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Summary. The paper deals with neara�ne planes desribed by H. A. Wilbrink. We on-sider their entral automorphisms, i.e. automorphisms satisfying the Veblen ondition,whih beome entral ollineations in onneted projetive planes. Moreover, a oneptof entral pseudo-automorphism is onsidered, i.e. some bijetions in a neara�ne planeare not automorphisms but they beome entral ollineations in the related projetiveplanes.1. Basi onepts. The paper deals with neara�ne planes onsideredby H. A. Wilbrink in [5℄. Some de�nitions and properties onerning a�neand projetive planes given in [2, pp. 115�116, 120�121℄ and [4, pp. 62�65℄will also be used. We wish to study automorphisms and other bijetions ofneara�ne planes whih beome entral ollineations in the related projetiveplanes. We apply the terminology of [5℄ but we use the notation from [3℄. Inall strutures onsidered, points will be denoted by apital Latin letters andbloks by small Latin or Greek letters. The extension of an automorphism
ϕ of an a�ne plane A to the projetive extension A will be denoted by ϕ.The following statements will be used:Theorem 1.1 ([2, p. 120℄). If ϕ and ψ are ollineations in a projetiveplane suh that ϕ has enter A and axis a, and ψ has enter B and axis b,then:(1) ϕψ = ψϕ if and only if A ∈ b and B ∈ a.(2) If a 6= b and A 6= B then ϕψ is a entral ollineation if and only if ϕand ψ are homologies suh that A ∈ b, B ∈ a, and ϕ(X) = ψ−1(X)2000 Mathematis Subjet Classi�ation: 51A15, 51A30, 51A35, 51A45.Key words and phrases: a�ne plane, entral automorphism, ollineation, Desarguespostulate, neara�ne plane, projetive plane, Veblen ondition.[337℄
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for every X ∈ AB. If this is the ase, then ϕψ is a homology withenter ab and axis AB.We also reall the so-alled Veblen ondition:(V) Let g be a straight line in a neara�ne plane; P,Q,R distint pointson g; and b a line di�erent from g with base point P and S ∈ b\{P}.Then (R ≡ Q� S) ∩ b 6= ∅.
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g Fig. 1Theorem 1.2 ([5, p. 55℄). Let NA = (Ω,Ξ,�,≡) be a neara�ne planesatisfying (V) and let g be any straight line. Set
Lg := {X � Y ∈ Ξ; X ∈ g} ∪ {h; h ≡ g}.Then NA(g) = (Ω,Lg) is an a�ne plane.Corollary 1.1. If g is a straight line in NA, P,Q ∈ g and P � R ≡

Q� S, then PR is parallel to QS in NA(g).2. Central automorphisms in neara�ne planes satisfying (V).For any straight line g the point set of NA(g) oinides with the point setof NA, but the set of all lines of NA(g) is a proper subset of the set of linesof NA. An automorphism ϕ of NA beomes an automorphism of NA(g) i�
ϕ(g) = g. In this ase the notation ϕg means the restrition of ϕ to the linesof NA(g).Definition 2.1. An automorphism ϕ of a neara�ne plane NA is entralif there exists a straight line g suh that ϕg is a entral ollineation in NA(g).The enter and axis of ϕg are alled the enter and axis of ϕ.It follows from De�nition 2.1 and Theorem 1.2 that every entral auto-morphism of NA preserves two lines of NA(g): the ideal line and g∪{[g]≡}.The olletion of all entral automorphisms of a neara�ne plane may bedivided into three lasses. We onsider two of them, sine the third one(translations) is desribed in [5℄. We omit easy proofs.2.1. ϕ is a homothetyProposition 2.1. If ϕ is an automorphism of NA then the followingonditions are equivalent :
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(a) ϕ is a homothety of NA with enter A.(b) For every straight line g through A, ϕg is a homothety of NA(g) withenter A.() For some straight line g through A, ϕg is a homothety of NA(g) withenter A.One an easily verify that the transitivity of the group of homotheties with�xed enter U implies the following versions of Desargues' postulate [1, p. 72℄:(D2) If U,X,X ′, Y, Y ′, Z, Z ′ ∈ Ω are pairwise distint, U � X is straightand U�Y , U�Z are lines di�erent from eah other and from U�X,then X ′ ∈ U �X, Y ′ ∈ U � Y , Z ′ ∈ U � Z, X � Y ≡ X ′

� Y ′ and
X � Z ≡ X ′

� Z ′ imply Y � Z ≡ Y ′
� Z ′.

Y

X

'X

Z

'Z

'Y

U

Fig. 2(D3) If U,X,X ′, Y, Y ′, Z, Z ′ ∈ Ω are pairwise distint, U �X, U � Y and
U � Z are pairwise distint lines, and X ′ ∈ U � X, Y ′ ∈ U � Y ,
Z ′ ∈ U � Z, and if X � Y ≡ X ′

� Y ′ and X � Z ≡ X ′
� Z ′ arestraight then Y � Z ≡ Y ′

� Z ′.
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2.2. Some nonideal line is the axis of ϕ. Let Υ denote the set of allstraight lines and g the axis of ϕ. We know that the enter must be ideal.The number of �xed lasses of straight lines is either 1 or 2: if g is properthen the lass of straight lines must be the enter.Theorem 2.1. If NA ontains at least three lasses of straight lines and

ϕ is an automorphism with nonideal axis g, then the following onditions areequivalent :(i) ϕ is an involution.(ii) If X,Y ∈ g, X 6= Y , X�A ∈ Υ , X�A ≡ Y �ϕ(A), then X�ϕ(A) ≡
Y �A and Y �A ∈ Υ .Figure 4 presents all possibilities for the pair (axis g, enter P ): g ∈ Υand P = [g]≡; g ∈ Υ and P = [a]≡, where a ∈ Ξ \ Υ ; g ∈ Υ and P = [a]≡,where a ∈ Υ and a 6≡ g; g ∈ Ξ \ Υ and P = [a]≡ for some a ∈ Υ .Proposition 2.2. Suppose a straight line g is the axis of an automor-phism ϕ.(1) If ϕ is an involution then: some lass of straight lines nonparallel to
g is the enter of ϕ if and only if the number of lasses of straightlines is even.(2) If NA ontains exatly two lasses of straight lines then the lass
[h]≡ must be the enter , where h ∈ Υ and h 6≡ g.(3) If NA ontains exatly three (resp. four) lasses of straight linesand [g]≡ or some lass [a]≡ of proper lines (resp. some lass [h]≡ ofstraight lines, where h 6≡ g) is the enter of ϕ, then ϕ is an involution.From Proposition 2.2 and Theorem 2.1 the following is immediate.Corollary 2.1.(a) In an a�ne plane of even order every involution pointwise �xing oneline determines on�gurations of parallelograms with parallel diago-nals (Fano on�gurations; see the upper left part of Figure 4).(b) In an a�ne plane of odd order every involution pointwise �xing oneline determines on�gurations of trapeziums with parallel diagonals(the axis and a line through the enter are arms of suh a trapezium;see the lower left part of Figure 4).() In an a�ne plane of order 2 or 3 every automorphism pointwise �xinga line is an involution.Proposition 2.3. Suppose a proper line g is the axis of an automor-phism ϕ.(1) If ϕ is an involution then the number of lasses of straight lines isodd.
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Fig. 4(2) The number of lasses of straight lines is not two.(3) If there exist exatly three lasses of straight lines then ϕ is an invo-lution.(4) If there exist exatly four lasses of straight lines then:(a) ϕ is a mapping of order 3, i.e. if A /∈ g then A 6= ϕ(A) 6=
ϕ(ϕ(A)) 6= ϕ(ϕ(ϕ(A))) = A.(b) If X,Y, Z ∈ g, A /∈ g, X � A ∈ Υ and X � A ≡ Y � ϕ(A) ≡
Z�ϕ(ϕ(A)), then X�ϕ(A) ∈ Υ and X�ϕ(A) ≡ Y �ϕ(ϕ(A)) ≡
Z �A.3. Examples. Proper neara�ne planes with more than two lasses ofstraight lines are not well known. Also our examples are given for neara�neplanes with exatly two lasses of straight lines. We shall onsider some
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neara�ne planes related to ordered �elds [3℄. Here the set of proper linesis given by {{(p, q)} ∪ {(x, y); (x − p)(y − q) = r}; p, q, r ∈ F, −r > 0} ∪
{{(p, q)} ∪ {(x, y); (f(x) − p)(g(y) − q) = r}; p, q, r ∈ F, −r < 0}, where
f , g are some bijetions satisfying the ondition

(u− v)(w − z)(f(u) − f(v))(g(w)− g(z)) > 0for u, v, w, z ∈ F , u 6= v, w 6= z.Example 3.1. Let F be an Eulidean ordered �eld. For s ∈ F , 0 < s 6= 1,take the funtions
f(x) =

{

x for x ≥ 0,

sx for x ≤ 0,
g(y) = y.Consider the mapping

ϕ(x, y) =

{

(−x, y) for x ≥ 0,

(−sx, y) for x ≤ 0.We obtain
ϕ({(x, y); (x− p)(y − q) = r, x ≥ 0})

= {(x, y); (x+ p)(y − q) = −r, x ≤ 0};
ϕ({(x, y); (x− p)(y − q) = r, x ≤ 0})

= {(x, y); (x/s+ p)(y − q) = −r, x ≥ 0};
ϕ({(x, y); (sx− p)(y − q) = r, x ≤ 0})

= {(x, y); (x+ p)(y − q) = −r, x ≥ 0}.In ordered �elds r > 0 ⇔ −r < 0. Therefore ϕ is an automorphism. Ofourse the straight line given by x = 0 is its axis and the lass [a]≡ is itsenter, where a is desribed by y = 0.For every z ∈ F and 1 6= u > 0 the mapping hz,u(x, y) = (x/u,
u(y − z) + z) is a homothety with enter (0, z) [3, p. 356℄. Note that theenter of hz,u is on the axis of ϕ and vie versa. Thus we have

hz,u(x, y) ◦ ϕ = ϕ ◦ hz,u(x, y) =

{

(−x/u, u(y − z) + z) for x ≥ 0,

(−sx/u, u(y − z) + z) for x ≤ 0.It is not a entral automorphism sine for the straight line y = z joiningboth enters we have
ϕ ◦ hz,u(x, z) =

{

(−x/u, u(z − z) + z) 6= (x, z) for some x ≥ 0,
(−sx/u, u(z − z) + z) 6= (x, z) for some x ≤ 0.For every w ∈ F there exists a straight translation τw(x, y) = (x, y+w),

τw and hz,u are dilatations, so τw ◦ hz,u and hz,u ◦ τw also must have theideal axis. We obtain τw ◦ hz,u = (x/u, u(y − z) + z + w) with enter
(0, z + t/(1 − u)) and hz,u ◦ τw(x, y) = (x/u, u(y − z + w) + z) with en-ter (0, z + ut/(1 − u)).
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In the same way we obtain the nonentral automorphism τw ◦ ϕ =

ϕ ◦ τw.Example 3.2. Let F be the �eld of reals with standard order and take
f(x) = x3 and f(y) = y. Then hz,u = (x/u, u(y − z) + z) is a nonentralautomorphism for u 6= −1 [3, p. 356℄. It is a homothety with enter (0, z)for every z ∈ F and u = −1. For every w ∈ F the mapping τw(x, y) =
(x, y +w) is a straight translation again. As before, we obtain distint non-entral automorphisms τw ◦ hz,u and hz,u ◦ τw (they are also distint for
u = −1).Consider the bijetions ϕs(x, y) = (sx, y) and ψt(x, y) = (x, ty). Theyare automorphisms if s > 0 and t > 0. The straight line y = 0 (respetively
x = 0) is the axis of ψt (resp. ϕs) and the ideal point orresponding to thestraight line x = 0 (y = 0) is the enter of ψt (resp. ϕs). Of ourse the enterof ϕs is on the axis of ψt and vie versa, so ϕs ◦ ψt(x, y) = ψt ◦ ϕs(x, y) =
(sx, ty). The line joining both enters is ideal in NA(g), where g is given by
x = 0. Only the ideal line may be the axis of ϕs ◦ψt. If this is the ase, thenevery line with base point on g is mapped onto some parallel line. But ϕs◦ψtmaps the proper line x(y − q) = r with r < 0 onto the line x(y − tq) = str.The line x3(y− q) = r with r > 0 is mapped onto the line x3(y− tq) = s3tr.Thus str = r for r < 0 and s3tr = r for r > 0. This is possible only for
s = t = 1 or s = t = −1. But s, t > 0 and then ϕs = ψt = id. Note that ϕs◦ψtmay be a entral automorphism although ϕs and ψt are not automorphisms.This happens if s = t = −1, but then ϕs ◦ ψt = ϕ−1 ◦ ψ−1 = h0,−1.In general the enter (0, z) of hz,−1 is not on the axis y = 0 of ψt.Therefore hz,−1 ◦ ψt 6= ψt ◦ hz,−1. But h0,−1 ◦ ψt = ψt ◦ h0,−1 sine (0, 0) ison the line y = 0. However, hz,−1 ◦ ψt is a nonentral automorphism.In ontrast to ψt, the enter of hz,−1 is on the axis of ϕs. Hene we obtain
hz,−1◦ϕs = ϕs ◦hz,−1. The produt hz,−1◦ϕs is a nonentral automorphism.Example 3.3. Let F be the �eld of reals with standard order and put
f(x) = g(x) = x3. For every u ∈ F , u 6= 0, 1, h0,u(x, y) = (x/u, uy) isa homothety with enter (0, 0) [3, p. 356℄. We de�ne ϕs and ψt as in Ex-ample 3.2. Then ϕs, ψt are (entral) automorphisms if s, t > 0 and then
ϕs ◦ ψt = ψt ◦ ϕs. In general ϕs ◦ ψt is not entral. But ϕs ◦ ψt is entral if
t = s−1. Indeed, ϕs maps the line (x−p)(y− q) = r with r < 0 onto the line
(x−sp)(y−q) = sr, and the line (x3−p)(y3−q) = r with r > 0 onto the line
(x3 − s3p)(y3 − q) = s3r. For ψt the situation is analogous. Therefore ϕs ◦ψtmaps the line (x − p)(y − q) = r onto (x − sp)(y − tq) = str and the line
(x3 − p)(y3 − q) = r onto (x3 − s3p)(y3 − t3q) = s3t3r. In partiular, for thestraight line g desribed by x = 0 all proper lines with base points on g aregiven by the equations x(y−q) = r with r < 0 and x3(y3−q) = r with r > 0,and ϕs ◦ ψt maps them onto lines x(y − tq) = str and x3(y3 − t3q) = s3t3r
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respetively. Only the ideal line may be the axis of ϕs ◦ ψt, sine it passesthrough the enters of ϕs and of ψt. Every ideal point of NA(g) is �xed by
(ϕs)g ◦ (ψt)g if r = str and r = s3t3r. This is possible if t = s−1. In this ase
ϕs ◦ψs−1 is a entral automorphism with the ideal axis and enter (0, 0). Weobtain ϕs ◦ ψs−1(x, y) = (sx, s−1y) = h0,s−1(x, y).Consider the remaining produts. We have h0,u◦ϕs(x, y) = ϕs◦h0,u(x, y)
= (sx/u, uy) and h0,u◦ψt(x, y) = ψt◦h0,u(x, y) = (x/u, uty). The line joiningthe enters of ϕs and h0,u is y = 0, so h0,u ◦ϕs is entral if every point (x, 0)is �xed. We obtain (sx/u, 0) = (x, 0), hene s = u and then h0,u ◦ ϕu = ψuis a entral automorphism with the ideal enter orresponding to the line
x = 0 and the axis y = 0.The line joining the enters of ψt and h0,u is x = 0, so now (0, y) shouldbe �xed by the produt and we obtain (0, uty) = (0, y), i.e. u = t−1, h0,t−1 ◦
ψt(x, y) = (tx, y) = ϕt(x, y).It is not di�ult to onlude that for every u 6= 1, 0, the group generatedby h0,u, ϕu, ψu is Γu = {ϕn,m; n,m ∈ Z}, where Z is the set of integers and
ϕn,m(x, y) = (unx, umy)

4. Pseudo-automorphisms of a neara�ne plane. There exist ex-amples of bijetions of the point sets of neara�ne planes whih are notautomorphisms, but beome automorphisms on a�ne planes determined bystraight lines.Definition 4.1. A bijetion ϕ of a neara�ne plane NA is a pseudo-automorphism if there exists a straight line g suh that ϕg is an automor-phism of NA(g). Suh a pseudo-automorphism ϕ is alled entral if ϕg is aentral ollineation in NA(g).Of ourse ϕ is a pseudo�automorphism if ϕ maps a line with base pointon g onto a line with base point on g, although the image of the base pointneed not be the base point. Moreover, lines whih have base points not on gneed not be mapped onto lines.Example 4.1. Let NA be the lassial neara�ne plane over the �eldof reals. Consider the proper line a = {(0, 0)} ∪ {(x, y)}; xy = 1}. Forevery point P = (u, v) the straight lines through P are given by x = u,
y = v. If u 6= 0 6= v then they interset a at the points U = (u, 1/u),
V = (1/v, v), respetively. The remaining two straight lines through U or
V are desribed by the equations x = 1/v, y = 1/u and they interset atthe point Q = (1/v, 1/u). In the same way we onsider the ase u = 0 or
v = 0. Therefore, the proper line a determines the following bijetion Sa ofthe point set:
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Sa(x, y) =



















(1/y, 1/x) for x 6= 0 6= y,

(0, 1/x) for x 6= 0 = y,

(1/y, 0) for x = 0 6= y,

(0, 0) for x = 0 = y.Clearly, Sa(P ) = P ⇔ P ∈ a. Note that Sa is never an automorphism ofthe neara�ne plane, sine the line {(p, q)} ∪ {(x, y); (x − p)(y − q) = pq}with p 6= 0 6= q is mapped onto the set {(1/q, 1/p)} ∪ {(x, y); qx+ py = 1}whih is not a line. But any proper line c with base point on the straightline g desribed by x = 0 is given by x(y − q) = r. We �nd that the imageof c is given by x(y+ q/r) = 1/r. Note that the base point (0, q) with q 6= 0of c is mapped to (1/q, 0) whih is not the base point of Sa(c) but it is on
Sa(c). The line a is the axis of the pseudo-automorphism Sa and the lass ofproper lines desribed by x(y− q) = −1 is the enter of Sa. In the same waywe onlude that every proper line b = {(p, q)}∪{(x, y)}; (x−p)(y−q) = v}with v 6= 0 and arbitrary p, q determines a pseudo-automorphism Sb.

b
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)( bS a

)( bS a

Fig. 5
Example 4.2. Let F and the neara�ne plane NA be as desribed inExample 3.3. For the line a = {(0, 0)} ∪ {(x, y)}; xy = v}, where v 6= 0, we
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use the same arguments whih work for Example 4.1 and obtain:

Sa(x, y) =



















(v/y, v/x) for x 6= 0 6= y,

(0, v/x) for x 6= 0 = y,

(v/y, 0) for x = 0 6= y,

(0, 0) for x = 0 = y.The line b = {(p, q)}∪{(x, y)}; (x− p)(y− q) = pq} with p 6= 0 6= q, pq < 0,is not mapped onto a line again. Clearly, Sa maps any line
c = {(0, q)} ∪ {(x, y); x(y − q) = r},where r < 0, onto the line

Sa(c) =

{(

0,−vq
r

)}

∪
{

(x, y); x

(

y +
vq

r

)

=
v2

r

}

.Consider any line
d = {(0, q)} ∪ {(x, y); x3(y3 − q3) = r}with r > 0 and with its base point (0, q) on the straight line x = 0. We have

Sa(d) =

{(

0,− vq
3
√
r

)}

∪
{

(x, y); x3

(

y3 +
v3q3

r

)

=
v6

r

}

.Note that v2/r and v6/r are of the same sign as r. Therefore Sa is a pseudo-automorphism. It is entral sine a is its axis. A simple alulation showsthat the lass {{(0, q)}∪{(x, y); x3(y3−q3) = −v3}; q ∈ F} (resp. {{(0, q)}∪
{(x, y); x(y − q) = −v}; q ∈ F}) of parallel lines is the enter of Sa if v < 0(resp. v > 0).Now if b = {(p, 0)} ∪ {(x, y); (x− p)y = r}, r < 0 and p 6= 0 then set

Sb(x, y) =















































(

r

y
+ p,

r

x− p

) for x 6= p, y 6= 0,

(

p,
r

x− p

) for x 6= p, y = 0,

(

r

y
+ p, 0

) for x = p, y 6= 0,

(p, 0) for x = p, y = 0.This time Sb is not a pseudo-automorphism. The line
{(p, q)} ∪ {(x, y); (x3 − p3)(y3 − q3) = s}with s > 0 and the base point on the straight line x = p is mapped onto theset

{(

r

q
+ p, 0

)}

∪
{

(x, y);

((

r

y
+ p

)

3

− p3

)((

r

x− p

)

3

− q3
)

= s

}
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whih is not a line. Using the same arguments, we onlude that in this plane
Sb is a pseudo-automorphism if and only if (0, 0) is the base point of a.
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