
Progress In Electromagnetics Research, PIER 77, 425–491, 2007

CENTRAL FORCE OPTIMIZATION: A NEW
METAHEURISTIC WITH APPLICATIONS IN APPLIED
ELECTROMAGNETICS

R. A. Formato

Registered Patent Attorney & Consulting Engineer
P.O. Box 1714, Harwich, MA 02645, USA

Abstract—Central Force Optimization (CFO) is a new deterministic
multi-dimensional search metaheuristic based on the metaphor of
gravitational kinematics. It models “probes” that “fly” through the
decision space by analogy to masses moving under the influence
of gravity. Equations are developed for the probes’ positions and
accelerations using the analogy of particle motion in a gravitational
field. In the physical universe, objects traveling through three-
dimensional space become trapped in close orbits around highly
gravitating masses, which is analogous to locating the maximum value
of an objective function. In the CFO metaphor, “mass” is a user-
defined function of the value of the objective function to be maximized.
CFO is readily implemented in a compact computer program, and
sample pseudocode is presented. As tests of CFO’s effectiveness, an
equalizer is designed for the well-known Fano load, and a 32-element
linear array is synthesized. CFO results are compared to several other
optimization methods.

1. INTRODUCTION

Central Force Optimization (CFO) is a new metaheuristic for an
optimization evolutionary algorithm (EA). CFO searches a multi-
dimensional decision space for the extrema of an objective function to
be maximized. To the author’s knowledge, CFO is a new optimization
metaphor that has not been described previously. It is based on an
analogy to classical particle kinematics in a gravitational field. CFO is
inherently deterministic, unlike other widely used metaheuristics (for
example, Particle Swarm Optimization, “PSO” [1, 2] and Ant Colony
Optimization, “ACO” [3, 4]).
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In the same way that ACO was first introduced, CFO is introduced
here as a metaheuristic, not as a fully developed algorithm resting on a
firm theoretical foundation. Indeed, as pointed out in [3] “...ACO has
been driven by experimental work, with the aim of showing that the
ideas [emphasis added] underlying this technique can lead to successful
algorithms. After this initial phase, researchers tried to deepen their
understanding of the technique by building theoretical foundations.”
Even though the first “Ant System” algorithm was published in 1996,
the first proof of convergence did not appear for four years, and at that
was limited to a “rather peculiar ACO algorithm” [3].

By definition “A metaheuristic is a set of algorithmic concepts
[emphasis added] that can be used to define heuristic methods
applicable to a wide set of different problems. In other words, a
metaheuristic is a general-purpose algorithmic framework that can
be applied to different optimization problems with relatively few
modifications.” [3] Typically a metaheuristic is proffered without any
mathematical proof, and often it is inspired by a metaphor drawn from
biology (ACO and PSO being prime examples). CFO is suggested
precisely in this manner, but instead of biology, it is based on an
analogy drawn from the motion of masses in a gravitational field.

This note describes the CFO concept in detail and illustrates
its effectiveness with two examples: matching network design and
linear array synthesis. These specific examples were chosen because
they permit a direct comparison between CFO and several other
widely used optimization methods. Initial work on CFO suggests
that it should be a useful optimization tool for applications in applied
electromagnetics and other fields. To be sure, there remain unresolved
issues concerning how CFO algorithms should be implemented, in
particular choosing run parameters, and admittedly there is no detailed
theoretical foundation at this time. It is the author’s hope that this
paper will inspire further work on CFO that will address these issues.

This paper is organized as follows. Section 2 introduces the
CFO metaphor using concepts drawn from gravitational kinematics.
Section 3 provides a precise statement of the optimization problem
being addressed. Section 4 explains the theory of Central Force
Optimization and develops its two fundamental equations. Section
5 presents pseudocode for the specific CFO implementation used for
the runs reported in this paper. Sections 6 and 7 apply CFO to
two real-world problems in applied electromagnetics, viz., matching
the canonical Fano load and synthesizing an optimized 32-element
linear array. Section 8 tests CFO against a variety of 30- and 2-
dimensional functions and one 4-dimensional function, all drawn from
recognized “benchmark suites” (complex functions with analytically
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known maxima). Section 9 describes an interesting CFO property, its
ability to cluster probes in regions of maxima, which may be useful as
a decision space “topology mapper.” Section 10 discusses what appears
to be CFOs tendency to become occasionally trapped in local maxima
and a possible mitigation technique. Section 11 is the conclusion,
followed by Appendix A which shows the benchmark functions.

2. THE CFO METAPHOR

Newton’s universal law of gravitation describes the gravitational
attraction of two masses m1 and m2. The magnitude of the force
of attraction is [5]

F = γ
m1m2

r2
. (1)

The distance between m1 and m2 is r. The coefficient γ is
the “gravitational constant.” Because the force acts along the
line connecting the masses’ centers, gravity is a central force.
Hence, “Central Force Optimization” is used to describe the new
metaheuristic.

Each mass is accelerated towards the other. The vector
acceleration experienced by mass m1 due to mass m2 is given by

�a1 = −γm2r̂

r2
, (2)

where r̂ is a unit vector. It points towards mass m1 from mass m2

along the line joining the two masses.
The position vector of a particle subject to constant acceleration

during the interval t to t+∆t is given by [6]

�R(t+∆t) = �R0 + �V0∆t+
1

2
�a∆t2. (3)

The mass’s position at time t+∆t is �R(t+∆t), where �R0 and �V0 are
the position and velocity vectors at time t, respectively. In a standard
three-dimensional Cartesian coordinate system, the position vector is
�R = xî + yĵ + zk̂, where î, ĵ, k̂ are the unit vectors along the x, y
and z axes, respectively. Because CFO searches spaces of arbitrary
dimensionality, these equations will be generalized to a decision space
with Nd dimensions.

A simple example illustrates the physical basis of CFO’s
gravitational metaphor. Consider the following hypothetical problem:
Determine the location of the solar system’s largest planet with no prior
knowledge of the solar system’s topology. Because the largest planet
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presumably produces the greatest gravitational field, one approach
would be “fly” a group of probe satellites through the solar system
while radioing back the location of each satellite at discrete time steps.

After a long enough time, most of the probes, whose trajectories
are governed by equations (2) and (3), likely will cluster in orbits
around the planet with the largest gravitational field. Equations (2)
and (3) collectively are referred to as the “equations of motion.” CFO
generalizes the equations of motion in three-dimensional physical space
to search a multidimensional decision space for the extrema of an
objective function to be maximized. CFO’s analog of the planetary
mass is a user-defined function of the value of the objective function
at each probed point.

3. PROBLEM STATEMENT

CFO is a metaheuristic for solving the following problem: A decision
space is defined by xmin

i ≤ xi ≤ xmax
i , i = 1, . . . , Nd where the

xi are decision variables. Determine the locations in that space of
the global maxima of an objective function f(x1, x2, . . . , xNd

) whose
value is referred to as the “fitness.” f(x1, x2, . . . , xNd

)’s topology in
the decision space is unknown. It may be continuous or discontinuous,
highly multimodal or “smooth,” and it may be subject to a set of
constraints Ω among the decision variables.

4. THE CFO ALGORITHM: THEORY

The 3-D decision space shown in Fig. 1 will be used to explain the
CFO algorithm. CFO “flies” a set of “probes” through the space over
a set of discrete “time” steps. This nomenclature has been chosen
solely to reflect the analogy to gravitational kinematics. At every time
step each probe’s position is described by the three spatial coordinates
computed from the equations of motion. At each point in a probe’s
trajectory through the decision space there is a corresponding value of
the objective function, a “fitness” value.

The position vector �Rp
j specifies the location of each probe at each

time step. The indices p and j are the probe number and time step
number, respectively. In a decision space with Nd dimensions, the

position vector is �Rp
j =

Nd
∑

k=1

xp,j
k êk. The x

p,j
k are probe p’s coordinates

at time step j, and êk is the unit vector along the xk axis.
As time progresses, the probes fly through the decision space along

trajectories governed by the equations of motion under the influence



Progress In Electromagnetics Research, PIER 77, 2007 429

of the “gravitational” forces created by a user-defined function of the
fitness at each of the other probes’ locations. For example, probe p

moves from position �Rp
j−1 at time step j − 1 to position �Rp

j at time
step j, with “time” interval between steps j − 1 and j being ∆t.

The fitness at time step j − 1 at probe p’s location is given by

Mp
j−1 = f(xp,j−1

1 , xp,j−1

2 , . . . , xp,j−1

Nd
). Each of the other probes also has

associated with it a fitnessMk
j−1, k = 1, . . . , p−1, p+1, . . . , Np, where

Np is the total number of probes.

Figure 1. Typical 3-D CFO decision space.

In Fig. 1, the fitness at each probe’s location is represented by
the size of the blackened circle at the tip of the position vector, the
metaphorical correspondence being to the size of the “planet” in the
solar system analogy. Larger circles correspond to greater fitness values
(bigger “planets” with greater gravitational attraction). Thus, the
fitnesses in the figure, ranked from largest to smallest, are located at

position vectors �Rs
j−1,

�Rp
j ,
�Rn

j−1, and
�Rp

j−1, respectively, the ranking
being reflected in the relative size of the circles at the tip of each
vector.

Probe p moves from location �Rp
j−1 to �Rp

j along a trajectory that
is determined by its initial position and by the total acceleration
produced by the “masses” created by the fitnesses (or some function
defined on them) at each of the other probes’ locations. In the CFO
implementation used in this note, the “acceleration” experienced by
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probe p due to probe n is

G · U
(

Mn
j−1 −Mp

j−1

)

·
(

Mn
j−1 −Mp

j−1

)α
·
(

�Rn
j−1 − �Rp

j−1

)

∣

∣

∣

�Rn
j−1 − �Rp

j−1

∣

∣

∣

β

Similarly, probe s produces an acceleration of probe p given by

G · U
(

M s
j−1 −Mp

j−1

)

·
(

M s
j−1 −Mp

j−1

)α
·
(

�Rs
j−1 − �Rp

j−1

)

∣

∣

∣

�Rs
j−1 − �Rp

j−1

∣

∣

∣

β

G is CFO’s “gravitational constant” (G > 0), and it corresponds to γ
in eq. (1). Note that the minus sign in eq. (2) is taken into account
in the order in which the differences in the acceleration expressions
are taken. Terms in the numerator containing the objective function
fitnesses, for example, (M s

j−1−M
p
j−1)

α, correspond to the “mass” in eq.

(2). An important departure from eq. (2) is the unit step function U(·),
which is explained below. Following standard notation, the vertical

bars denote vector magnitude, | �A| =
(

Nd
∑

i=1

a2
i

)
1

2

, where ai are the scalar

components of vector �A.
The acceleration expression in “CFO space” is quite different from

its physical space counterpart eq. (2). Specifically, there are no physical
parameters corresponding to the exponents α > 0 and β > 0, and there
is no unit step U(·) in eq. (2). In physical space α and β would take
on values of 1 and 3, respectively [note that the numerator does not
contain a unit vector like eq. (2)].

In CFO space the algorithm designer is free to assign a completely
different variation of gravitational acceleration with mass and distance
than the one that occurs in the physical universe. This flexibility is
included in the free parameters α and β. CFO test runs reveal that the
algorithm’s convergence is sensitive to the exponent values, and that
some values of these exponents are better than others.

CFO’s “gravity” and real gravity differ in two other very
important ways. CFO “mass” is a user-defined function of the fitness
values. In the implementation described in this note, “mass” is the
difference of objective function fitnesses, M s

j−1 −M
p
j−1. The algorithm

designer is free to choose other functions as well. As an example, one
possibility might be some ratio of fitnesses or their differences. This
notion is reminiscent of the “reduced mass” concept in gravitational
kinematics, but it is not considered here.
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The reason the difference of fitnesses is used, instead of the
fitness values themselves, is to avoid excessive gravitational “pull”
by other very close probes. Probes that are located nearby in the
decision space are likely to have similar fitness values, which may
lead to an excessive gravitational force on the subject probe. The
fitness difference intuitively seems to be a better measure of how much
gravitational influence there should be by the probe with a greater
fitness on the probe with a smaller one.

The second difference is the unit step U(z) =

{

1, z ≥ 0
0, otherwise

}

.

Because the CFO algorithm is based on a metaphor, CFO space can
be a strange place in which physically unrealizable objects exist. Real
mass must be positive, but not so mass in CFO space. Assuming
the difference of fitnesses definition of mass described above, the
mass can be positive or negative depending on which fitness is
greater. The unit step function is included to avoid the possibility of
“negative” mass. It forces CFO to create only positive masses that are
consequently attractive in nature. If negative masses were allowed, the
corresponding accelerations would be repulsive instead of attractive.
The effect of a repulsive gravitational force is to fly probes away from
large fitness values instead of toward them.

The expressions above represent only the accelerations experi-
enced by probe p due to probes n and s. Taking into account the
accelerations produced by each of the other probes on probe p, the

total acceleration experienced by p as it “flies” from position �Rp
j−1 to

�Rp
j is given by summing over all other probes:

�ap
j−1 = G

Np
∑

k=1
k �=p

U
(

Mk
j−1 −Mp

j−1

)

·
(

Mk
j−1 −Mp

j−1

)α

(

�Rk
j−1 − �Rp

j−1

)

∣

∣

∣

�Rk
j−1 − �Rp

j−1

∣

∣

∣

β

(4)
The new position vector for probe p at time step j therefore becomes

�Rp
j =

�Rp
j−1 +

�V p
j−1∆t+

1

2
�ap

j−1∆t
2, j ≥ 1. (5)

�V p
j−1 is probe p’s “velocity” at the end of time step j − 1: �V p

j−1 =
�R

p
j−1

−�R
p
j−2

∆t
, j ≥ 2. In these equations, both the velocity term and the

time increment ∆t have been retained primarily as a formalism that
preserves the analogy to gravitational kinematics. Neither is required
(but ∆t obviously cannot be zero).

For simplicity, �V p
j−1 and ∆t were arbitrarily set equal to zero and

unity, respectively, for the CFO runs reported here. A constant value of
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∆t is best absorbed into the gravitational constant G. Varying ∆t has
the effect of changing the interval at which the probes “report” their
positions. Whether or not doing so improves CFO’s convergence has
not been investigated, and consequently this remains an open question.

5. THE CFO ALGORITHM: IMPLEMENTATION

The entire CFO algorithm comprises equations (4) and (5). CFO is
simple, and easily implemented in a compact computer program. The
basic steps are: (1) compute initial probe positions, the corresponding
fitnesses, and assign initial accelerations; (2) successively compute each
probe’s new position based on previously computed accelerations; (3)
verify that each probe is located inside the decision space, making
corrections as required; (4) update the fitness at each new probe
position; (5) compute accelerations for the next time step based on
the new positions; and (6) loop over all time steps.

As the CFO algorithm progresses, it is possible that some probes
will “fly” to points outside the defined decision space. In order to
avoid searching for maxima in unallowable regions, the probe should
be returned to the decision space if this happens.

There are many possible approaches to returning errant probes.
Among the simplest would be returning the probe to a specific point,
say, its starting point or its last position. Some very tentative testing,
however, suggests that this method does not work well. Forcing errant
probes back to previously occupied positions appears to interfere too
much with CFO’s ability to control the probes’ trajectories toward
maxima.

Therefore a very simple deterministic repositioning scheme was
used for the CFO runs described in this paper. Any probe that “flew”
out of the decision space was returned to the midpoint between its
starting position and the minimum or maximum value of the coordinate
lying outside the allowable range.

Another possible relocation scheme is to randomly reposition
errant probes. This also is a simple approach because it can utilize
the compiler’s built-in random number generator, which presumably
returns essentially uncorrelated floating-point numbers. Adding some
measure of randomness to CFO in this way, or possibly in how the
initial probe distribution is generated, is entirely discretionary because
the underlying CFO equations are deterministic. Thus, unlike ACO or
PSO, CFO does not require randomness in any of its calculations.

All of the calculations discussed in this paper are entirely
deterministic. CFO’s deterministic nature is a major distinction
setting it apart from other optimization metaheuristics. Most non-
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analytical optimization algorithms are inherently stochastic. PSO and
ACO are representative of this type of algorithm. Indeed, PSO and
ACO require some degree of randomness in the calculations at every
iteration in searching for solutions. In general, every ACO or PSO
run starting with the same set of run parameters generates an entirely
different solution. Some solutions are very good, but others may be
quite poor. Characterizing how well a stochastic algorithm works thus
requires a statistical analysis of its behavior, as discussed in [3, 12].
This requirement is completely eliminated in CFO because every CFO
run returns exactly the same answer as long as the run parameters are
unchanged.

5.1. CFO Pseudocode

The CFO algorithm used to optimize the Fano load equalizer and to
synthesize the linear array comprises the following steps:

(1) Create Data Structures
(A) Two 3-dimensional arrays R(p, i, j) and A(p, i, j) are created

for the probe position and acceleration vectors, respectively, where the
indices 1 ≤ p ≤ Np, 1 ≤ i ≤ Nd, respectively, are the probe number
and the coordinate (dimension) number in the decision space. The
index 0 ≤ j ≤ Nt is the time step number, with j = 0 corresponding to
the initial spatial distribution of probes and their accelerations. The

velocity term in eq. (5) is set to zero, �V p
j = 0 ∀ p, j, and consequently

is not included in this CFO implementation.
(B) A 2-dimensional array M(p, j) is created for the fitness values.
Its elements are the fitness values at each probe’s location at each
time step, M(p, j) = f(R(p, i, j)), where the Nd-dimensional objective
function to be maximized is f(x1, . . . , xi, . . . , xNd

) with xi = R(p, i, j).

(2) Initialize Run
(A)(i) 3-D Fano Load Matching Network: Fill the position vector

array with a uniform distribution of probes on each coordinate axis at
time step 0 [see §6(i) for 2-D model initialization]:

For i = 1 to Nd, n = 1 to
Np

Nd

: p = n+
(i− 1)Np

Nd

,

R(p, i, 0) = xmin
i +

(n− 1)
(

xmax
i − xmin

i

)

Np

Nd

− 1
.

The number of probes per dimension,
Np

Nd
, is specified by the user.
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(A)(ii) 32-element Linear Array: Fill the position vector array with the
following distribution of probes slightly off the decision space principal
diagonal at time step 0:

For p = 1 to Np, i = 1 to Nd :

R(p, i, 0) = xmin
i +

(n− 1)
(

xmax
i − xmin

i

)

[Nd(p− 1) + i− 1]

NpNd − 1
.

(B) Set the initial acceleration to zero:

A(p, i, 0) = 0, 1 ≤ p ≤ Np, 1 ≤ i ≤ Nd

(C) Compute initial fitness:

M(p, 0) = f(R(p, i, 0)), 1 ≤ p ≤ Np, 1 ≤ i ≤ Nd

(3) Loop on Time Step, j: Start with j = 1.
(A) Compute New Probe Positions

(a) For p = 1 to Np, i = 1 to Nd :

R(p, i, j) = R(p, i, j − 1) +
1

2
A(p, i, j − 1)∆t2, ∆t2 = 1

(b) Retrieve errant probes, if any:

If R(p, i, j) < xmin
i then

R(p, i, j) = xmin
i +

1

2

(

R(p, i, j − 1)− xmin
i

)

If R(p, i, j) > xmax
i then

R(p, i, j) = xmax
i − 1

2
(xmax

i −R(p, i, j − 1))

(B) Update Fitness Matrix for This Time Step

For p = 1 to Np : M(p, j) = f(R(p, i, j))

(C) Compute Accelerations for Next Time Step

For p = 1 to Np, i = 1 to Nd :

A(p, i, j) = G

Np
∑

k=1
k �=p

U(M(k, j)−M(p, j))(M(k, j)−M(p, j))α

×R(k, i, j)−R(p, i, j)
∣

∣

∣

�Rk
j − �Rp

j

∣

∣

∣

β
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where
∣

∣

∣

�Rk
j − �Rp

j

∣

∣

∣ =

√

√

√

√

Nd
∑

m=1

(R(k,m, j)−R(p,m, j))2

(D) Increment j ⇒ j +1, and repeat from Step (3)(A) until j = Nt or
some other stopping criterion has been met.

Note that for the 2-component CFO algorithm described below,
Step 2(A)(i) was modified to compute an initial probe distribution on
a 2-D grid, instead of the uniformly spaced set of probes on each of
the coordinate axes.

This particular CFO implementation was written for the Power
Basic/Windows 8.0 (2005) compiler [7]. Copies of the source code and
executable files are available as described in Section 8.

6. FANO LOAD EQUALIZER

The first CFO example is a standard network problem: Optimally
match the “Fano load” using the equalizer circuit shown in Fig. 2. The
canonical Fano load comprises an inductance Lfano = 2.3 henries in
series with the parallel combination of capacitor Cfano = 1.2 farads and
resistor Rfano = 1Ω [8]. The equalizer comprises parallel capacitors C1

and C3 connected by series inductor L2. Power is delivered to the load
from a generator whose internal impedance is Rg = 2.205Ω (purely
resistive).

Rfano
Cfano

LfanoL2

C3C1

Rg

Equalizer                     Fano Load

Figure 2. Fano load and equalizer topology.

The equalizer’s component values are to be determined by an
optimization algorithm. The objective of the optimization problem is
to match the source to the load in the radian frequency range 0 ≤ ω ≤
1 rad/sec by transferring the maximum possible power to the load at
all frequencies. This requirement translates to a “minimax” criterion,
viz., minimize δ = max{1−T (ω)}, where T (ω) is the “transducer power
gain” (TPG, defined as the fraction of the maximum available power
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delivered to the load) [9]. Because CFO is a maximization algorithm,
not a minimization algorithm, the equivalent requirement for CFO is
to maximize T (ω) in the interval 0 ≤ ω ≤ 1 rad/sec.

Two different CFO optimizers were applied to this problem: the
first a 2-D algorithm that optimized L2 and C3 with C1 = 0.386
farad as determined in [9]; the second a 3-D algorithm that optimized
all three equalizer components, C1, L2 and C3. In the general CFO
formulation, these cases correspond to Nd = 2 with x1 = L2, x2 = C3,
and to Nd = 3 with x1 = C1, x2 = L2, x3 = C3, respectively.

The reasons for performing the 2-D optimization are that the
objective function can be plotted as a 3-D surface, and the CFO probe
locations can be plotted in the L2-C3 plane. The probe position plots
show how the probes converge on the maximum, a visualization that
is helpful in illustrating how CFO works.

The function to be maximized is the minimum value of T (ω)
computed at 21 uniformly spaced frequencies in the interval 0 ≤ ω ≤
1 rad/sec. Following the formulation in [9], TPG may be expressed as

T (ω) = 1−|Γin|2, where Γin =
Zin−Rg

Zin+Rg
. Γin is the reflection coefficient,

and Zin is the input impedance seen by the generator at the equalizer
input terminals.

T (ω) for the 2-D case is plotted in Fig. 3 for 0.1 ≤ C3 ≤ 10 and
0.1 ≤ L2 ≤ 10 (note that the size of the decision space was chosen
arbitrarily). Figs. 3(a) and (b) provide perspective views intended to
show the general topology of the maxima, not their precise locations.
The TPG exhibits two peaks, one larger than the other, with the
smaller peak occurring near the minimum values of L2 and C3. The
plan view in Fig. 3(c) shows the actual locations of the maxima in the
C3-L2 plane. The global maximum occurs in the vicinity of L2 ≈ 3
and C3 ≈ 1 as indicated by the brighter coloration in that region.

(i) 2-D Fano Optimizer
The 2-D optimization run was made with the following set of CFO

parameters:
G = 15, α = 2, β = 2, ainit = 0

There is no particular reason why these specific values were chosen,
except that they seem to work reasonably well for the purpose of
illustrating CFO’s effectiveness in optimizing the Fano load equalizer.
Indeed, exactly how CFO’s parameters should be chosen is an
important open question.

The initial probe distribution was a uniform grid of 25 probes
(Np = 25) as shown in Fig. 4(a). The algorithm was run for 50 time
steps (Nt = 50).
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Figure 3a. T (ω) vs C3 and L2 perspective view.

Figure 3b. T (ω) vs C3 and L2 perspective view.

Figure 3c. T (ω) vs C3 and L2 plan view.
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Figure 4a. 2-D initial probes (uniform grid).

Figure 4b. 2-D probe positions at Step 6.
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Figure 4c. 2-D probe positions at Step 12.

Figure 4d. 2-D probe positions at Step 20.
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Figure 4e. 2-D probe positions at Step 36.

Figure 4f. 2-D probe positions at Step 50.
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Figures 4(b) through 4(f) show the probes’ positions in the
decision space at various time steps. At step 6 the probes begin to
cluster around the smaller peak near the minimum values of L2 and
C3. At step 12 the probes are moving away from the smaller peak
toward the global maximum. Convergence is evident at step 36. At
the end of the run, many probes have converged on the maximum and
cannot be separated visually. The maximum fitness at step 50 is 0.853
at L2 = 3.041 henry and C3 = 0.961 farad.

Fig. 5 shows how the fitness evolves as the run progresses. It
rises very rapidly between time steps 6 and 10, and then more slowly
through step 20. By that time, as is evident from Fig. 4(d), most
probes have clustered near the global maximum, so that the fitness
increases much more slowly after step 20.

Figure 5. Fitness vs time step.

Fig. 6 plots the average distance between the probe with the best
fitness value and all the other probes as a function of the time step.
The average probe “distance” is normalized to the “size” of the decision
space as measured by the length of its diagonal

Diag =

√

√

√

√

Nd
∑

i=1

(

xmax
i − xmin

i

)2
.

The curve shows a clear tendency for the probes to move toward
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Figure 6. Normalized 2-D average probe distance.

the global maximum under the gravitational influence of the objective
function’s maxima.

(ii) 3-D Fano Optimizer
The 3-D optimizer used the same CFO parameters as the 2-D

algorithm. It was run for 40 time steps (Nt = 40) using a total
of 210 probes (Np = 210). Unlike the 2-D case, the initial probe
distribution was a uniformly spaced group of 70 probes along each
of the three decision space coordinate axes as described above in
section 5.1(2)(A)(i). Run time was approximately 3 minutes on a
dual-boot MacBook Pro laptop (2GHz Intel T2500 CPU with 1GB
RAM running Mac “Bootcamp” and Windows XP Pro/SP2). A total
of 8,400 function calls evaluating T (ω) were made.

The optimized values computed by CFO for equalizer components
C1, L2, C3, respectively, are 0.460 farad, 2.988 henry, and 1.006 farad.
The resulting maximum fitness value is 0.852.

Fig. 7 plots the best fitness as a function of time step. It
increases very quickly through step 6, and thereafter much more slowly.
However, even at time step 39 a very slight increase in fitness is seen
to occur. Such slight increases might be expected as the number of
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Figure 7. 3-D CFO fitness vs time step.

time steps increases, but there is a trade-off between the quality of the
result and the length of a run. The balance to be struck is a matter of
engineering judgment.

As in the 2-D case, probes cluster near the global maximum with
increasing time step as seen in the plot in Fig. 8. By step 16 the
average distance to the probe with the largest fitness has begun to
stabilize near a value of 0.15.

The GA-Simplex method described in [9] was validated by
comparing it to two other recognized optimization schemes: Carlin’s
RFT (Real Frequency Technique) [10], and RSE (Recursive Stochastic
Optimization) [11]. The optimized equalizer component values using
these three methods are summarized in Table 1 in [9]. In order to
compare CFO, its data are reproduced in Table 1 below along with
the CFO results.

It is apparent that all four methods converge on very similar
solutions. The equalizer response for each set of component values
is plotted in Fig. 9. These results clearly show that CFO solves the
Fano load equalizer problem at least as effectively as other recognized
optimization methods.

Not only does CFO compare favorably with the other techniques in
terms of its result, it also compares favorably in terms of computational
efficiency and rate of convergence. CFO required 8,400 function calls to
reach convergence. The GA-Simplex method described in [9] employed
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Table 1. Optimized equalizer component values.

- RFT RSE GA-Simplex CFO

Min T(ω) 0.849 0.855 0.852 0.852

C1 (farads) 0.352 0.409 0.386 0.460

L2 (henries) 2.909 3.054 2.976 2.988

C3 (farads) 0.922 0.974 0.951 1.006

Figure 8. Normalized average 3-D probe distance.

a genetic algorithm with a population of 100 individuals evolved for 100
generations, followed by a Nelder-Mead Simplex algorithm that ran for
100 iterations using 170 function calls. Thus the GA-Simplex method
required a total of 10,170 function evaluations. The RFT method
[10] is a quasi-analytical/graphical method that involves segmenting
the equalizer’s resistance vs. frequency curve using piece-wise linear
segments. Consequently, the method cannot be described in terms of
computational efficiency measured by the number of required function
calls. It is included here because it appears in [9] and permits a
comparison of the final results. In contrast, the RSE method [11] can
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Figure 9. Optimized equalizer TPG.

be compared in a manner similar to GA-Simplex. RSE also comprised
two calculation steps: 2,000 iterations using a stochastic Gauss-Newton
optimization routine to locate an approximate solution which was
then refined using a 20,000 iteration random search algorithm. The
RSE method thus required 22,000 function evaluations. The literature
does not report run times or rates of convergence similar to Fig. 7
for GA-Simplex or RSE, so that a direct comparison in that regard
cannot be made. However, it seems reasonable that a good measure
of computational efficiency is the total number of function evaluations
that is required, and by that measure CFO is quite a bit better than
the other methods. In terms of coding complexity, the flowchart in
Fig. 2 in [9] and the pseudocode in Section E of [11] suggest that CFO
probably is simpler to implement. CFO certainly is not more complex.

7. LINEAR ARRAY SYNTHESIS

The second CFO example is the synthesis of a 32-element linear array.
This problem was solved using ACO [12]. The published results permit
a direct comparison between CFO and ACO.

The reference linear array is shown schematically in Fig. 10. It
comprises 2Nd elements equally spaced by a half wavelength (λ/2).
[Note that Nd is the dimensionality of the CFO decision space as
defined previously.] The array elements are positioned symmetrically
about the origin along the X-axis. Each element is fed in-phase
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Figure 10. Initial linear array comprising 2Nd elements spaced λ/2
apart.

with equal amplitude excitation. In this case, the array factor

simplifies to F (ϕ, xi) = 2
Nd
∑

i=1

cos(kxi cosϕ), k = 2π
λ
, where xi, i =

1, . . . , Nd are the (dimensional) element coordinates [12]. Normalizing

xi to λ/2, F (ϕ, x′i) = 2
Nd
∑

i=1

cos(πx′i cosϕ) where x′i = xi

0.5λ
. The

element coordinates in the uniformly spaced reference array are x′i =
0.5, 1.5, 2.5, . . . , (Nd − 0.5). The array factor F (ϕ, x′i) has a maximum
value of 2Nd. The array’s normalized radiation pattern (directivity) in

dB is given by D′(ϕ, x′i) = 10 log10

(

1
2Nd

F (φ, x′i)
)2

[13].

The goal of the optimization procedure is to meet specific design
goals for the array’s pattern by changing only the positions of the array
elements, xi, not the excitation amplitude or phase. In this example
the specific objective is to achieve a main lobe beamwidth ≤ 7.7◦,
maximum sidelobe level ≤ −15 dB, and a deep null in the direction
ϕnull = 81◦, and by symmetry also at ϕnull = 99◦, in a 32-element
array. These values are taken from [12, §3.5].

In the context of CFO, the problem may be stated: Determine
the array element coordinates xi, where xmin

i ≤ xi ≤ xmax
i , i =

1, . . . , Nd, Nd = 16 so as to maximize a user-defined fitness function

f(x′i) = g{BW [D′(ϕ, x′i)], SLL[D′(ϕ, x′i)], ND[D′(φnull, x
′
i)]}

in which the functions BW [D′(ϕ,x′i)], SLL[D
′(ϕ,x′i)], ND[D

′(φnull,x
′
i)]

respectively, return the main lobe beamwidth between first nulls, the
maximum sidelobe level in dB, and the null depth in the specific
direction ϕnull. BW is positive definite, while SLL and ND are
negative definite. This is a constrained optimization problem because
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the xi also must meet the requirement that no array elements occupy
the same position, that is, xi = xj for i = j, i, j = 1, . . . , Nd.

The fitness function g{ϕ, x′i} may be any function the antenna
designer wishes to use as a measure of the array’s merit (how well
the optimization objective is met). In [12, §3.5], for example, the
“desirability function” (synonymous with “fitness”) is defined as

f(ϕ, x′i) =
∣

∣F (ϕnull, x
′
i)
∣

∣

1

β3

[

1

BW − ϕf

]
1

β2

|SLL|,

where ϕf = 7◦, and β2 = 20 and β3 = 6 are empirically chosen
“modulator parameters.” [Note that variable symbols have been
translated to be consistent with those in this paper.] It is emphasized in
[12] that “...the definition of this function is one of the critical issues...”
in developing the ACO algorithm. The other ACO run parameters in
[12] also were determined empirically, which the authors point out “...is
a common issue in most optimization algorithms.”

CFO optimized the 32-element array using 1◦ pattern resolution
in a decision space defined by 0.1 ≤ x′i ≤ 32.5, i = 1, . . . , 16, with
parameters Np = 48 (3 probes per dimension), Nt = 7, G = 2, α =
2, β = 2, ainit = 0. The initial probes were placed slightly off
the decision space diagonal according to the prescription in section
5.1(2)(A)(ii) above [this deployment is consistent with the element
position constraint]. CFO thus requires six independent parameters
to define a run.

ACO also uses six user-specified parameters, viz., numbers
of “ants” and iterations, probability function exponents (α, β),
pheromone elimination period (γ), and pheromone elimination period
coefficient (ρ) [12]. In addition to the “desirability” function, ACO also
requires the definition of another “concentration pheromone function”
[12]. Consequently CFO is less complex than ACO in setting up a run.
Also, unlike ACO which is inherently discrete ([12], wherein ∆xi =
0.1λ), CFO is continuous, not requiring any artificial discretization of
the decision space.

Optimization algorithms often are given a starting point in the
decision space, usually a “best guess,” or a previous run’s best result,
or, as in the linear array case, a “reference” design. Thus, following
[12] in which the ACO search was begun with the uniform reference
array, the CFO search also was commenced with the uniform array’s
coordinates inserted into probe #1 at time step #0, that is, R(1, i, 0) =
i− 0.5, i = 1, . . . , Nd.

The array designer is free to use any form of fitness function, and
different forms will yield different results because the decision space



448 Formato

topology changes. For this example, the CFO fitness function was
defined as

f(x′i) = c1|SLL[D′(φ, x′i)]|+ c2|ND[D′(φnull, x
′
i)]| −BW [D′(φ, x′i)],

where the coefficients c1 and c2 were determined empirically as c1 =
1.5, c2 = 0.2. These values provided the desired balance between the
three array parameters. This CFO fitness function seems to be much
simpler than the ACO function, and, in the author’s, opinion reflects an
intuitively sensible way of combining the parameters to be optimized.

Table 2. CFO/ACO results for the optimized linear array.

- Neval BW(deg) SLL(dB) ND(dB)

Goal - 7.7 -15 -60 

ACO 5,300
*
 7.35 -17.1 <-60

*
 

CFO 336 6.00 -14.84 -62.8 

* estimated from Figs. 16 and 14 in [12]

Table 3. Element coordinates (in λ/2) for the CFO-optimized 32-
element linear array.

Coord Value Coord Value 

1x′  1.2450 
9x′  10.0577 

2x′  1.3991 
10x′  11.3133 

3x′  2.5050 
11x′  12.5702 

4x′  3.7688 
12x′  13.8260 

5x′  5.0269 
13x′  15.0818 

6x′  6.2867 
14x′  16.3403 

7x′  7.5465 
15x′  17.6670 

8x′  8.8021 
16x′  18.9318 

 

CFO optimization results appear in Table 2. This table also shows
the target design values and the ACO results from [12]. Element
coordinates for the CFO-optimized 32-element array are given in
Table 3. CFO run time was less than 10 seconds. Figs. 11, 12, and
13 plot the evolution with time step of CFO’s best fitness value, the
average distance of other probes to the probe with the best fitness, and
the array element coordinates.
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Figure 11. Evolution of linear array fitness.

Figure 12. Average distance to best probe.
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The data in Table 2 show how effective a properly set up CFO
run can be. Using only 336 function evaluations (Neval), compared to
5,300 for ACO, CFO produced an array with a narrower main beam
and comparable null depth in less than 10 seconds. CFO missed the
sidelobe level objective by a mere 0.16 dB, and this shortfall likely
can be removed by “tweaking” the CFO run parameters or the fitness
function coefficients c1 and c2.

Referring to the plotted CFO results, the array fitness (Fig. 11)
increases very quickly, reaching a plateau in only 6 time steps. The
average probe distance (Fig. 12) rapidly decreases through step 4,
thereafter increasing moderately. CFO runs with 500 time steps
(results not shown), all other parameters unchanged, confirm that the
fitness increases only very slightly through step 80 and is flat thereafter.
The average probe distance settles into a small amplitude oscillation
around ≈ 0.315.

Fig. 13 shows how CFO evolves the element coordinates. The
initial uniform array’s coordinates increase very quickly from step 1
to 2, falling nearly as rapidly from step 2 to 3. Between steps 3 and
4 the coordinates again increase, followed by a plateau until step 5,
and then a decrease to essentially their final values at step 6. It is
interesting that in almost every case the degree to which a coordinate
varies is proportional to its coordinate number, the exceptions being
x1, x2 and x14, x15. However, it is not obvious what the significance of
this behavior might be, if indeed there is any.

Fig. 14 plots the optimized array’s normalized radiation pattern
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Figure 13. Evolution of array coordinates.
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(heavy solid line), the (a) curve being the entire pattern, while the (b)
curve provides more detail in the range 75◦ ≤ ϕ ≤ 105◦ [both (a) and
(b) plots were computed with ∆ϕ = 0.25◦]. On each graph the initial
uniform array’s pattern is plotted using a thin solid line in (a) and a
dashed line in (b). It is apparent from Fig. 14(a) that the main beam is
narrowed and the null at ϕnull = 81◦ is created generally at the expense
of increased sidelobe level away from the main beam. However, in close
to the main beam the sidelobes actually decrease somewhat relative to
the initial pattern.
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Figure 14a. CFO-optimized array pattern.

Fig. 14(b) provides a more detailed view of the pattern close
to the main beam. The deep nulls at precisely ϕnull = 81◦, 99◦ are
clearly evident in the pattern. A measure of how effective the CFO
optimization procedure has been is the fact that these null directions
fall essentially on what are the second sidelobe maxima in the initial
pattern. That sidelobe level was reduced by about 42 dB. It also is
evident from the plot that the main beam has been narrowed, and
that the maximum sidelobe level has been maintained around −15 dB
as required. In fact, over the angular range of the plot, the optimized
array’s sidelobes are uniformly lower than those in the initial array’s
pattern.

These results clearly demonstrate that CFO works as well as ACO
in optimizing a long linear array against three disparate performance
measures: main lobe beamwidth, maximum sidelobe level, and nulling
the pattern in a specific direction.
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Figure 14b. Detailed array pattern.

Exactly how well a CFO run works does depend on the run
parameters, and choosing a different set of parameters likely will
yield different results. Fortunately, as this example illustrates, CFO
frequently runs so quickly (in this example less than 10 seconds)
that looping over sets of run parameters is easily done. Until a
firm theoretical basis is established for defining run parameters, this
brute force approach may well be suitable for a very wide range of
optimization problems.

8. BENCHMARK TEST FUNCTIONS

In addition to testing against typical engineering applications as
described in Sections 6 and 7, Central Force Optimization also has been
tested against a variety of standard benchmark functions. The reason
for testing against benchmarks is that their extrema are known, thus
providing a numerically precise standard by which the effectiveness
of an algorithm can be evaluated. This paper reports results for
seven 30-dimensional (“30-D”) functions, four 2-dimensional (“2-D”)
functions, and one four-dimensional function (“4-D”), all drawn from
standard test suites. They were chosen to illustrate CFO’s strengths
and weaknesses, and appear explicitly in the Appendix. Except for
two, all functions are drawn from the benchmark suite described in [14].
The modified Keane’s Bump appears [15], and the Colville Function in
[16]. CFO also has been tested against an additional twenty-two 2-D
functions [30] not described here.
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The following parameter values were used for all the CFO runs
reported in this section: G = 2, α = 2, β = 2, ainit = 0. As in the
previous sections, there is no particular reason why these specific values
were chosen, except that they seem to work reasonably well for the
purpose of illustrating CFO’s effectiveness. Indeed, as was emphasized
earlier, exactly how these parameters should be chosen is an important
open question. One interesting possibility is that the set of CFO run
parameters itself might be determined by an optimization algorithm.
This approach may be feasible for certain types of objective functions,
viz. highly multimodal ones, because of CFO’s rapid convergence.

Because CFO is inherently deterministic, it is not necessary to
characterize its performance statistically by making multiple runs.
Every CFO run with the same parameters returns the same result,
so that the data tabulated below are derived from only one CFO run
for each function.

Each of the test functions was searched using the algorithm
described in Section 5. For the first eleven functions, the initial

probe distribution comprised an even number of probes
Np

Nd
uniformly

distributed along each of the coordinate axes, including the endpoints
marking the limits of the decision space. Recall that Np is the total
number of probes used, not the number of probes per coordinate axis.
For the last test function, Keane’s Bump, a uniform 2-D grid of Np

probes was used for reasons explained below.
Since CFO searches for maxima, not minima, the negative of the

functions in [14, 15] and [16] was computed. In addition, in order to
avoid any bias resulting from the locations of maxima relative to the
initial probe distribution, the maxima were offset if necessary. For
example, the minimum of the original Griewank function in [14] is
zero at the origin in the 30-D symmetric decision space −600 ≤ xi ≤
600, i = 1, . . . , 30. The “modified” Griewank is the negative of the
original with an offset maximum. Its maximum is zero at [75.123]30,
where the square bracket notation signifies xi = 75.123∀i in the 30-D
space. Functions with offset maxima or with slightly different search
regions are marked “Mod” in the tables below.

Results for the 30-D/4-D and 2-D test functions are summarized
in Tables 4 and 5, respectively. Except for the discontinuous Step
Function and Keane’s Bump, all test functions are continuous on
their domains of definition. Keane’s Bump is constrained, whereas
the others test functions are not. In the tables, Np, Nt and Neval,
respectively, are the total number of probes, the number of time steps,
and the total number of function evaluations, Neval = Np × Nt. The
number of function evaluations appears to be the best measure of
how well CFO performs, and it is useful for comparing CFO to other
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algorithms.
The next two columns in the tables, “CFO Fitness” and “Max

Fitness,” respectively, are the maximum fitness value of the objective
function returned by CFO and the actual known maximum value. The
last two columns, “CFO Coords” and “Actual Coords,” respectively,
are the coordinates of the CFO maximum fitness and the actual
known location of the objective function’s maximum. For all of the
30-D functions and the single 4-D function, the maximum’s actual
coordinates are the same for each dimension, while CFO returns
slightly different values that vary by dimension. Consequently, the
two values listed for the CFO coordinates are the minimum and
maximum coordinate values returned by CFO. For the 2-D functions,
the coordinates returned by CFO are tabulated.

8.1. 30-D/4-D Benchmark Functions

Turning to Table 4, without doubt the best example of CFO’s 30-
D performance is Schwefel’s Problem 2.26. In only 1,920 evaluations
CFO converged to a maximum of 12569.1 when the actual maximum is
12569.5. In comparison, the FEP (“Fast Evolutionary Programming”)
and CEP (“Classical Evolutionary Programming”) algorithms in [14]
returned minima of −12554.5 and −7917.1, respectively, using 900,000
function evaluations per run averaged over fifty runs.

Table 4. Summary of results for 30-D test functions G = 2, α =
2, β = 2, ainit = 0 for all runs.

CFO   Max   CFO   Actual 

Function   pN   tN   evalN  Fitness  Fitness  Coords  Coords 

 
Schwefel 2.26   240  8  1,920 12569.1  12569.5 (420.306ñ420.665) [420.9687]

30* 
 

 Mod Griewank  780  6  4,680 -0.0459  0  (74.9000ñ75.2653) [75.123]
30
 

 
Mod Ackleyís  780  5  3,900 -1.0066  0  (3.63045ñ4.24016) [4.321]

30
 

 
Mod Rastrigin  600  8  4,800 -30.5308  0  (2.12839ñ2.13474) [1.123]

30
 

 Mod Step Function 600  4  2,400 -1   0  (73.6842-75)  [75.123]
30**

 
 
Mod Sphere  15,000 2  30,000 -0.0836  0  (75.0854-74.9168) [75.123]

30
  

Mod Rosenbrock 60  250  15,000 -3.8   0  (26.0078-26.1289) [26.123]
30
 

 

Mod Colville  56  15  840  -19.387  0  (7.74637,7.83799) [8.123]
4
 

*   notation: all coordinates in the 30-D or 4-D decision space have the same value shown in the square bracket. 
**

 maximum occurs in a square region containing this point. 

CFO’s performance against the other benchmark functions is more
of a mixed bag. In each case except the Sphere Model, convergence
required less than 5,000 function evaluations. For the Sphere, 30,000
were required using a very large number of probes (15,000), which has
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Table 5. Summary of results for 2-D test functions G = 2, α = 2, β =
2, ainit = 0 for all runs.

CFO   Max   CFO    Actual 

Function  pN   tN  evalN  Fitness  Fitness  Coords   Coords 

 
Mod Camel- 220  5 1,100 1.02956  0.0316285  (1.11294,0.28745) (1.08983,0.2874) 

Back   260  16 4,160 1.02772  1.0316285  (0.926972,1.69281) (0.91017,1.7126) 

 

Branin  400  18 7,200 -0.398689  -0.398  (3.12948,2.29433) (3.142,2.275) 

   490  15 7,350 -0.398294  -0.398  (9.42202,2.45343) (9.425,2.425) 

not found   (-3.142,2.275) 

 

Shekelís  240  2 480  -1.2023  �-1   (-31.9419,-32.768)  (-32,-32) 

"Foxholes" 

 
Mod Keaneís 196  20 3,920 0.364915  unknown  (1.60267,0.46804)  unknown 

Bump 

a very substantial negative impact on runtime.
As to how well the maxima were located, CFO handled the

Griewank and Sphere well, but results for Ackley’s, Rastrigin’s, Step,
Rosenbrock and Colville functions were not nearly as good. The reason
appears to be how thoroughly the initial probes sample the decision
space’s topology and some degree of trapping at a local maximum.
In some cases the initial probe distribution that was used (uniform
on the coordinate axes) provides adequate sampling of the objective
function, whereas in others it appears not to do so. A different
initial probe distribution presumably will provide different (hopefully
better) results, but the question of the relationship of the initial probe
distribution and CFO’s performance in locating maxima is beyond the
scope of this paper whose sole purpose is to introduce the CFO concept.

CFO’s convergence rates are very high. As Table 4 shows, CFO
converged in less than eight iterations in most cases, requiring only
fifteen for the Colville Function. The Rosenbrock function required
the greatest number of iterations at 250, with an attendant increase
in the number of function evaluations. In the author’s opinion, the
best indicator of convergence rate is the total number of function
evaluations, not the number of time steps alone. By that measure,
CFO converges quite rapidly, requiring fewer than 5,000 function
evaluations in most cases, and 30,000 in one case. Other algorithms
(see [14], for example) typically require tens or hundreds of thousands
of evaluations, and results vary from run to run because of the
algorithm’s stochastic nature.

One of CFO’s weaknesses is that its computation time increases
dramatically as the number of probes increases because of the
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summation in eq. (4). All test runs reported here were made on a
dual-boot 2GHz Intel-based (T2500 CPU) MacBook Pro with 1GB
RAM running Windows XP/Pro SP2 and Mac “Bootcamp.” The run
times for the first five functions in Table 4 requiring from 1,920 to
4,800 function evaluations were between approximately 1.16 (Colville)
and 280 (Griewank) seconds. In marked contrast, the runtime for
the Sphere Model using 15,000 probes and 30,000 function evaluations
was many hours, an unacceptably long time. An important question
therefore is how to minimize the number of probes used by CFO. The
answer may well lie in how the initial probes are deployed.

8.2. 2-D Benchmark Functions

Table 5 summarizes test function data for four 2-D objective functions.
All of these runs were very quick, the shortest being about 3.9 seconds
and the longest 14.2 seconds. One advantage of testing against 2-D
objective functions is that the probe positions can be plotted, so that
convergence is visually apparent. For example, Fig. 15(a) shows the
initial distribution of 220 probes for the 6-Hump Camel-Back function.
Fig. 15(b) shows the probe distribution at time step 5. Clustering
of the probes around five of the six local maxima is evident at that

 

Figure 15a. Camel-back initial probes in x1-x2 plane.
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Figure 15b. Camel-back probes at time step 5 in x1-x2 plane.

time. CFO’s tendency to cluster probes in this manner appears to
be a unique and possibly useful attribute as discussed in the next
section. The Camel-Back has two global maxima as shown in Table 5,
and, interestingly, changing the number of initial probes toggles CFO
between these maxima. With 220 probes, CFO converges on one of the
maxima (1.02956), while 260 initial probes results in convergence on
the other (1.02772). This effect suggests some measure of trapping near
a local maximum, which clearly is an issue that should be addressed
in future CFO research.

A similar effect is seen with the Branin function. It has global
maxima at three points as shown, and CFO toggles between two of
them depending on the number of initial probes. This observation lends
further support to the speculation that CFO’s initial probe distribution
relative to the objective function’s topology is an important factor in
determining how CFO converges, and that some local trapping results
from the specific probe distribution. In this case, the likely reason that
the Branin’s third maximum is not found is its asymmetrical decision
space, −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15, which places more probes in the
first quadrant, thereby favoring solutions in that region.

CFO’s maximum fitnesses for both the Camel-Back and Branin
functions are close to the actual values, while its maximum for Shekel’s
“Foxholes” function is not quite as good. Because the negative of the
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Figure 16a. 2-D Shekel’s “Foxholes” function.

Figure 16b. Probe locations at time step 2 for Shekel’s “Foxholes”.

original Shekel’s Foxholes test function is taken, the function used here
perhaps is better described as “inverted foxholes,” hence the quotation
marks in its name. A perspective view of this function appears in
Fig. 16(a). The final probe distribution at time step 2 is shown in
Fig. 16(b). The primarily linear distribution of probes is intuitively
consistent with the grid-like arrangement of the function’s peaks.
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The last 2-D test function is Keane’s Bump, a constrained
objective function. The locations of its maxima are not known, but
they can be approximated by examining the perspective and plan views
in Fig. 17. The global and nearest local maxima are contained in two
“ridge line” regions near x1 = ∓1.6, x2 = ∓0.47. These regions are
nearly, but not precisely, symmetrical.

Figure 17a. Perspective view of Keane’s bump.

Figure 17b. Perspective view of Keane’s bump.
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Figure 17c. Plan view of Keane’s bump.

Unlike the other test functions, the initial probe distribution for
Keane’s Bump was a uniform 2-dimensional grid of probes instead of a
uniform distribution of probes along each coordinate axis. The reason
for this departure is that an examination of Fig. 17(c) reveals that the
function value is zero along each coordinate axis, so that initial probes
deployed there can provide no information about the function. This is
yet another example of why the initial CFO probe distribution must
somehow be related to the objective function’s topology in its decision
space. Fig. 18 shows the initial probe distribution that was used, a
square grid of 14 probes on each edge for a total of 196 probes.

Because Keane’s Bump is highly multimodal, it is useful in
illustrating the effect of varying CFO’s “gravity.” Runs were made with
four different values of the gravitational constant G: +7,+2,+0.5 and
−2. Results appear in Table 6. CFO’s convergence is clearly influenced
by the value of G, and it is perhaps counter-intuitive that the greatest
gravitational constant does not provide the best convergence (fitness
of 0.357... for G = 7 vs. 0.364... for G = 2). Choosing G clearly
is important for obtaining good results, but exactly how it should be
done remains elusive.

Another interesting attribute of the CFO algorithm is how it
performs with a negative gravitational constant. When G < 0 CFO’s
“gravity” is repulsive, so that instead of attracting probes towards
good solutions, the negative gravity pushes them away. The results
for G = −2 clearly show this effect. The maximum fitness does not
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Figure 18. Initial probe distribution for Keane’s bump.

Table 6. Results for Keane’s bump with varying gravity Np =
196, α = 2, β = 2, ainit = 0 for all runs.

CFO    CFO 

G   tN   Fitness   Coords 

2  20  0.364915  (1.60267,0.46804) 

7  50  0.357819  (1.61608,0.472266) 

0.5  50  0.362238  (1.6124,0.468207) 

ñ2  50  0.141965  (3.46154,1.15385) 

even approximate the correct value, nor are the coordinates correct.
Figs. 19(a) and (b), show the final probe locations for G = 2 and
G = −2, respectively. While Fig. 19(a) clearly shows clustering of the
probes near the ridge lines containing the maxima, Fig. 19(b) shows
the probes clustering near the decision space boundaries. There are no
probes near the maxima for G = −2 because they have been pushed
to the very edges of the decision space.

Fig. 20 provides further insight into the effect of varying G. It
plots the normalized average distance between the probe with the best
fitness value and all the other probes as a function of the time step.
As before, the average probe distance is normalized to the size of the
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decision space as measured by the length of its diagonal. For G = 2,
Fig. 20(a), the distance decreases nearly monotonically from a value
near 0.37 to just over 0.17 at time step 20. This is a result of the

Figure 19a. Final probe locations for G = 2.

Figure 19b. Final probe locations for G = −2.
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Figure 20a. Average probe distance vs. time step for G = 2.

Figure 20b. Average probe distance vs. time step for G = −2.
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clustering of probes near the maxima. As time progresses, more and
more probes get closer and closer together. Just the opposite happens
when gravity is negative. In Fig. 20(b), G = −2, the probes are seen
to fly away from each other. The average distance to the best fitness
probe increases almost linearly with time step from the starting value
near 0.37 to a value slightly under 0.44 at step 50.

This example using Keane’s Bump function shows how important
the appropriate initial probe distribution and the appropriate value of
the gravitational constant are to designing an effective CFO algorithm.
How to choose these parameters is an important unresolved question.

9. CFO AS A TOPOLOGY MAPPER?

Central Force Optimization exhibits what appears to be a unique and
potentially useful characteristic: the algorithm clusters its probes near
maxima, both local and global, without necessarily flying all the probes
to a single “best” point (as, for example, PSO and ACO generally
do). Thus CFO may be useful as a tool for “mapping” the topology
of a decision space by locating its approximate maxima. Doing so
may improve an optimizer’s convergence by permitting a reduction in
the size of the decision space that is searched. Instead of searching a
very wide range in the decision variables, CFO may allow for multiple
searches in much smaller regions, ones that CFO has identified as
containing maxima.

CFO appears to converge very quickly for highly multimodal
functions, so that its use as a “mapping preprocessor” may make sense.
In addition, many engineering applications are not necessarily best
served by locating the actual global maximum. For fitness functions
comprising many maxima of similar amplitude, real world design and
fabrication issues may well make a sub-optimal solution actually the
“best” solution. By clustering probes around maxima, CFO may
point an optimizer toward solutions that are not globally optimal
but nevertheless merit consideration. This section describes CFO’s
clustering behavior with three 2-D example functions.

9.1. 2-D Sine Function

The 2-D sine curve is defined as

f(x1, x2) = sin

(

7.5
√

(x1 − 2.5)2 + (x2 − 2.5)2
)

, 0 ≤ x1, x2 ≤ 5.

This function has an infinite number of indistinguishable maxima with
a value of unity as shown in Fig. 21. CFO tends to distribute its probes
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Table 7. 2-D sine function CFO run parameters.

Run Np Nt Neval Init. Dist. 

CFO-1 36 25 900 Uniform Grid 

CFO-2 16 55 880 Random 

over all the maxima points, whereas most, if not all, other algorithms
will converge on a single point.

Figure 21. 2-D circular sine function.

Two CFO runs were made with the parameters shown in Table 7.
The runs utilized approximately the same total number of function
evaluations, Neval ∼ 900. The Init. Dist. column shows the type of
initial probe distributions that were used because the initial probe
distribution can have a significant effect on an algorithm’s convergence.
For example, if an initial CFO probe (or PSO particle, or ACO “ant”) is
placed right on one of the function maxima, accidentally or otherwise,
then the best probe fitness returned at the very beginning of the run is
the maximum possible value, in this case, unity. The initial distribution
thus biases the run toward or away from the actual maxima. Because
CFO is inherently deterministic, in this case both deterministic and
random uniform initial probe distributions were used. This is a
departure from all the previous runs reported in this paper. Plots
of the initial distributions are shown in Fig. 22. The uniform grid of
initial probes does not bias the algorithm by placing probes on or near
maxima.
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Figure 22a. Initial uniform grid of CFO probes x1-x2 plane.

Figure 22b. Initial random CFO probes x1-x2 plane.

Probe locations at time step 25 are shown in Fig. 23(a). It
is clearly evident that the CFO probes cluster symmetrically along
concentric circles at the maxima. The reason that probes in the outer
circle are grouped around lines radiating from center to corners is that
there is more mass in those directions. If decision space were circular
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Figure 23a. CFO probe locations x1-x2 plane at Step 25.

Figure 23b. 2500 CFO probe x1-x2 plane at Step 50.
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instead of square, the probes presumably would show a more or less
uniform distribution along the maxima circles. To further illustrate
this point, Fig. 23(b) shows the positions of 2,500 probes after 50 time
steps using the same run parameters. The circular structure of the
sine curve’s maxima is clearly evident, as is the higher concentration
of probes in the directions of the decision space’s diagonals resulting
from more “mass” in the direction of the corners.

This characteristic of CFO, its ability to cluster probes
around many maxima, appears to be unique among optimization
methodologies, and may be useful in “mapping” the topology of an
unknown decision space. The results of a preliminary CFO run might,
for example, be used to seed another optimization run, whether it is
CFO, PSO, ACO, or any other optimizer. Starting an optimization
run in the vicinity of known maxima can greatly improve convergence
efficiency, and, as this example shows, CFO appears to do quite well
in locating multiple maxima.

The maximum fitnesses returned by the first CFO run with
Neval = Np ×Nt = 900 are in the range 0.954328–0.999964 (Table 8).
These data show a high degree of symmetry, which reflects the 2D
sine’s circular symmetry. The best fitness as a function of time step is
shown in Fig. 24(a). It increases very quickly between steps 6 and 7,
and very slowly thereafter. The average distance from all probes to the
best probe normalized to the size of the decision space (length of the
principal diagonal) is plotted in Fig. 24(b) as a function of time step.
The flattening of the curve after step 23 suggests that a stable probe

Table 8. 2D sine function maxima computed by CFO using uniform
initial probes.

Maximum Fitness x1 x2 

0.999964 3.24128 3.24128 

0.999869 3.33134 1.86676 

0.999869 1.86676 3.33134 

0.999869 1.86676 1.66866 

0.996793 1.75197 1.75197 

0.995861 1.76810 3.23190 

0.995861 1.76810 1.76810 

0.995540 1.82214 1.68534 

0.995540 1.82214 3.31466 

0.954328 2.55764 2.34115 

0.954328 2.34115 2.55764 
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Figure 24a. CFO run 1 best fitness vs. time step.

Figure 24b. CFO run 1 average distance to best probe vs. time step.
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Table 9. Summary of CFO results for the 2D sine function.

Run Max Fitness x1 x2 

CFO-1 0.999964 3.24128 3.24128 

CFO-2 0.999784 0.30135 4.10126 

configuration has been obtained, and such flattening may be a useful
measure of convergence. Table 9 summarizes the best fitness results
for the two CFO runs. In both cases CFO has come very close to the
actual maximum of unity.

9.2. Modulated R2 Function

Another illustration of CFO’s ability to cluster probes is provided by
the modulated R-squared function defined as

f(x1, x2) = −r2 − sin(10πr), r =
√

x2
1 + x2

2, −5 ≤ x1, x2 ≤ 5.

Its global maximum value is ≈ 0.977545 at r ≈ 0.1497, these values
being determined numerically from the data used to create the radial
plot in Fig. 25. A perspective view of this function appears in Fig. 26.

Figure 25. Modulated R-squared function vs. r =
√

x2
1 + x2

2.



Progress In Electromagnetics Research, PIER 77, 2007 471

Figure 26. 2-D modulated R-squared function.

The CFO run was made using a uniform grid of initial probes with
Np = 225, Nt = 2048, G = 5, α = 4, β = 2, ∆t = 1. These values are
somewhat different than those used previously, and, as in all previous
cases, were determined empirically. The best fitness returned by CFO
was 0.977494 at x1 = −0.128425, x2 = 0.076285. The radial distance
to this point is 0.149373, which agrees very well with the numerically
determined radius.

CFO’s clustering effect is evident in Figs. 27(a) and (b) showing
the probe distributions at time steps 384 and 2048, respectively. While
convergence was essentially obtained much earlier in the run, the large
number of time steps was chosen because it shows how tightly CFO
clusters probes on the very small circle of global maxima centered on
the origin.

9.3. Three Cylinders

The previous test functions were continuous, which raises the question
of how well CFO deals with discontinuous objective functions. This
test demonstrates that CFO successfully locates and distinguishes
multiple clustered maxima even when the objective function is highly
discontinuous.

The three cylinders function is defined on 0 ≤ x1, x2 ≤ 5 by the
following equations:

r1 =
√

(x1 − 3)2 + (x2 − 2)2, r2 =
√

(x1 − 4)2 + (x2 − 4)2,
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Figure 27a. Modulated R-squared probes in x1-x2 plane at Step 384.

Figure 27b. Modulated R-squared probes in x1-x2 plane at Step
2048.
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r3 =
√

(x1 − 1)2 + (x2 − 3)2

f(x1, x2) =















1, r1 ≤ 0.75
1.05, r2 ≤ 0.375
1.05, r3 ≤ 0.25
0, otherwise

This function is plotted in Fig. 28 (note that the cylinder walls do
not appear to be perfectly perpendicular to the x1, x2-plane because of
the granularity with which the plot is calculated). The cylinders are
centered on the points (3,2), (4,4) and (1,3). The fattest cylinder with
radius 0.75 has a height of 1.0, while the other two smaller diameter
cylinders at (4,4) and (1,3), radii 0.375 and 0.25, respectively, have
heights of 1.05. Thus, the global maxima are an infinite number of
points on the ends of the smaller diameter cylinders whose values are
only 5% greater than the local maxima centered on (3,2) and occupying
a much larger area.

Figure 28. Three cylinders.

The CFO run was made with Np = 225, Nt = 8192, G =
5, α = 4, β = 2, ∆t = 1 and a uniform initial probe distribution.
Probe locations in the x1-x2 plane appear in Fig. 29. At time step
16, CFO clearly has located the three cylinders. In fact, it appears
that the optimizer will cluster probes on all three maxima circles,
global and local. As the CFO run progresses, however, probes are
drawn away from the fat cylinder to the two smaller diameter cylinders
because of their greater gravitational attraction. At step 4096, for
example, the probes have significantly dispersed away from the fat
cylinder. By the end of the run all but fifteen probes have clustered
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Figure 29a. Three cylinders probes in x1-x2 plane at Step 16.

Figure 29b. Three cylinders probes in x1-x2 plane at Step 4096.

at the actual global maxima. CFO successfully located the maxima of
this highly discontinuous objective function with nearby local maxima
of comparable amplitude, clustering probes throughout the regions
containing the maxima. This is a further example of CFO’s ability
to cluster probes around dispersed maxima.
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Figure 29c. Three cylinders probes in x1-x2 plane at Step 8192.

10. AVOIDING TRAPPING AT LOCAL MAXIMA

The benchmark runs described in Section 8 suggest that CFO can
become trapped at a local maximum. This section discusses a possible
solution to this problem. The Step function is revisited in two
dimensions in order to illustrate an adaptive approach that may avoid
trapping.

Two CFO runs were made with G = 2, α = 2, β = 2 and a
uniform on-axis distribution of initial probes. Twenty probes were
uniformly distributed on the x1 and x2 axes as shown in Fig. 30. The
global maximum of zero was offset from the origin to the point (75.123,
75.123) in order to avoid any bias resulting from the initial probe
distribution as discussed earlier (see Benchmark 5 in the Appendix).
Table 10 shows the CFO run parameters. The first run was made with
Nt = 250 and the second with Nt = 4.

For the longer CFO run, Fig. 31(a) shows that all but two of the
probes have converged at step 250. The reason for making the shorter

Table 10. 2D step function run parameters.

Run Np Nt Neval Init. Dist. 

CFO-1 40 250 10,000 

CFO-2  4  160 40

On-Axes

On-Axes
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Figure 30. 2-D step function initial probe distribution in x1-x2 plane.

 

Figure 31a. CFO probes in x1-x2 plane at Step 250.

CFO run is to illustrate that many probes have clustered near the
maximum as early as step 4 as shown in Fig. 31(b). In fact, CFO
returns the same maximum value at step 4 as it does at step 250, the
only difference being slightly different x1 and x2 coordinates. The best
fitnesses at the end of the longer CFO run are tabulated in Table 11,
and results for the two runs appear in Table 8. For the long run, instead
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Figure 31b. 2-D step probes in x1-x2 plane at Step 4.

of converging on the global maximum of zero at (75.123,75.123), CFO
converged on a maximum of −1 at (74.315,75.4982). This is apparently
the result of trapping at a local maximum.

Table 11. 2D step function maxima computed by CFO at Step 250.

Maximum Fitness x1 x2 

-1 74.315 75.4982 

-6868 -6.66667 86.6667 

-61250 -100 -100 

Table 12. Summary of CFO/PSO results for the 2D step function.

Run Max 

Fitness 

x1 x2 Neval Np  Nt 

CFO-1 -1 75 76.3158 160 40  4 

CFO-2 -1 74.315 74.4982 10,000 40  250 

Figs. 32(a) and (b), respectively, are CFO’s best fitness and
average distance curves. The very rapid increase in fitness to −1
at step 4 is evident, and the best value does not change after that
point because the algorithm apparently has been trapped. The probe
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Figure 32a. 2-D step function best fitness vs. time step.

Figure 32b. 2-D step function average distance to best probe vs. time
step.
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distance plot shows a very interesting behavior. The minimum value
occurs at step 3, the step before the fitness climbs to−1. Thereafter the
average distance oscillates about values that plateau and then increase
in a step-like fashion. A very long CFO run (Nt = 30, 000, results not
shown) reveals that the curve remains flat and continues to oscillate
around the value of 0.728 as seen in Fig. 32(b).

CFO appears to converge very rapidly to the vicinity of a
function’s global maximum. In every case in section 8, for example, the
maximum CFO fitness began to plateau no later than step 20 (at step
15 the Rosenbrock run had converged on xi = 25.3125 for 28 of the 30
coordinates). This is a very rapid convergence on an approximation of
the global maximum, and it seems to be a characteristic behavior of
CFO when the initial run parameters are properly chosen.

If indeed this is a persistent CFO characteristic, as it seems to
be in view of the quite different test functions, then an adaptive CFO
implementation that shrinks the decision space around an approximate
maximum located after only a few time steps may avoid local trapping
and converge very quickly. As an example, if the 2-D Step function
decision space is truncated from −100 ≤ x1, x2 ≤ 100 to 70 ≤ x1, x2 ≤
95 (based on the convergence seen by step 4) and CFO is re-run with
40 = p N probes distributed uniformly along the lines x1, x2 = 82.5
(dividing the region into four quadrants), then CFO locates the global
maximum of zero at (75.338,75.5149) in only 3 steps. Assuming 20
steps to start, this specific adaptation (all other CFO parameters
unchanged) avoids local trapping and locates the 2-D Step functions
global maximum in 23 steps with a total of 920 functions evaluations.

This example shows that a properly implemented adaptive CFO
algorithm should be able to avoid becoming trapped in local maxima.
Another possible approach might be to deterministically or randomly
redistribute some fraction of the probes when saturation becomes
evident in the evolution of either the best fitness or the average distance
curves.

11. CONCLUSION

This paper introduces Central Force Optimization (CFO) as a new
optimization metaheuristic. Preliminary analysis suggests that CFO is
an effective deterministic search algorithm for solving multidimensional
optimization problems. CFO’s effectiveness has been illustrated by
designing a 3-element equalizer for the canonical Fano load, and
by synthesizing a 32-element linear array with three specific design
criteria. In both cases CFO produced results that were as good or
better than those produced by several other optimization algorithms
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applied to the same problems.
While initial CFO testing has been very encouraging, the

fact remains that Central Force Optimization at this point is a
metaheuristic as defined in the introduction. Many improvements in
designing CFO algorithms undoubtedly are possible, and to be sure,
unresolved questions remain, among them: (a) how to choose the initial
probe distribution; (b) how to define “mass” in CFO-space; (c) how
to choose the CFO parameters G,α, β,Np and Nt; and (d) how to
define termination criteria. Questions relating to the choice of run
parameters, however, are not at all unique to CFO. As the linear array
example shows, the same questions apply to setting up ACO runs, and
in the linear array case the answers were entirely empirical.

Hopefully these issues will be addressed by future research spurred
on by this description of the CFO concept. CFO’s status at this time
is much like that of ACO when it was first introduced in 1996. With
the attention of researchers far better qualified than the author, CFO
perhaps will achieve a similar measure of success as an optimization
algorithm. The use of evolutionary algorithms for antenna design
and for solving other problems in applied electromagnetics has grown
dramatically through the years. It is an active research area, recent
representative examples being found in [17–29]. Perhaps CFO could be
applied to some of those problems in order to compare its performance
to the wide variety of EA’s that have successfully been used.

CFO demonstration programs (executables and source code,
including the Fano load and array synthesis programs) and other
materials using many different test functions [30] are available upon
request. Interested persons should email the author at rf2@ieee.org to
request copies.
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APPENDIX A. TEST FUNCTIONS

This appendix contains the definitions of the benchmark functions
discussed in Section 8. Each function f(x) = f(x1, x2, . . . , xNd

) is
defined on an Nd-dimensional decision space, where Nd = 2 or 30 as
indicated. In several cases the maxima are offset from the locations
described in [14] and [15] in order to avoid possible bias resulting from
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proximity of the initial probes to the maxima. The functions appear
in the order listed in Tables 4, 5 and 6 above.

Benchmark 1: Schwefel Problem 2.26

The generalized Schwefel Problem 2.26 is a 30-D function defined
as

f(x) =
30
∑

i=1

xi sin
√

|xi|, −500 ≤ xi ≤ 500

Its maximum value is 12569.5 occurring at xi = 420.9687, i =
1, . . . , 30. As an indicator of its complexity, the 2-D Schwefel is
plotted below in Fig. A1. This function is continuous and extremely
multimodal.

Figure A1. 2-D schwefel 2.26.

Benchmark 2: Modified Griewank

The modified Griewank function is a 30-D function defined as

f(x) = − 1

4000

30
∑

i=1

(xi−xo)
2+

30
∏

i=1

cos

{

(xi − xo)√
i

}

−1, −600 ≤ xi ≤ 600.

Its maximum value of zero is offset from the origin and occurs at
f(xo, xo, . . . , xo) where xo = 75.123. The Griewank is continuous and
very highly multimodal, as shown in the 2-D plot in Fig. A2.

Benchmark 3: Modified Ackley’s Function

The modified version of the 30-D Ackley function has its maximum
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Figure A2a. 2-D Griewank over entire domain.

Figure A2b. 2-D Griewank showing detail in vicinity of maximum.

offset from the origin and is defined by

f(x) = 20 exp



−0.2

√

√

√

√

1

30

30
∑

i=1

(xi − xo)2





+exp

(

1

30

30
∑

i=1

cos{2π(xi − xo)}
)

− 20− e, −32 ≤ xi ≤ 32

The maximum value is 0 at (xo, . . . , xo), where xo = 4.321. A plot of
this function in two- dimensions appears in Fig. A3.
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Figure A3. 2-D modified Ackley function.

Benchmark 4: Modified Rastrigin

The modified Rastrigin function is defined as

f(x) = −
30
∑

i=1

[

y2
i − 10 cos(2πyi) + 10

]

, yi = xi−xo, −5.12 ≤ xi ≤ 5.12

The maximum value of zero occurs at f(xo, xo, . . . , xo) where xo =
1.123. It possesses many local maxima that are close in value. The
2-D version of this function appears in Fig. A4.

Figure A4. 2-D modified rastrigin function.
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Figure A5a. 2-D step function on test domain.

Figure A5b. Expanded view of 2-D step function in vicinity of
maximum.

Benchmark 5: Modified Step

The modified step is defined as

f(x) = −
30
∑

i=1

(⌊xi − xo + 0.5⌋)2 , −100 ≤ xi ≤ 100

where the offset shifts the maximum from the origin to
(xo, . . . , xo), xo = 75.123. Fig. A5a plots the 2-D version of this
function over its domain of definition for this test case. The step’s
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value varies over a very wide range, from a maximum of zero at
(75.123,75.123) to a minimum below −60, 000. Fig. A5b shows an
expanded view of the step’s structure in the vicinity of the maximum.

Benchmark 6: Modified Sphere Model

The modified sphere model is defined as

f(x) = −
30
∑

i=1

(xi − xo)
2 , −100 ≤ xi ≤ 100

where the maximum value of zero occurs at f(xo, . . . , xo), xo = 75.123.
The two-dimensional version of the Sphere Model appears in Fig. A6.

Figure A6. Modified sphere model.

Benchmark 7: Rosenbrock’s Function

f(x) = −
29
∑

i=1

[

100
{

(xi+1 − xo)− (xi − xo)
2
}2

+ {(xi − xo)− 1}2

]

where xo = 25.123. This function has a maximum value of zero at
xi = 26.123, i = 1, . . . , 30. The 2-D version is plotted in Fig. A7.
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Figure A7. 2-D Rosenbrock’s function.

Benchmark 8. Colville Function

The modified Colville function is defined as

f(x1, x2, x3, x4) = −100 ·
(

x′2 − x′21

)2

− (1− x′1)
2

= −90 ·
(

x′4 − x′23

)2

− (1− x′3)
2

= −10.1 ·
(

(

x′2 − 1
)2 − (x′4 − 1)2

)

= −19.8 ·
(

x′2 − 1
)

· (x′4 − 1)

where x′i = xi − 7.123, i = 1, . . . , 4, −10 ≤ xi ≤ 10.
It has a maximum value of zero at xi = 8.123, i = 1, . . . , 4. By

definition, the Colville function is four-dimensional and consequently
cannot be plotted.

Benchmark 9: Six-Hump Camel-Back

The 2-D Six-Hump Camel-Back function is defined as

f(x) = −4(x1 − 1)2 + 2.1(x1 − 1)4 − 1

3
(x1 − 1)6

−(x1 − 1)(x2 − 1) + 4(x2 − 1)2 − 4(x2 − 1)4, −5 ≤ xi ≤ 5

The maximum value is 1.0316285 at (1.08983,0.2874) and (0.91017,1.7126).
The Camel-Back appears in Fig. A8.
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Figure A8. 2-D six-hump Camel-back function.

Benchmark 10: Branin Function

The Branin function is defined as

f(x) = −
(

x2 −
5.1

4π2
x2

1 +
5

π
x1 − 6

)2

− 10

(

1− 1

8π

)

cosx1 − 10,

−5 ≤ xi ≤ 15

The standard search interval of −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15 has
been expanded so that each coordinate has the same minimum and
maximum values. The Branin’s maximum value is −0.398 occurring
at the three points:

(−3.142, 12.275)
(3.142, 2.275)
(9.425, 2.425)

The 2-D Branin function is plotted in Fig. A9.

Benchmark 11: Shekel’s Inverted Foxholes

Shekel’s Inverted Foxholes is a 2-dimensional test function defined
by

f(x) = −















1

500
+

25
∑

j=1

1

j +
2
∑

i=1

(xi − aij)
6















−1

, −65.536 ≤ xi ≤ 65.536
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Figure A9. 2-D Branin function.

where

(aij) =

( −32 −16 0 16 32 −32 · · · 0 16 32
−32 −32 −32 −32 −32 −16 · · · 32 32 32

)

Its maximum value is ≈ −1 occurring at (−32,−32). The 2D Shekel’s
“Foxholes” appears in Fig. 16 above.

Benchmark 12. Modified Keane’s Bump

The modified Keane’s Bump is a constrained objective function
defined as

f(x1, x2) =















0 for x1 + x2 ≥ 15 or x1x2 ≤ 0.75; otherwise

cos4(x1) + cos4(x2)− 2 cos2(x1) cos
2(x2)

√

x2
1 + 2x2

2















−5 ≤ x1, x2 ≤ 5

The precise location(s) and value(s) of the maxima are unknown.
Various views of Keane’s Bump appear in Fig. 17.
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