAR point cloud. Tucci et al. 

(2018) examined three commercially available LiDAR-based 

portable MMS. Both Zeb-Revo and Kaarta Stencil are hand-

held MMS with only SLAM-based navigation. By contrast, the 

Leica Pegasus Backpack is a multi-sensor backpack MMS 

using GNSS and IMU as well as SLAM for navigation and 

georeferencing. Maboudi et al. (2017) present a point cloud-

based comparison of the Zeb-Revo with the trolley-based indoor 

MMS Viametris iMS3D. Lehtola et al. (2017) examined differ-

ent types of commercially available indoor MMS as well as pro-

totypical research indoor MMS. Among them are a) handheld 

and exclusively LiDAR SLAM-based MMS, such as the Zebe-

dee, the Kaarta Stencil, and Aalto VILMA, b) terrestrial indoor 

mapping systems such as the Matterport, c) trolley- and cart-

based systems like NavVis and FGI Slammer as well as d) 

backpack MMS such as the Leica Pegasus Backpack and the 

Würzburg Backpack (Nüchter et al., 2015). Further commer-

cially available and more image-focussed backpack MMS are 

the Vexcel Panther (Vexcel, 2020) and the Viametris Backpack 

bMS3D LD5+ (Viametris, 2020). Blaser et al. (2018) discuss 

different MMS platform types in terms of flexibility and acquis-

ition efficiency and define system requirements in order to ac-

quire and create image-based services for infrastructure man-

agement with accurate 3D measurement functionality. 

 

2.2 Georeferencing methods for mobile mapping data 

Current georeferencing methods for data acquired with mobile 

mapping systems can be divided into direct georeferencing, 

SLAM-based georeferencing, and additionally image-based 

georeferencing – in case of image-based MMS. 

 

In general, direct georeferencing refers to platform and sensor 

pose estimation using on-board sensors only. Since the early 

days of MMS, the sensor combination of GNSS and IMU is 

widely used for direct georeferencing. Schwarz et al. (1993) de-

scribe the advantages of GNSS and IMU sensor integration in 

detail. However, the accuracy of direct georeferencing strongly 

depends on GNSS reception (see Table 1). In case of partial or 

total signal shading, the accuracy can decrease from the cen-

timetre range to the decimetre or even metre range – even with 

high-end equipment (Cavegn et al., 2018). Thus, direct georef-

erencing works well in outdoor environments with good GNSS 

coverage. Direct georeferencing is also real-time capable and – 

in case of additional post-processing – requires a comparatively 

small computational effort. Direct georeferencing provides the 

trajectory directly within a global reference frame. 

 

Simultaneous localization and mapping (SLAM) has been 

widely used in robotics and was first used for the navigation of 

robots in indoor environments (Durrant-Whyte, Bailey, 2006). 

Cadena et al. (2016) give an overview of different SLAM ap-

proaches based on various sensors. Blaser et al. (2018) used 3D 

LiDAR SLAM with loop closure support for georeferencing 

purposes in indoor environments and proved an accuracy poten-

tial within the decimetre range using entry-level LiDAR sen-

sors. In case of 3D LiDAR SLAM, the accuracy and robustness 

depend on the geometric properties of the environment as well 

as on the trajectory shape. High geometric variability with clear 

corners, edges and surfaces as well as a loop shaped trajectory 

improve the robustness and increase the accuracy. 3D LiDAR 

SLAM is real-time capable but requires high CPU resources. 

Usually, SLAM operates in a local coordinate frame. Blaser et 

al. (2019) show that post-processing with optimized parameters 

improves the result, whereby post processing time is typically in 

excess of the acquisition time. 

 

Subsequent image-based georeferencing can significantly im-

prove image poses from direct georeferencing or from SLAM-

based georeferencing. Cavegn et al. (2018) significantly im-

proved direct georeferencing by processing images of all stereo 

systems within a SfM pipeline. Furthermore, fixed pre-calibrat-

ed relative orientation parameters stabilize the bundle block ad-

justment with a reduction in the unknown parameters. Resulting 

accuracies were in the centimetre range. However, the process-

ing time significantly exceeds the acquisition time. Moreover, 

the accuracy as well as the robustness strongly depend on light-

ing conditions and the radiometric texture. In principle, image-

based georeferencing can be used in outdoor as well as in in-

door and underground environments. 

 

Some of the main characteristics of the georeferencing methods 

discussed above are summarized in Table 1.  

 

 Direct SLAM-based 

(LiDAR) 

Image-based 

Accuracy range dm to cm dm cm 

Operation areas Outdoor Outdoor, 

indoor, 

underground 

Outdoor, 

indoor, 

underground 

Environmental 

requirements 

GNSS 

reception 

Geometric 

texture 

Radiometric 

texture 

Reference frame Global Local Local 

Post processing 

time vs. 

acquisition time 

-  

(real-time 

capable) 

+  

(real-time 

capable) 

++ 

Table 1. Comparison of the discussed georeferencing methods. 

 

3. BACKPACK MOBILE MAPPING SYSTEM 

Commercially available backpack MMS are often closed sys-

tems. Thus, investigations and improvements in the sensor con-

figuration as well as in georeferencing and data processing are 

very limited or not possible at all. Therefore, we developed the 

prototypical and modular image-based portable indoor MMS 

BIMAGE Backpack. In previous contributions, we already de-

scribed the system development in detail. In this chapter, we 

focus on the new system extension with direct georeferencing. 

This includes hardware and software enhancements as well as 
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innovations in the post processing workflow. A major challenge 

was that the changes should not affect previous key features, 

such as the indoor initialization and the independent SLAM-

based system navigation and mission progress monitoring. 

 

3.1 System configuration 

Blaser et al. (2018) describe the original indoor configuration of 

the BIMAGE Backpack in detail. A horizontal and a vertical 

LiDAR scanner Velodyne VLP-16 as well as an industrial grade 

IMU XSens MTI-300 formed the navigation sensors. The multi-

head panorama camera Ladybug 5 was used as the main map-

ping sensor. In order to enable outdoor applications, we modi-

fied and extended the system configuration as follows (see Fig-

ure 1): 

 

- Replacement of the industrial grade IMU XSens MTI-300 by 

the IMU NovAtel SPAN CPT7 with tactical grade perfor-

mance 

- Extension by the helix GNSS antenna HX-CHX600A 

- Removal of the flashlights and the single board computer 

Arduino Nano since the NovAtel SPAN CPT7 synchronizes 

both LiDAR scanners and provides a more precise time refer-

ence for camera timestamps than the Arduino Nano 

 

 

 

Figure 1. BIMAGE Backpack sensor configuration for indoor 

and outdoor applications. Sensors marked with blue lines are 

mainly used for direct georeferencing, green lines show sensors 

used for LiDAR-SLAM-based georeferencing and red lines 

components for image-based georeferencing. Black lines repre-

sent supporting components. 

 

The specifications of the tactical grade MEMS-based IMU 

NovAtel SPAN CPT7 state a position accuracy of horizontally 

10 mm and vertically 20 mm under good GNSS coverage and 

after post-processing. Accuracies of the attitude angles roll and 

pitch are specified as 0.005° and of the heading angle as 0.010°. 

A GNSS outage of 60 s degrades the horizontal accuracy to 

150 mm, the vertical accuracy to 50 mm, the roll and pitch 

attitude accuracies to 0.007° and the heading accuracy to 0.012° 

(NovAtel Inc., 2020). The specifications are in the same range 

as those of the tactical grade IMU UIMU-LCI with fibre-optic 

gyros used on the MMS vehicle (Cavegn et al., 2018).  

 

Our self-developed acquisition and system control software is 

based on the Robot Operation System (ROS) (Quigley et al., 

2009). We used the ROS novatel_span_driver for SPAN CPT7 

support (Purvis et al., 2019). We subsequently extended the 

driver to record raw GNSS and INS data as well as camera 

timestamps for post processing. 

 

In outdoor campaigns, we used the real-time backpack pose 

provided by the SPAN CPT7 for navigation and for the geomet-

rically constrained camera triggering. In contrast, LiDAR 

SLAM-based real-time navigation is available for indoor cam-

paigns, but it requires more CPU power. 

 

3.2 Post-processing workflow 

The BIMAGE Backpack records GNSS and INS raw data from 

the SPAN CPT7, LiDAR raw data from both Velodyne VLP-16 

and raw single images from each Ladybug 5 camera head (see 

Figure 2, top line). GNSS raw data from a reference station 

have to be obtained externally. 

 

 

Figure 2. Extended flow chart indicating our data post-process-

ing workflow (Blaser et al., 2018). The blue elements belong to 

the direct georeferencing, while the green elements represent 

the SLAM-based georeferencing and the red elements concern 

to the image-based georeferencing. 

 

The SPAN CPT7 extension enables direct georeferencing using 

tightly coupled GNSS and INS sensor data fusion with a 

Kalman filter. For this, we used the Waypoint Inertial Explorer 

software, which supports forward and backward trajectory pro-

cessing as well as camera event interpolation based on time-

stamps (see Figure 2, left). By considering pre-calibrated lever 

arms and misalignments between the camera heads and the nav-

igation centre, georeferenced image poses are obtained directly 

in the global reference frame. 

Furthermore, LiDAR SLAM-based georeferencing is available 

independently from direct georeferencing. Based on IMU and 
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LiDAR raw data, the 3D SLAM algorithm Google Cartog-

rapher (Hess et al., 2016) continuously estimates the trajectory 

and the Voxel map. Then, a self-developed exporter extracts the 

trajectory from the so-called Cartographer State and interpo-

lates the camera events based on recorded timestamps. By con-

sidering lever arms and misalignments between the camera 

heads and the navigation centre, georeferenced image poses are 

obtained in a local coordinate frame with the origin at the start 

of the campaign (see Figure 2, centre). 

 

Finally, subsequent image-based georeferencing can significant-

ly improve image poses originating from direct georeferencing 

or SLAM-based georeferencing (Cavegn et al., 2018). For this 

purpose, we introduced the undistorted images into the struc-

ture-from-motion software Agisoft Metashape. Further, we fixed 

the pre-calibrated relative orientation parameters between the 

individual camera heads and introduced SLAM-based or direct-

ly georeferenced image poses as initial values. Poses in a local 

coordinate frame can be transformed to the reference coordinate 

frame using ground control points (GCPs). The results of the 

bundle-adjustment are improved image poses in the desired 

reference frame (see Figure 2, bottom). 

 

 

4. TEST SITES 

We used two different test sites to carry out extensive per-

formance investigations with the BIMAGE Backpack in outdoor 

environments. One test site is located in a city centre and the 

other in a forest. Both test sites have sections with restricted 

GNSS reception and paths, which are not accessible to a MMS 

vehicle. They also represent real-world scenarios for acquisition 

campaigns. Therefore, they are suitable to investigate the poten-

tial and the limitations and to evaluate different georeferencing 

approaches. 

 

4.1 City centre 

The first test site is located in the city centre of Basel (Switzer-

land) and covers an area of 150 x 200 m. It includes different 

road and path widths including a place with good GNSS recep-

tion for system initialization (see Figure 3, Image 1). By con-

trast, it also includes narrow alleys only accessible to pedes-

trians with steps and slopes up to 16 % (see Figure 3, Image 2). 

Such narrow alleys are challenging for all three georeferencing 

methods because of restricted GNSS reception, geometric ho-

mogeneity and poor illumination. Wide pedestrian promenades 

with shops on both sides dominate other parts of the test site 

(see Figure 3, Image 3). Image 3 in Figure 4 shows the main 

traffic axis through the city centre with busy tram and bicycle 

traffic. The dense street network in the city centre allows for 

acquisition patterns with multiple loops. Furthermore, the test 

site comprises 79 reference points. Most of them are well-de-

fined natural reference points and some were marked with 

photogrammetric targets. Fricker, Weber (2019) provide a de-

tailed description of the reference point measurements by tachy-

metry and show a 3D standard deviation below 5 mm. 

 

 

Figure 3. Map from the first test site located in the city centre of 

Basel with images showing environmental conditions. 

 

 

Figure 4. Map from the second test site located in the forest 

with images showing environmental conditions. 
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4.2 Forest 

The second test site is situated in a forest in Münchenstein near 

Basel. The extent of the test site is approx. 100 x 200 m. This 

test site also incorporates an area with good GNSS reception at 

a highway exit for system initialization (see Figure 4, Image 1). 

Furthermore, the forest path leads trough a road underpass (see 

Figure 4, Image 2). Narrow paths only accessible to pedestrians 

with dense vegetation at ground level dominate the scenery in 

images 3 and 6 of Figure 4. Because of restricted GNSS recep-

tion, poor and variable illumination as well as ambiguous, 

repetitive geometry, such forest scenarios represent a major 

challenge for all georeferencing methods. In addition, the test 

site also includes driveable forest roads with less dense vegeta-

tion (see Figure 4, Images 4 and 5). The test site includes 89 

reference points, which were marked with photogrammetric 

targets and fixed either on trees or on driven-in pillars. Fricker, 

Weber (2019) describe the reference point measurements by 

tachymetry with closed polygons as well as the geodetic evalua-

tion, which shows a 3D standard deviation of 5 mm. 

 

 

5. PERFORMANCE INVESTIGATIONS 

Firstly, we aimed at investigating the suitability of our backpack 

MMS in outdoor environments under real-world conditions. 

Secondly, we compared the different georeferencing methods in 

terms of accuracy and reliability in different environments. For 

this, we carried out data acquisition campaigns in the two 

different large-scale test sites. Furthermore, we aimed at provid-

ing meaningful statements on the accuracy potential by the 

comparison of image-based coordinate measurements with ref-

erence point coordinates. While the standard deviations of coor-

dinate measurements indicate their precision, coordinate differ-

ences to the ground truth show the potential of absolute accura-

cy. Furthermore, we defined 3D distances with different lengths 

in order to evaluate the relative accuracy.  

 

5.1 Data acquisition 

In both test sites, we initialized our system in a location with 

good GNSS coverage at the beginning as well at the end of a 

data acquisition campaign. In order to align the body frame with 

the local-level frame, we ran a few laps under avoidance of 

pivoting movements. 

 

Test site City centre Forest 

Targets (CPs, GCPs) [n] 79 (74, 5) 89 (83, 6) 

Panorama images [n] 721 843 

Single images [n] 4326 5052 

Trajectory length [m] 800 740 

Acquisition time [min] 24 25 

Data volume [GB] 14 16 

Table 2. Key figures relating to data acquisition for the 

performance investigations. 

 

Since image storage requires somewhat less than one second, 

we aimed at an acquisition speed of one meter per second in 

order to get an image capturing interval of about one meter. In 

the city centre, the trajectory length was about 800 m and the 

acquisition took 24 minutes (see Table 2). The trajectory length 

in the forest was about 740 m and the data acquisition required 

25 minutes. In total, we captured 4326 single images at 721 

locations in the city and 5052 single images at 843 locations in 

the forest respectively. The LiDAR data formed the majority of 

the resulting data volume of about 14 GB in the city centre and 

16 GB in the forest. 

 

5.2 Data processing and datum transformation 

Using the recorded raw data from GNSS, IMU, LiDAR scan-

ners and panorama camera, we determined the image poses with 

direct, SLAM-based, and image-based georeferencing as al-

ready introduced in chapter 3.2 (see Figure 2). For image-based 

georeferencing, we used the SLAM-based image poses as initial 

values for the bundle-adjustment.  

 

In order to compare all coordinates within the same reference 

frame, we transformed the directly georeferenced and the 

SLAM-based image poses with a 6 DoF transformation using 

well distributed 5 GCPs in the city centre (see Figure 3) and 6 

GCPs in the forest (see Figure 4). As described in Blaser et al. 

(2018 & 2019), we carried out the 6 DoF transformation using a 

self-developed Python program. Since the directly georefer-

enced image poses were already in a global reference frame, the 

transformation parameters only comprised mean offsets and 

rotations to the GCPs. By contrast, the transformation parame-

ters of the SLAM-based image poses additionally contained the 

transition from the local to the global reference frame. For 

image-based georeferencing, we introduced the transformed 

SLAM-based image poses as initial values and measured the 

same GCPs as used for the 6 DoF transformation in four con-

secutive images for the subsequent bundle adjustment. This 

ensured that the image poses from image-based georeferencing 

were in the same reference frame as the transformed directly 

georeferenced image poses and the transformed SLAM-based 

image poses. 

 

5.3 Coordinate and distance measurements 

In our previous investigations in indoor and in underground en-

vironments (Blaser et al., 2018 & 2019), we estimated the 3D 

point coordinates using a forward intersection with image mea-

surements in four consecutive images. Our self-developed bun-

dle adjustment-based forward intersection Python program sup-

ports using the same image measurements for different image 

pose sources. In addition, the program also provides the stan-

dard deviation of the forward intersection, which represents the 

precision of a 3D point measurement. Furthermore, we defined 

3D distances between known reference points with lengths from 

0.03 to 21.08 m. They are distributed across different locations 

in both test areas (see dotted lines in Figure 3 and 4). We mea-

sured both the start and end of the 3D distance in different 

image sets. 

 

 

6. RESULTS AND DISCUSSION 

First, we evaluated the standard deviations of 3D coordinate 

measurements from the forward intersection. They represent the 

precisions of coordinate observations. Further, the precision is a 

good measure for the relative measuring accuracy within the 

same images. The distribution of precisions shows a significant 

number of outliers across all test sites and georeferencing 

methods (see Figure 5). In order to evaluate the potential in ac-

curacy, we used the median, which is more robust against out-

liers than the mean or the RMSE. The median precision using 

directly georeferenced image poses amounted to 3.4 cm in the 

city centre and 2.3 cm in the forest. This is slightly lower than 

the median precision using SLAM-based image poses, which 

amounts to 5.2 cm in the city centre and 4.0 cm in the forest 
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(see Figure 5 and Table 3). Image-based georeferencing im-

proves the median precision by a factor of 10-15 to 3 mm 

within both test sites. This confirms the major improvements 

that we also achieved in previous work (Blaser et al., 2018 & 

2019). 

 

 

Figure 5. Boxplot with the precision of the 3D coordinate 

observations for the test sites “City centre” (left) and “Forest” 

(right). The blue boxplot on the left represents direct 

georeferencing, the green boxplot in the middle SLAM-based 

georeferencing, and the red boxplot on the right image-based 

georeferencing. The black diamond symbol indicates the mean 

precision. 

 

In order to evaluate the absolute accuracy, we compared the 3D 

coordinates of measured points with the ground truth. The 

distribution of coordinate differences shows outliers across all 

test fields and georeferencing methods (see Figure 6). The 

median 3D coordinate deviation of direct georeferencing 

amounts to 45.2 cm in the city centre and 100.7 cm in the 

forest. The much poorer GNSS reception in the forest might 

cause the significant difference to the city centre. By contrast, 

the median 3D coordinate deviations of SLAM-based georefer-

encing with 36.6 cm in the city centre and 21.0 cm in the forest 

are in the same order of magnitude. However, the higher num-

ber of outliers show that SLAM-based georeferencing in the 

forest is less reliable than in the city centre. Image-based georef-

erencing significantly reduced the median 3D coordinate devi-

ations in both test sites to 4.3 cm in the city centre and 13.4 cm 

in the forest (see Table 3). 

 

Finally, we analysed the length deviations of 3D distances to the 

ground truth in order to evaluate the relative accuracy. Thereby, 

the predefined 3D distances varied in length from 3 cm to 

23.1 m and we measured the start and the end of the distances in 

different image sets. Figure 7 depicts the length deviations of 

3D distances related to the measured distances. By contrast, 

Figure 8 shows the length deviations using different georefer-

encing methods for both test sites. 

 

All median values of length deviations using directly georefer-

enced poses as well as SLAM-based poses did not significantly 

differ. They are between 7.1 and 9.4 cm (see Table 4). How-

ever, a larger number of outliers occurred when using directly 

georeferenced poses. Poses from image-based georeferencing 

significantly improved the relative accuracy, so that the median 

of length deviations decreased to 1.9 and 2.0 cm.  

 

Figure 6. Boxplot with 3D coordinate deviations to the ground 

truth that represent the absolute accuracy. All samples are listed 

from left to right by test area (“City centre” and “Forest”) and 

georeferencing method (“Direct” (blue), “SLAM-based” (green) 

and “Image-based” (red)). The black diamond symbol indicates 

the mean 3D coordinate deviation. 

 

Method Test 

site 

Pts. 

[n] 

Precision [mm] Accuracy [mm] 

mean median mean median 

Direct 1) 79 42 34 545 452 

2) 89 65 23 1061 1007 

SLAM-

based 

1) 79 69 52 395 366 

2) 89 155 40 333 210 

Image-

based 

1) 79 9 3 91 43 

2) 89 23 3 150 134 

Table 3. Summary of precisions and accuracies of 3D coordi-

nate observations using different georeferencing methods 

(Direct, SLAM-based and Image-based) for both test sites 1) 

“City centre” and 2) “Forest”. The table contains both the mean 

and median precision and accuracy values. Precision represents 

the RMSE of forward intersection of a single point measure-

ment and accuracy shows the 3D coordinate deviation to the 

ground truth.  

 

 

Figure 7. Scatter plot with length deviations between measured 

3D distances and ground truth. The colours show the different 

georeferencing methods, while the point shape represents the 

test site. 
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Figure 8. Boxplot with length deviations between measured 3D 

distances and ground truth representing the relative accuracy. 

All samples are listed from left to right by test area (“City 

centre” and “Forest”) and georeferencing method (“Direct” 

(blue), “SLAM-based” (green) and “Image-based” (red)). The 

black diamond symbol indicates the mean 3D distance 

deviation. 

 

Method Test 

site 

Distances 

[n] 

Accuracy [mm] 

mean median 

Direct 1) 25 143 94 

2) 25 191 71 

SLAM-

based 

1) 25 88 74 

2) 25 97 81 

Image-

based 

1) 25 64 20 

2) 25 41 19 

Table 4. Summary of accuracies of 3D distance observations 

using different georeferencing methods (Direct, SLAM-based 

and Image-based) for both test sites: 1) “City centre” and 2) 

“Forest”. The table contains both the mean and median 

accuracy values. Accuracy represents the length deviation to the 

ground truth. 

 

Our results confirm those of our previous work as well as of 

work from other groups. Lehtola et al. (2017) carried out inves-

tigations on pointclouds of indoor environments using compara-

ble backpack MMS. Their deviations up to 14 cm and 55 cm in 

floor heights with the Leica Pegasus Backpack and the Würz-

burg Backpack respectively are in the same order of magnitude. 

However, their results are not directly comparable because of 

the different environmental conditions. Furthermore, they only 

concern the height component. By contrast, Tang et al. (2015) 

performed experiments with an all-terrain-vehicle LiDAR-based 

MMS in the forest within similar conditions. In mature forest, 

they reported 2D stem position deviations to the reference with 

GNSS and IMU as well as with SLAM and IMU in the range of 

40-72 cm and 4-45 cm respectively. Our 3D coordinate differ-

ences with direct georeferencing were slightly higher, which 

might result from the fact that we additionally considered the 

third dimension and that our acquisition speed was significantly 

slower. By contrast, the deviations of the SLAM-based georef-

erencing are comparable to ours. Although, our investigated 

SLAM-based georeferencing seems to be more robust to envi-

ronmental changes. In addition, as proven in our previous work, 

subsequent image-based georeferencing significantly improves 

the accuracies by a multiple and the precisions by an order of 

magnitude over published results with direct or SLAM-based 

georeferencing in similar environments. However, a closer fu-

sion of all three georeferencing methods has great potential to 

further improve accuracy and robustness. 

 

 

7. CONCLUSION AND OUTLOOK 

In this contribution, we extended our image-based backpack 

MMS by direct georeferencing capabilities and we carried out 

performance investigations within two large-scale test sites. One 

test site is situated in a city centre and the other in a forest. Both 

test sites consist of areas with restricted GNSS reception, poor 

illumination and uniform or ambiguous geometry, which are 

challenging for any georeferencing method. With our investiga-

tions, we demonstrated the suitability of our research backpack 

MMS under real conditions. Further, we empirically compared 

the performance of direct, SLAM-based and image-based geo-

referencing in both test sites. We obtained median precisions of 

3D coordinate measurements of 3 mm using image poses from 

image-based georeferencing. Thus, we achieved an improve-

ment in precision from direct or SLAM-based georeferencing to 

image-based georeferencing by a factor of 10 to 15. These pre-

cision improvements offered by image-based georeferencing by 

about an order of magnitude confirm the findings of our previ-

ous investigations in indoor and underground environments. 

 

The median coordinate differences of direct georeferencing 

were 45.2 cm in the city centre and 100.2 cm in the forest due to 

restricted GNSS reception. SLAM-based georeferencing with 

median coordinate differences of 36.6 cm and 21.0 cm per-

formed slightly better. With image-based georeferencing, we 

achieved median coordinate differences of 4.3 cm in the city 

centre and 13.4 cm in the forest. This also corresponds to an 

accuracy improvement by a factor between 2 to 10. Finally, we 

investigated the relative accuracy by comparing measured 3D 

distances with the ground truth. The median deviations were 

between 1.9 cm and 2.0 cm using image poses from image-

based georeferencing. The absolute accuracies as well as the 

relative accuracies are comparable to previous work and to 

image-based MMS with fixed stereo bases. 

 

Our investigations show a great potential for complementing 3D 

image-based geospatial web-services of cities as well as for 

creating such web services for forest applications. In addition, 

accurately georeferenced imagery of urban environments has an 

enormous potential for future visual localization and augmented 

reality applications. 

 

Nevertheless, we intend to improve further the robustness as 

well as the accuracy by combining different georeferencing 

methods. In addition, we will complete the overall system cali-

bration of our backpack MMS and analytically determine pend-

ing lever arms and misalignment from LiDAR scanners to the 

panorama camera. Ongoing work also focuses on the robust 

generation of accurate 3D depth information, which will benefit 

from highly accurate image-based georeferencing. The addition-

al depth layer will enable 3D measurement directly in the image 

with just one mouse click and will thus significantly enhance 

the user-friendliness of the cloud-based 3D services. 
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