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1. Introduction. Let K0--k be an algebraic number field of
finite degree and K be the central class field of K_ over k, i.e. the
maximal unramified abelian extension over K_ such that the Galois
group of K over Kn_ is contained in the center of the Galois group of
K over k. Then the sequence of fields

k-KoKl "Kn_lKn
is called the central class field tower of k, and the extension degree
z--[K/: K] is called the central class number1) of K over k.
z0= [K: k] is the class number of k.

The existence of algebraic number fields admitting infinite central
class field towers is shown by Golod and Safarevi5 [5]. In connection
with the result, Brumer [2], Furuta [4] and Roquette [7] estimate lower
bounds on the/-rank of the ideal class group of a finite Galois extension,
where is a rational prime.

The aim of the present paper is to give an upper bound on the
central class number z of K over k (Main Theorem) and also to give
an upper bound on the rank of the Galois group of K/ over K
(Theorem 5).

Main Theorem. Let zn be as above and d be the minimal number
of generators of the ideal class group of k. Then we have

and

dz_l0 (mod. z) for n> 1

z0(-l) 0 (mod. z)
In particular,

h(-l)n-1--0 (mod. zn)
where h--zo is the class number of k.

2.
be used.
Z
Q
K*
JK

for n--1.

for n>=l,

Notation. Throughout this paper the following notation will

the ring of rational integers
the field of rational numbers
the multiplicative group of all non-zero elements of a field K
the idele group of a finite algebraic number field K

1) Cf. Furuta [3].
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U the unit idele group2) of a finite algebraic number field K
E the unit group of a finite algebraic number field k
N/ the Norm of K to k
G(K/k) the Galois group of a Galois extension K over k
I: the ideal group of a finite algebraic number field K
I/ the subgroup of I consisting of ideals whose norm to k are

principal in k
I the subgroup of I generated by the ideals a- such that a e I

and a e G(K/ k)
(H) the principal ideal group induced from a number group H in

k
d(G) the minimal number of generators of a finite group G
GI the number of elements of a finite group G

3. The central class number. Let k be an algebraic number
field of finite degree and K be a finite unramified Galois extension of
k. Since U is cohomologically trivial as a G(K/k)-module, the exact
sequence

1--.U--.J--.IK--.1
gives an isomorphism

H-I(G(K/ l), IK)-H-I(G(K/ k), J)--O. ( 1 )
Therefore, if N/a--1 for a e I, we have a e I, where 1 denotes the
unit element of I.

Lemma 1. Let H--k* N:/J and K/k be a finite unramified
Galois extension. Then we have

I//I (g*) - (H) / (NK/K*)
and the isomorphism is induced from N/.

Proof. Let p be a finite prime in ] and be a prime factor of p
in K. By the local theory we know that an element of k* is a norm
from K if and only if its normalized exponential valuation at p is
divisible by the degree of over p. Thus N/ is an epimorphism of
I/ to (H), because K is an unramified extension over k. Suppose
that Nz/a e (N/K*) for a e I/, then there exists in K* such that
N/(a)--1. Thus by (1) we have a e I.(K*). This completes the
proof.

Lemma 2. Let K/] be a finite unramified Galois extension. Then
the sequence

1-.E/E N/K*-.H-3(G(K/), Z)I//I. (K*)-.1
is exact. Moreover if K contains the Hilbert class field of k, then we
have

z/--IH-3(G(K/1), Z)I/[E E N/K*],
2) The infinite components of U: are, the same as those of J:.
3) The last formula follows also from a general formula of the central class

numbers in Furuta [3].
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where z/ denotes the central class number of K over k.
Proof. Let H be as in Lemma 1. By local class field theory, we

see HE. Thus,

(H)/(N/K*)H/E.N:/K*- H/N/K*
E.N/K*/N/K*

It is well-known that i K/k is an unramified Galois extension, then
H-(G(K/k), Z)-H/N/K*. So, the exact sequence holds. Moreover
i K contains the Hilbert class field o k, then we have I/=I:. By
global class field theory, the central class field oi K over k corre-
sponds to the ideal group IV (K*). This completes he prooL

4. The Schur Multiplicator. We note that H-(G,Z) is iso-
morphic to the Schur multiplicator H(G, Q/Z) o G, where G acts

Now, let G be a finite nilpoent group o class n,trivially on Q/Z.
and let

and
G=GoGG2 G,_G= 1 (2)

G=Z=Z_IZn_2... ZIZ0=I
be the lower central series, the upper central series o’ G, respectively.
Then it follows from [1, p. 212] the following

Lemma 3. Let G be a finite nilpotent group of class n> 1. Then
the sequence

0 >G_I >H2(G/G_I, Q/Z)H2(G, e/z) ;Hom (G/Zn_I, G_I)
is exact.

It is clear that ]Hom (G/Z_, G=_)] divides IG=_I(a/z-‘). Let (G)
be the Frattini subgroup of G. Then we have

(G)

_
[G, G] G,

where [G, G] denotes the commutator subgroup of G. Since
d(G/Z,_) <= d(G) d(G/ q(G)) _< d(G/ G)

]Hom (G/Z_, G_)I divides [G_I(a/a’). Thus by Lemma 3 we have
Lemma 4. If G is a finite nilpotent group of class n1, then
[H(G/G_, Q/Z)[.[G_[(a/a)-=_O (mod. [H(G, Q/Z)]).

5. Proof of the Main Theorem. Let the situation be as in
Section 1, and suppose that z_:/: 1. We denote by G the Galois group
of K over k. The G is a finite nilpotent group of class n, and the
lower central series (2) of G corresponds to the sequence of fields

k=KoKK. CKn_CKn.
Thus, IG_I=[K’K_]=z_. By Lemma 2 we have

[H(G/G_, Q/Z)I=z_. [E
and

[H(G, Q/Z)[=z. [E E N,_/K_]
[E gl N:._,/K_ E gl K*

Therefore, if n> 1, we have by Lemma 4
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z(_/m 0 (mod. z),
where G/G is isomorphic to the ideal class group of k. This completes
the proof in case o n 1.

Next, set n--1. Then G is an abel/an group of order zo-h. The
following sequence

O----Z/(h) ;Q/Z
h
Q/Z

is exact, where h denotes the homomorphism induced by h times mul-
tiplication. Passing to cohomology, we have the exact sequence

O---HI(G, Q/Z)- ;H2(G,Z/(h)) H2(G, Q/Z) ;0.

Since H(G, Q/Z)-Hom (G, Q/Z), we have
]H2(G, Q/Z)]=]H2(G,Z/(h))]/h. ( 3 )

In the sequence

C(G, Z/(h)) C(, Z/(h)) C(G, Z/(h))- "...,
let C(G, Z/(h)) be the group of i-cochains of G in Z/(h) and 3t be the
coboundary operator. By definition, we have

H(G, Z/(h))=ker /im . 4 )
First,

Jim [=[C(G, Z/(h))[/[ker l=h/]Hom (G, Z/(h))]=h-.
Next, let a,a2,...,a be the minimal generators of G. Then a 2-
cocycle f is trivial if its restriction on {a, a, a} G ( G G)is
trivial. The number of mappings of {al, a2,.. ",as)}(G into Z/(h) is
h. So, Iker 32[ divides h. Thus4 by (4) IH2(G, Z/(h))[ divides h
We conclude by (3) that [H(G, Q/Z)I divides h(-. Therefore, by
Lemma 2 we have

h(---0 (mod. z).
This completes the proo2 in case of n= 1.

5. An upper bound on the rank of G(K+/K)o We give an
upper bound on the rank of the Galois group G(K//K) in the central
class field tower of k.

Theorem . Let the situation and notation be as in Section 1.
Then we have

d(G(Kn+/K))<=(d/l).d(G(K/K_))/r/r for n>l
and

d(G(K/K))d.h for n---l,
where r is the number of real and r the number of complex prime
divisors of k. In particular,
d(G(Kn//K))<={(d+l)-.(d.h+r+r)--(r+r)}/d for
Proof. By Lemma 2 we hav@)

4) This follows also from Schreirer’s theorem [6, 36] and MacLane’s theorem
[6, 50].

5) On a relationship between the ranks of modules in a exact sequence, see
Brumer [2].
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d(G(Kn/ /Kn)) <= d(H2(G Q/Z)),
d(H2(G/ Gn_I, Q/Z))<=d(E/E gl NK_IK*_I) + d(G(Kn /Kn_I))

and also by Lemma 3
d(H2(G, Q /Z)) <= d(H2(G/G -1, Q /Z)) + d. d(G(K/K_1)).

It is clear that d(E/EN_K*_)r/r, which completes the
proo in case o n 1.

If n--1, then we obtain from Section 5 that
d(G(K2/KI)) <= d(H(G, Q/Z)) <= d(H(G, Z/ (h))) d(ker ).

It can be easily checked that d(ker )__< d.h. This completes the proof
in case of n-1.
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