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ABSTRACT Background and objective: Blood pressure (BP) is one of the crucial indicators that con-

tains valuable medical information about cardiovascular activities. Developing photoplethysmography

(PPG)-based cuffless BP estimation algorithms with enough robustness and accuracy is clinically useful

in practice, due to its simplicity and noninvasiveness. In this paper, we have developed and tested two

frameworks for arterial blood pressure (ABP) estimation at the central arteries using photoplethysmography

and electrocardiogram. Methods: Supervised learning, as adapted by most studies regarding this topic,

is introduced by comparing three machine learning algorithms. Features are extracted using semi-classical

signal analysis (SCSA) tools. To further increase the accuracy of estimation, another BP estimation algorithm

is presented. A single feed-forward neural network (FFNN) is utilized for BP regression with PPG features,

which are extracted by SCSA and later used by FFNN as the network input. Both BP estimation algorithms

perform robustly against MIMIC II database to guarantee statistical reliability. Results: We evaluated the

performance against theAdvancement ofMedical Instrumentation (AAMI) andBritishHypertension Society

(BHS) standards, and we have compared the standard deviation (STD) of estimation error with current

state of the arts. With the AAMI standard, the first method yields comparable performance against existing

literature in the estimation of BP values. Regarding the BHS protocol, the second method achieves grade A

in the estimation of BP values. Conclusion: We conclude that by using the PPG signal in combination with

informative features from the Schrödinger’s spectrum, the BP can be non-invasively estimated in a reliable

and accurate way. Furthermore, the proposed frameworks could potentially enable applications of cuffless

estimation of the BP and development of mobile healthcare device.

INDEX TERMS Blood Pressure (BP), cuffless BP estimation, photoplethysmography (PPG), inappropriate

PPG, Schrödinger spectrum, SCSA feature extraction.

I. INTRODUCTION

Blood pressure (BP) is what drives the flow of blood through

the blood vessels, thus playing an important role in the

dynamics of blood flow in each heartbeat interval. Abnormal

blood pressure is currently being considered as a crucial

risk factor for cardiovascular diseases [1]. Hypertension,

as one of the major aspects leading to the evolution of

cardiovascular diseases (CVDs) [2] silently harms internal

body organs such as brains, eyes and kidneys, which can

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang .

also cause strokes, heart attacks, and kidney failure [3]. The

negative cardiovascular effects of hypertension have been

reported to be largely dependent on absolute BP values

and increased blood pressure variability (BPV) [4]. Accu-

rate BP measurement and estimation are vital for preven-

tion, diagnosis, and treatment of hypertension and related

CVDs. Depending on the clinical situation, either continu-

ous or intermittent blood pressure monitoring is employed.

There are two types of approaches for BP measurement

known as invasive and noninvasive measurement. Invasive

BP measurement is a highly accurate method available for

measuring continuous BP, but it causes potential health issues
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to patients such as bleeding and infection risks, while dam-

ages at vascular tissues cause arterial obstruction. Also,

in specific clinical situations, there are cases where invasive

BP monitoring may be not feasible if safety conditions

are not met properly. Korotkoff sounds to estimate SBP

and DBP is another accurate and reliable way of BP mea-

surement, but it requires trained professionals and it pre-

vents ambulatory blood pressure measurement (ABPM) [5].

Cuff-based BP measurement equipments are widely used in

hospital and home settings to detect abnormal BP [6], how-

ever, defects of its discontinuous nature and the discomfort

caused by the repeated cuff inflations prevent continuous BP

monitoring.

Since most methods for measuring BP waveforms are not

convenient for continuous measurement and ABPM applica-

tions, recently, there has been an increasing amount of atten-

tion in cuffless BP estimation algorithms to enable continuous

BPmonitoring in an easy way, by mapping features of signals

that are easy to measure, to individual’s beat to beat BPs.

In terms of method simplicity, [7] and [8] have attempted

to develop algorithms for cuffless ABP estimation, although

their studies have achieved acceptable accuracy using MLR

algorithms, their method are subjected to the practical issues

of placing two sensors, with will cause movement inconve-

nience for the users. In fact, most researchers use more than

two sensors in their research of cuff-less ABP estimation, [9]

has reached fairly well accuracy but also requires two sensors.

There are works that utilize only one signal, such as [10],

however, multiplemagnetic sensors need to be placed in order

to obtain pulse wave velocity (PWV) signal, hindering their

simplicity to use.

To address these issues, photoplethysmography (PPG)

technology has gained considerable interest by being widely

applied to wearable sensors [11], the non-invasive estimation

of blood pressure (BP) using the PPG method has become

a hot topic nowadays. The PPG signal can be separated

into systolic and diastolic parts. The systolic part of the

signal is related to the process of contraction of the heart

while the diastolic part of the signal is related to the pro-

cess of cardiac expansion. One of the challenges is that,

in the intersection of the two parts, there is a split between

the systolic and diastolic parts called dicrotic notch. In the

recorded samples of some individuals (typically in a patient),

the dicrotic notch is not detectable, thus casting doubt on

studies where inappropriate PPG signals might result in high

errors with unkown effects. [12] develops new methods for

estimating BP regardless of the form and shape (appropriate

and inappropriate) of PPG signal, but their result falls into

grade C in SBP estimation, with BHS standard [13]. Another

challenge is that, in studies such as [9], [12], the result slightly

exceeds the error boundary of the systolic blood pressure

(SBP) requirement [14]. Also, after implementing [3] in

the MIMIC II database, we found the algorithm’s accuracy

slightly decreases. Therefore, increasing the SBP estima-

tion accuracy of existing methods can be of interest. In the

following sections, we develop our methods bearing these

objectives in mind.

A semi-classical signal analysis (SCSA) method has been

proposed for pulse shaped signal analysis in [15]. Application

of SCSA to BP waveform has been shown in previous stud-

ies [16]. This method has been inspired from a soliton’s based

method [17]–[19]. The potential is given by the solution of a

KdV equation, where each negative eigenvalue is correlated

one soliton [17] (Soliton is the solution of some nonlinear par-

tial differential equations like the Korteweg-de Vries (KdV)

equation proposed in Crépeau and co-workers [20], [21]).

These eigenvalues describe solitons in terms of soliton veloci-

ties with the largest eigenvalues describing fast solitons [17].

Therefore, they have been utilized as features in ABP sig-

nal. Morover, it has been shown that there is a similarity

between the PPG and ABP morphologies, suggesting PPG

holds informative features that exist in ABP. [22]. Inspired

by previous works, the study proposes two frameworks for

beat-to-beat BP estimation based on extracted PPG features.

While BP regression analysis has been extensively studied

in different research [2], [3], [7]–[9], [11], [23], correlation

between PPG signal and BP has been shown. However,

when PPG shapes are inappropriate, as is the case with most

patients from intensive care units (ICU) affected by drugs,

several important features can be difficult to localize and

extract. In the first BP estimation framework, a new algorithm

for estimating the Diastolic Blood Pressure (DBP), Mean

Arterial Pressure (MAP) and Systolic Blood Pressure (SBP)

is proposed using the PPG signal with both appropriate and

inappropriate shapes. We explains how the SCSA method

can decompose systolic and diastolic phase regardness of its

appropriateness. PPG waveform segments are decomposed

by SCSA and used as features for supervised machine learn-

ing. To further increase the accuracy of the SBP estimation,

[24] suggests that artificial neural networks (ANNs) have

better performance compared to traditional regression anal-

ysis techniques using pulse arrival time (PTT). Inspired by

this work, we have developed the second framkework using

PPG features as ANN input, which solved the SBP estimation

boundary issue. The paper is organized as follows. Section II

introduces the clinical database we have used throughout

this study. Then it outlines the principle of our ABP esti-

mation methodology by describing SCSA method. More-

over, machine learning frameworks used to evaluate ABP are

described with experimental results that compare different

machine learning algorithms and existing evaluation stan-

dards, demonstrating the effectiveness of features extracted

from the SCSAmethod. Section III introduces FFNN’s struc-

ture and its performance by comparing against the AAMI

and BHS standard. The SCSA method is used for feature

extraction, and an artificial neural network (ANN) is used for

estimation. Section IV presents discussions of our methods

and comparison of other methods in more detail. Section V

concludes the paper by summarizing our results and

contribution.
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FIGURE 1. Histograms of the database parameters. (a) Systolic blood
pressure. (b) Diastolic blood pressur.

TABLE 1. BP ranges in the MIMIC II database.

II. PREDICTING BLOOD PRESSURE USING SUPERVISED

MACHINE LEARNING ALGORITHMS

A. ONLINE DATABASE AND PREPROCESSING

The Physionet’s multiparameter Intelligent monitoring in

intensive Care (MIMIC) II online waveform database is used

for accuracy analysis and comparison with existing methods.

Simultaneous PPG and ABP signals have been recorded for

many patients in various intensive care units (ICU), with part

of them used in this study.

The ABP signal is used for the extraction of reference BP

values, while the PPG signal is used for extraction of SCSA

features. Over 8000 instances were used in the database with

signals sampled at 125Hz and precision of 8 bits. The ABP

signal has been recorded invasively from the aorta and the

PPG signal is recorded from the fingertip. In this study,

we consider the interval of 40 seconds to estimate BP from

the ABP signal. In each signal segment, the minimum and

maximum values are considered as DBP and SBP. Accord-

ingly, MAP is calculated by MAP = (2 × SBP + DBP)/3.

The database includes 707567 signal segments which belong

to 8000 individual records. In order to remove the adverse

influence of noise and artifacts from the raw signals, [25]

is followed regarding the preprocessing of the individual

records. Fig. 1 and Table 1 demonstrate some statistical infor-

mation about the distribution and ranges of the DBP, MAP,

SBP values in the final processed database.

B. SCSA BACKGROUND

The SCSA method has been recently proposed as an

effective tool in analysing pulse shaped signals by

Laleg-Kirati et al. [15]. Given a real positive signal y(t),

SCSA decomposes y(t) into a set of squared eigenfunctions

by using the discrete spectrum of the Schrödinger operator.

The reconstructed signal yh(t) is illustrated in eq. 1.

yh(t) = 4h

Nh∑

n=1

κnhψ
2
nh(t), t ∈ R, (1)

where λnh = −κ2nh are the negative eigenvalues (κ1h > κ2h >

· · · > κnh), and {ψ1h, ψ2h, · · · , ψnh} are the corresponding

FIGURE 2. The block diagram of ABP estimation methodology.

L22 -normalized eigenfunctions (n = 1, 2, · · · ,Nh) such that

−h2
d2ψ(t)

dt2
− y(t)ψ(t) = λψ(t). (2)

Nh is the number of negative eigenfunctions and h is a pos-

itive parameter known as the semi-classical constant. Nh is

a crucial index when reconstructing the signal. When Nh is

relatively large (h tends to zero), the reconstructed spectrum

yh converges to the true spectrum y. This observation is con-

sistent with the semi-classical properties of the Schrödinger

operator whereNh increases when h decreases [26], [27]. One

of the important characteristics is that eigenfunctions which

correspond to large eigenvalues represent the profiles of the

peaks, whereas the remaining functions characterize the noise

details of these profiles. In the specific case of PPG signal

feature extraction, we have tested a range of Nhs and selected

Nh for each individual case which properly reconstructs the

PPG signal given the similarities in morphology between

them.

In Fig. 3, the PPG signal was estimated for several values

of the parameter h and thus Nh. In the online dataset, the PPG

signal is properly reconstructed when Nh varies in [5, 12] for

individual cases.

C. FEATURE EXTRACTION

1) SCSA FEATURES

Each PPG signal waveform can be divided into two parts.

The first part of the signal is related to the contraction of

the heart orthe systole while the second part is related to

cardiac expansion or diastole. Therefore, the application pro-

poses the decomposition of PPG waveform into two par-

tial sums: the first sum is composed of the Ns (Ns =

1, 2, · · · ,min(3, [Nh/2])) largest κnh and the second sum is

composed of the remaining κnh components. The first partial

sum describes rapid phenomena of the systolic phase and

the second partial sum describes slow phenomena of the
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FIGURE 3. Inappropriate PPG shape constructed by SCSA with different
Nh values. PPG measured signals (in red) and SCSA decomposed signals
(in dotted line). (a)(b) SCSA is recovering the signal shape while ignoring
peak details when Nh = 2 or Nh = 3. (c)(d) With Nh increasing (between
[5, 10]), the rest of the signal is also recovered.

diastolic phase. We denote by Ps and Pd the systolic and

diastolic dynamics, which are shown in Fig. 4 and Fig. 5,

respectively [16].

Ps = 4h

Ns∑

1

κnhψ
2
nh(t) (3)

Pd = 4h

Nh∑

Ns+1

κnhψ
2
nh(t) (4)

Several different SCSA extracted features are selected

from PPG segments in each individual case, which consists

of the systolic invariant parameter
∑Ns

n=1 κnh, the diastolic

invariant parameter 4h
∑Nh

Ns+1 κnh, the whole PPG spectrum

parameter P̂s + P̂d , the PPG spectrum leading parameters

κ1h, κ2h. Inspired by [16], the systolic and diastolic invariants

are used as the last two features
∑Ns

n=1 κ
3
nh and 4h

∑Nh
Ns+1 κ

3
nh.

In summary, the SCSA features can be categorized as follows:

• SCSA eigenvalues:

κ1, κ2, · · · , κNh−1, κNh (5)

• SCSA systolic invariants:

INVS1 = 4h

Ns∑

n=1

κnh (6)

INVS2 =
16h

3

Ns∑

n=1

κ3nh (7)

• SCSA diastolic invariants:

INVD1 = 4h

Nh∑

Ns+1

κnh (8)

INVD2 =
16h

3

Nh∑

Ns+1

κ3nh (9)

FIGURE 4. Estimated systolic dynamics. PPG measured signals (in red)
and SCSA estimated systolic part (in blue dotted line).

FIGURE 5. Estimated diastolic dynamics. PPG measured signals (in red)
and SCSA estimated diastolic part (in blue dotted line).

• SCSA eigenvalue summation:

4h

Nh∑

1

κnh (10)

Our approach adapts mainly the SCSA features. One

method is using PPG signal waveform only with another

method adding ECG signal waveform, called PAT-included

features approach. By selectingNs parameter in a proper way,

the PPG signal is separated into two cardiovascular dynamics

even when the PPG shape is inappropriate, thus guaranteeing

stable and robust feature extraction in the BP estimation

process.

2) OTHER FEATURES

Other literature works are mainly using PPG features and

ECG features when estimating ABP values, with most of

the features extracted from PPG signal waveforms. They are

summarized as follows:

a: HEART RATE (HR)

Heart rate is measured by the interval length L between R

peaks of ECG signals (Fig. 7). Given the sampling frequency

of the ECG signal, HR can be calculated by using

HR =
L

freq
(11)
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FIGURE 6. (a) Block diagrams of multiple linear regression (MLR). MLR coefficients and the random error are updated in each iteration to converge the
least square error function. (b) Block diagrams of the decision tree regression (DTR). Data set is splitted into different subsets and used to converge least
square function. Trees are pruned to simplify structure. Each node (small black colour-filled circles) contains an estimation result. (c) Block diagrams of
SVM regression. Epsilon and slack variables surrounding the hyperplane contributed to make the dual objective formula with the Lagrangian function to
solve the equation for BP estimators.

b: INFLECTION POINT AREA (IPA) RATIO AND WIDTH

Past studies have shown that IPAR is strongly correlated

to total peripheral resistance (TPR) [28], which is then

selected to extract features for ABP estimation. Inflection

Point Area (IPA) Ratio is the ratio of the four pulse

areas between selected points in the PPG signal wave-

form [29], S1, S2, S3 and S4, which are shown in Fig. 8.

Further proposed by [3], the sum of Sns can be used
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FIGURE 7. A random patient case containing PPG and ECG signal.
(Upper)PPG signal. (Lower)ECG signal. The figure demonstrates the
calculation of pulse arrival time (PAT) features and heart rate (HR) by
locating R peaks as well as the PPG IPAs.

FIGURE 8. PPG waveform features extraction. Inflection point area ratio
and width (IPA, labelled S1-S4), large artery stiffness index (labelled LASI)
and augmentation index (AI, labelled x and y ).

to calculate peak widths and selected as features for

estimation.

c: LARGE ARTERY STIFFNESS INDEX (LASI)

Large Artery Stiffness Index (LASI) is an index of the arte-

rial stiffness. LASI is inversely related to the time interval

between the inflection point and systolic peak immediately

before it (shown in Fig. 8).

d: AUGMENTATION INDEX (AI)

AI is a measure of the wave reflection on the arteries

wall [30], which is contributing on systolic arterial pressure.

It is calculated by (Fig. 8):

AI =
x

y
(12)

e: PAT FEATURES
Pulse arrival time (PAT) values are widely used by other lit-

erature works such as [9] by calculating the distance between

the ECG R-peak and IPA characteristic points on the PPG

signal (shown in Fig. 7):

• PATp: distance between the ECG R peak and the PPG

systolic peak immediately after it.

• PATd: distance between the ECG R peak and the PPG

diastolic peak immediately after it.

• PATd: distance between the ECG R peak and the point

at which the maximum value of the PPG signal first

derivative occurs.

In the PPG signal, there is a splitting point in time scale,

which is between systolic and diastolic cardiac phases called

dicrotic notch. InMIMIC II database, many recorded samples

FIGURE 9. Sample PPG waveform from MIMIC II database containing
undetectable dicrotic notch (highlighted in dotted frame).

of the PPG signal waveforms from patients affected by

drugs or with hypertension, the dicrotic notch is not easy to

localize and in some cases it is simply not detectable, shown

in Fig. 9

D. MACHINE LEARNING ALGORITHMS
To create the training and testing dataset for supervised

machine learning, we divide the periodic ABP signal into

separate interval segments to obtain the reference SBP and

DBP as target, which corresponds to the maximum and min-

imum values of the segments. Training features are extracted

from simultaneously obtained PPG segments. The proposed

methodology can continuously estimating the ABP (SBP and

DBP) with the estimation frequency that depends on the sub-

ject’s heart rate (HR), normally in an order of seconds. The

estimation process is considered as continuous in contrast

to sensor measurement frequency (in milliseconds) depend-

ing on specific sensor types and sampling and measurement

frequency settings. While same feature vectors (with each

element containing one SCSA extracted feature) are used for

the prediction of the SBP, DBP, different machine learning

models are trained to estimate targets. The models are illus-

trated as follows.

1) MULTIPLE LINEAR REGRESSION (MLR)
Multiple linear regression fits a linear equation to observed

data, which models the relationship between two or more

multiple variables and one target variable. MLR has been

widely used by previous researchers for cuffless ABP estima-

tion [7], [23], [31]. This algorithm selects correlation coeffi-

cients θ1, θ, · · · , θn. As shown in Fig. 6a, each input features

are associated with one θ , which gets iteratively updated

with least square algorithm to minimize the regression error

(R.error), shown in eq. 13.

J (θ1, θ2, · · · , θn+2) =
1

m

m∑

i=1

(hθ (x
(i)) − y

hθ (x) = 4hθ1λ1 + 4hθ2λ2 + · · · + 4hθnλn

+ 4hθn+1

Ns∑

1

λi + 4hθn+2

Nh∑

Ns+1

λi

+ 4hθn+3

Nh∑

1

λi + ǫ. (13)
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FIGURE 10. Realtime BP estimation. SBP estimation (in blue) catching
SBP reference (in red) at sample index around 5 (labelled in long dashed
line).

where m is the number of training samples in datasets. ǫ is

bias coefficient plus some random error. θ0−(n+3) are coef-

ficients. λ1−Nh is SCSA eigenvalues, with the number of

eigenvalues being Nh.

2) SUPPORT VECTOR MACHINE (SVM)

Support Vector Machine (SVM) can be used as a regression

method, maintaining all the main features that characterize

the algorithm by using kernel function [3], [9]. SVM regres-

sion has a similar working principle as in the least square

method of MLR to minimize the error function (squared error

between the predicted and reference SBP and DBP), with

different approaches of minimizing the error function. SVM

tries to maximize the margin between the closest support

vectors, which helps pushing the limitations subjected to

distributional properties of underlying variables, geometry of

the data and the common problem of overfitting.

3) DECISION TREE

Decision Tree algorithm is a faster algorithm in training

process compared to SVM algorithm, without the need to

normalize and scale data, thus requiring less effort in data

preparation. It follows the same approach as humans gener-

ally follow while making decisions, which propagates deci-

sions from the root nodes to the leaf nodes in numeric form.

It splits the dataset with the best optimization criteria. The

process includes splitting input data into subsets and pruning

that reduces the size of decision trees by removing branches

and leaves of the tree that provide little power to classify

instances, shown in fig. 6c.

E. RESULTS

The ABP estimation methodology as stated above is applied

to the data selected fromMIMIC II database. We have chosen

around 8000 individuals for feature extraction and predic-

tion evaluation. We evaluate the algorithm performance by

averaging MAE and STD out of records, each each records

containing 40 seconds sampling time.

MLR, SVM and regression tree are evaluated in terms of

overall ABP estimation accuracy. After training with 70%

of the signal segments with the remaining 30% to predict,

TABLE 2. Comparison of the performance using SCSA feature sets in
various learning algorithms.

FIGURE 11. SBP and DBP error histogram from the SVM regression.

each case contains reference ABPs (mmHg), estimated ABPs

(mmHg), and the error (mmHg) given by the absolute dif-

ference between reference and estimated ABPs. The ABPs

(including both reference and estimated ABPs) are calculated

for each case based on certain segment in that case. In com-

parison, all the methods show acceptable prediction accuracy

by training with the SCSA features

In Table 2, theMAE and STD of estimated ABPs are calcu-

lated for the three machine learning algorithms respectively

based on estimation cases as an overall ABP estimation eval-

uation. The result shows that the SVM achieves the smallest

mean average error of SBP (7.44 mmHg difference between

reference and predicted SBP) while also achieves the small-

est STD (7.37 mmHg) when compared with the regression

tree and SVM algorithms. Similarly, the decision tree and

has shown an acceptable MAE and STD (by not exceeding

10 mmHg). It is also observed that SVM performance is

leading in the three algorithms by providing better estimation

in terms of SBP and DBP.

Fig. 11a and 11b present the results in histograms of esti-

mation error, when using PPG features only, extracted by

SCSA. The histograms show that error values are approxi-

mately distributed around zero. It can be seen from Table 2

that the STD of SBP is larger than the STD of DBP, which is

the underlying reason explaining why the histograms show

greater estimation errors for SBP values comparing with

estimation errors for DBP values.

1) ASSOCIATION FOR THE ADVANCEMENT OF MEDICAL

INSTRUMENTATION STANDARD (AAMI)

Table 6 demonstrates a comparison between the results of our

ABP estimation methodology with the AAMI standard [14].

The AAMI requires BP measurement devices to have ME

less than 5 mmHg and STD less than 8 mmHg. According

to Table 6, the proposed method has ME values close to

zero, which is much lower than the ME maximum standard

margin proposed by the standard. Further, regarding the STD

criterion, DBP and MAP values are within the 8 mmHg STD
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TABLE 3. Results evaluated by the AAMI standard.

TABLE 4. Comparison with the BHS standard.

standard margin, while the STD value of the SBP estimation

is slightly exceeding the standard’s limit (10.22 mmHg out

of 8 mmHg).

It is also necessary to mention that the AAMI standard

requires devices to be evaluated on a sample of at least

85 different subjects. However, we have verified the our

ABP estimation methodology on a population of 6760 sub-

jects given the huge number of different individual cases in

MIMIC II database, which guarantees a considerably stronger

statistical reliability and robustness than the AAMI stan-

dard. We choose SVMmethod during the evaluation because

accroding to section III.B, SVM outperforms the multiple

linear regression and decision tree methods, by showing

lower MAE and STD at the same time, in both SBP and DBP

estimation.

2) EVALUATION WITH BRITISH HYPERTENSION

SOCIETY (BHS) STANDARD

Table 4 presents an evaluation of the proposed methodology

using the SCSA features alone and SVM learning by the

BHS standard. BHS grades BP measurement devices based

on their cumulative percentage of errors under three different

thresholds, i.e., 5, 10, and 15 mmHg [13]. According to the

BHS standard, the proposed method is consistent with the

grade B in the estimation of DBP and with the grade B in

the estimation of the MAP value. MAP is very close to grade

A in terms of the 15 percent cumulative error percentage.

We achieved 92.77% compared to 95%, while meeting the

rest of the standard for more than 6.41% in the 10 percent

cumulative error percentage and 9.18% in the 5 percent cumu-

lative error percentage. This suggests that we comprehend

most of the cases estimation accurately with the SCSA fea-

tures and while leaving around 10% of testing samples out of

the 15 mmHg range, our method performs well in the rest of

the cases.

3) COMPARISON WITH OTHER WORKS

To perform a fair comparison, all algorithms summarized

in Table 5 are executed in the same database in terms of the

number of individuals and types of database. Features used

in this comparison are summarized in subsection II-C2. Most

cuffless ABP estimation methods utilize PPG or ECG signal

waveforms when analysing ABP values [2], [3], [7]–[9],

[11], [23], [31]. In comparison, our method extracts more

information from PPG by presenting better results than [3],

[32] and [8]. PPG features are used in [3], where waveform

width and area are used as features. [32] and [8] use PAT

features only, showing results which are comparable with [3]

which uses PPG signal only. One can see from Table 5 that

our method performs better by showing better accuracy in

DBP andMAP. This results from the components localization

(shown in Fig. 4 and 5) of the systolic and diastolic peaks of

the PPG signal. Since both PPG and ECG contains important

information of arterial blood pressure, [9] further combines

ECG and PPG signals by proposing a good summary of ECG

and PPG feature set while achieving reasonable accuracy.

It is worthwhile to mention that [9] presents comprehensive

summary of existing methods and in comparison, our work

presents comparable results in terms of DBP and MAP by

using a combination PPG and ECG feature set.

III. NEURAL NETWORK BASED BP ESTIMATION

There are various ANN architectures for fitting the input

data to target, such as counter propagation, learning vector

quantization, and radial basis function. Despite good perfor-

mance, these architectures require large numbers of neurons

and cannot be applied in the case of a big training set, due to

their substantial memory requirements.

In this paper, PPG features are fed to a multilayer feed for-

ward neural network (FFNN) architecture, which has 14 input

neurons (the number of input parameters, as mentioned

above) and 3 output neurons, to simultaneously estimate SBP,

DBP and MAP. This architecture is shown in Fig. 12.

The loss function of the neural network is defined as

follows:

L(t) =
1

2m

m∑

i=1

(yi − ŷi) (14)

where m is the number of samples, ŷ and y are expected

output and reference output respectively. Cosidering this NN

structure is for small and middle scale problems such as

BP regression, Levenberg-Marquardt (LM) algorithms are

utilized in the network back-propagation training process.

The approximated Hessian H is given by

H = JT J + µI , (15)

where µ > 0 and J denotes the Jacobian matrix of loss

function eq. 14. The Levenberg-Marquardt algorithm uses

this approximated Hessian matrix iterative update hidden

layer weightsW in a newton like way:

Wk+1 = Wk − [JT J + µI ]−1JT e, (16)

Fig. 13 shows the histograms of the errors, calculated as

the difference between real SBP & DBP and the output of the
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TABLE 5. Comparison with other works.

FIGURE 12. The block diagram of neural network estimation
methodology. Input laye: SCSA extracted features used by separate input
nodes. Hidden layer: Node numbers tuned to increase network
performance (typically 10). Output layer: SBP and DBP collected for each
corresponding input sample.

FIGURE 13. SBP and DBP error histogram from the FFNN estimation.

FFNN, for the proposed method. The mean difference and

standard deviation between the estimated BP and measured

BP are −0.0252 ± 4.8569 mmHg for DBP and 0.0349 ±

6.4477 mmHg for SBP, which meets the ISO standars. [14].

IV. DISCUSSION

A. SUPERVISED MACHINE LEARNING TECHNIQUES

Compared to other literature works, our advantage lies in

the fact that only one PPG sensor is required. The sensor

can be easily placed at the finger level, which pushes the

limit of easy implementation of cuff-less BP estimation. Our

methods presents promising results, in terms of MAE and

STD, comparable with [2], which comprehensively combines

TABLE 6. Results evaluated by the AAMI standard (FFNN).

TABLE 7. Comparison with the BHS standard (FFNN).

PPG features and ECG PAT features shown in [3], [8], [32].

While combining PPG and ECG features presents the best

performance, the significance of our work lies in the fact

that only PPG signals are used, which is far more convenient

comparing to using ECG and PPG simultaneously. The study

developed and compared three machine learning algorithms

to estimate ABPs using SCSA extracted features from PPG

signal and revealed that the support vector machine (SVM)

algorithm was the best approach with overall acceptable esti-

mation accuracy. According to the BHS [13], our proposed

method (PPG features only) has grade B in estimation of the

DBP and MAP, with performance close to the grade A mar-

gin. Without the need of continuous ECG measurement (also

avoiding synchronization issues), our method provides more

potential in mobile healthcare equipments to monitor the

ABP continuously, while not causing inconvenience or dis-

comfort for individuals.

B. NEURAL NETWORK ESTIMATION

Studies such as [2] has the problem of SBP not meeting

AAMI standard [14]. While some other studies have claimed

to have met this condition, after applying their features and

implementing on MIMIC II database, the accuracy slightly

decreases. We believe that this is an universal issue in the BP

regression framework. As a result, a new algorithm scheme

is needed for this accuracy issue.
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To solve the problem of large STD values of SBP

estimation, a FFNN structure is proposed to increase the

SBP estimation accuracy. Similarly in the previous section,

we use AAMI and BHS standard to evaluate this algo-

rithm. We found that the proposed ABP estimation algorithm

works properly, with estimation accuracy meeting ISO stan-

dard [14]. According to the BHS standard [13], our proposed

method (PPG features only) has grade A in estimation of the

DBP and SBP, with performance far exceeding the grade A

margin.

This study has limitations. First, it should be pointed out

that theMIMIC II database is based on patients from intensive

care units (ICU), whose ABPs are inevitably affected by

drugs. Also, the age of patients are higher than average due

to usage of ICU records, thus putting more challenge on the

ABP estimation algorithms. Further, PPG signal segments

are preprocessed when extracting features, while previous

work [27] has shown SCSA method to be robust against

noise, it is worthwhile to implement the algorithms in a non-

preprocessed database and analyse the robustness of feature

extraction. Finally, this study will be further extended to other

clinical database with different BP categories (normotensive,

hypertensive, and hypotensive) to further analyse BP classi-

fication by using PPG signal.

V. CONCLUSION

In this paper, we have solved the problem of continuous

ABP estimation by utilizing a single noninvasive PPG sen-

sor. A noninvasive, cuff less, calibration-free, and continu-

ous BP estimation approach is proposed based on the semi

classical signal analysis (SCSA). This is the first study that

presents a completely new way of PPG signal feature extrac-

tion using SCSA. The proposed methods are tested through

MIMC II database which contains a large volume of samples,

demonstrating robustness and statistical reliability. Primarily,

the proposed methodology consists of signal preprocessing,

feature extraction, and regression stages. It is shown that

the proposed ABP estimation algorithm works properly, with

estimation accuracy meeting ISO standard [14]. The impor-

tance of this study is that, aside from testing existing methods

on MIMIC II database over a large range of samples, SCSA

can extract features even when the localization of inflection

point on PPG signal is difficult or simply impossible due

to drugs or abnormal physical situation, guaranteeing stable

performance of BP estimation in such situations.

In addition to BP estimation methods based on supervised

machine learning we propose a high SBP estimation scheme

to obtain the level of accuracy in [14]. This is achieved using

a typical-structure feed forward neural network. According

to the Association for the Advancement of Medical Instru-

mentation (AAMI), the mean and deviation absolute error

between the device estimation and the reference SBP values

is less than 5 ± 8 mmHg, and we are one of the few studies

to achieve such accuracy. With the wearable PPG sensor

becoming an increasingly popular technology, this method

has practical significance as part of a big data solution.

As a future work, in order to improve the comprehensive-

ness of this work, the following ideas could be tested:

1) To further estimate effectiveness of the proposedmethods,

data from healthy people are recommended to be used for

data training, in addition to patients’ data from MIMIC II

database.

2) It could be interesting to consider different clinical BP

categories (normotensive, hypertensive, and hypotensive).

The proposed methods would for instance aid to distin-

guish patients’ BP categories by PPG signals only, which

might be of clinical significance.

VI. CODE AND DATA AVAILABILITY

The MIMIC II database used in this study is access

available in the link (https://archive.ics.uci.edu/ml/datasets/

Cuff-Less+Blood+Pressure+Estimation).

The code used in this study is available upon request to the

authors in this paper.
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