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Let B be a collection of fuzzy sets. What are the fuzzy sets which are sufficiently similar
to every fuzzy set from B, i.e. ‘central’ fuzzy sets for B? Such a question naturally arises
if B is large and one wishes to replace B by a single fuzzy set – the representative of B.
In this paper, we develop a framework which enables us to answer this question and
related ones. We use complete residuated lattices as the structures of truth degrees,
covering thus the real unit interval with left-continuous t-norm and its residuum as an
important but particular case. We present results describing central fuzzy sets and
optimal central fuzzy sets, provided similarity of fuzzy sets is assessed by Leibniz rule.
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1. Problem setting

Suppose there is a collection of metal poles of different lengths. Suppose a person sees a

picture of two poles from that collection and is asked to assess their similarity, i.e. the

person is asked to tell a degree p1 < p2 to which the poles are similar. The degree has to be

a value between 0 and 1, p1 < p2 ¼ 0 and p1 < p2 ¼ 1 indicate that the poles are not

similar at all and that the poles are indistinguishable, respectively. Since the poles are

narrow, the person assesses their similarity based solely on their lengths. The picture does

not show a scale, i.e. the person does not know the actual lengths of the poles. An obvious

way to assess the similarity s of poles p1 and p2 of lengths l(p1) and l(p2) is to put

p1 < p2 ¼ min
lðp1Þ

lðp2Þ
;
lðp2Þ

lðp1Þ

� �
; ð1Þ

i.e. to make the similarity judgement based on the ratio of the lengths. Namely, the ratio

does not depend on the actual lengths, i.e.

p1 < p2 ¼ min
c·lðp1Þ

c·lðp2Þ
;
c·lðp2Þ

c·lðp1Þ

� �

for any c . 0, so it can be assessed even when the person does not know the actual

magnification coefficient c . 0, i.e. does not know the scale for the picture.

Given poles p1 and p2 with lengths l(p1) and l(p2), what is the length of the pole in the

middle? That is, what is the length of the ‘central pole’ p for which

p < p1 ¼ p < p2;
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i.e. for which the similarity to p1 equals the similarity to p2? An easy verification shows

that the central pole p has length

lðpÞ ¼
ffiffiffiffiffiffiffiffiffi
lðp1Þ

p
·
ffiffiffiffiffiffiffiffiffi
lðp2Þ

p
: ð2Þ

Suppose now that the longest possible pole has the length normalised to 1 and the

person knows the scale, i.e. knows the lengths l(p1) and l(p2). Then there is another,

perhaps more natural, way to assess the similarity. Namely, one can put

p1 < p2 ¼ 12 j lðp1Þ2 lðp2Þ j ; ð3Þ

i.e. the similarity is proportional to the distance of the normalised lengths of p1 and p2.

If such a measure of similarity is used, the length of the central pole p is

lðpÞ ¼
lðp1Þ þ lðp2Þ

2
: ð4Þ

Obviously, given a set B ¼ {p1; . . . ; pn} of poles, the length of the optimal central pole for

B is

lðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

i
lðpiÞ

q
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

i
lðpiÞ

q

for similarity given by (1) and

lðpÞ ¼
minilðpiÞ þmaxilðpiÞ

2

for similarity given by (3).

In this paper, we present theorems and algorithms motivated by the above types of

problems. The first hint to a general framework for this kind of problems is the observation

that in (1)

p1 < p2 ¼ lðp1Þ $ lðp2Þ; ð5Þ

with $ being the biresiduum corresponding to product t-norm and that in (2)

lðpÞ ¼ m^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðp1Þ $ lðp2Þ

p
; ð6Þ

with m ¼ min{lðp1Þ; lðp2Þ},^ denoting the product t-norm and
p
denoting its square root,

as introduced by Höhle (1995). Likewise, (5) and (6) become (3) and (4) if $ and ^

denote the Łukasiewicz biresiduum and t-norm. Henceforth, we consider the framework of

left-continuous t-norms and their residua. In fact, we consider a more general framework

of complete residuated lattices (Ward and Dilworth 1939).

In general, we assume that B is a subset of a set S of fixpoints of some fuzzy closure

operator C in a universe set X and study the ‘central’ fuzzy sets for B, i.e. fuzzy sets from S
which are sufficiently similar to any fuzzy set from B. If C is the identity, S is the set of all

fuzzy sets in X, in which case no constraint is imposed, i.e. B as well as the central fuzzy sets

may be arbitrary fuzzy sets in X. However, our setting with a general operator C allows us to

consider only certain fuzzy sets (thosewhich are thefixpointsofC) as the elements ofB aswell

as the central fuzzy sets of B. Example 3.7 clarifies why we consider general operators C.
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2. Preliminaries

2.1 Tolerance relations

A tolerance relation, see e.g. (Pogonowski 1981, Schreider 1975), in a set X is a binary

relation T in X which is reflexive and symmetric, i.e. for every x; y [ X, T satisfies

kx; xl [ T;

kx; yl [ T implies ky; xl [ T :

The concept of a tolerance relation generalises the well-known concept of an equivalence

relation. Namely, T is an equivalence relation if it is a tolerance relation which is,

moreover, transitive, i.e. for every x; y; z [ X, if kx; yl [ T and ky; zl [ T , then kx; zl [ T .

Let T be a tolerance in X. A class of T given by x [ X is the set ½x�T ¼ {y j kx; yl [ T}.

A set B # X is called a block of T if B £ B # T , i.e. if for every x; y [ B, kx; yl [ T .

A block B of T is called maximal if it is maximal with respect to set inclusion, i.e. if

B0 £ B0 � T for any B0 . B. It is easy to see that if T is an equivalence relation, classes of T

coincide with maximal blocks of T.

While equivalence relations serve as simple mathematical models of indistinguish-

ability, tolerance relations serve as models of similarity. Namely, equivalence relations

represent relationships defined by ‘have same features’, while tolerance relations represent

relationships defined by ‘have some features in common’, see Schreider (1975).

2.2 Fuzzy sets and fuzzy logic

2.2.1 Residuated lattices as structures of truth degrees

In classical logic, the structure of truth degrees is the two-element Boolean algebra, i.e. a

structure L which consists of a two-element set L ¼ {0,1} of truth degrees and is equipped

with truth functions of logical connectives. In fuzzy logic, there are more options, both for

the set L of truth degrees and for the functions of logical connectives. As the structures of

truth degrees, we use complete residuated lattices. Complete residuated lattices, introduced

to fuzzy logic by Goguen (1968–1969), and their variants are used in mathematical fuzzy

logic (Hájek 1998, Gottwald 2008). Recall that a complete residuated lattice is an algebra

L ¼ kL;^;_; ^ ;!; 0; 1l such that kL;^;_; 0; 1l is a complete lattice with 0 and 1 being

the least and greatest element of L, respectively; kL; ^ ; 1l is a commutative monoid (i.e.^

is commutative, associative and a^ 1 ¼ 1^ a ¼ a for each a [ L) ^ and ! satisfy the

so-called adjointness property: a^ b # c iff a # b ! c for each a; b; c [ L. The fact that

kL;^;_; 0; 1l is a complete lattice means that the infimum ^i[Iai and supremum _i[Iai

exist for any subset {ai j i [ I} # L. Elements a [ L are called truth degrees. Operations^

and ! , calledmultiplication and residuum, are truth functions of logical connectives ‘fuzzy

conjunction’ and ‘fuzzy implication’. A biresiduum ofL is a binary operation $ defined by

a $ b ¼ ða ! bÞ ^ ðb ! aÞ:

We denote by # the lattice order induced by L. Examples of residuated lattices are well

known. A generic one is: take a left-continuous t-norm^. That is,^ is binary operation on

[0,1], which is left-continuous in its first argument (as a real function of two variables),

commutative, associative, monotone and has 1 as its neutral element (Hájek 1998).

Put a ! b ¼ _{c [ L j a^ c # b}. Then k½0; 1�;min;max; ^ ;!; 0; 1l is a complete

residuated lattice. Three most important pairs of adjoint operations on [0,1] obtained this

way are Łukasiewicz: a^ b ¼ maxð0; a þ b 2 1Þ and a ! b ¼ minð1; 12 a þ bÞ;
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Gödel (minimum): a^ b ¼ a ^ b, a ! b ¼ b for a . b and a ! b ¼ 1 for a # b and

Goguen (product): a^ b ¼ a·b, a ! b ¼ b=a for a . b and a ! b ¼ 1 for a # b. In the rest

of the paper, L denotes an arbitrary complete residuated lattice.

A special case of a complete residuated lattice is the two-element Boolean algebra

k{0; 1};^;_; ^ ;!; 0; 1l, denoted by 2. That is, the operations ^;_; ^ ;! of 2 are the

truth functions (interpretations) of connectives of classical logic.

2.2.2 Fuzzy sets and fuzzy relations

Given L, we define the usual notions regarding fuzzy sets and fuzzy relations: a fuzzy set

(an L-set) A in a universe X is a mapping A :X ! L, A(x) being interpreted as ‘the degree to

which x belongs to A’. The set of all fuzzy sets in X is denoted by L X. Operations with

fuzzy sets are defined component-wise. For instance, the intersection of fuzzy sets A;B [
LX is a fuzzy set A > B in X such that ðA > BÞðxÞ ¼ AðxÞ ^ BðxÞ for each x [ X, etc. For

fuzzy sets A;B [ LX , put

SðA;BÞ ¼
^
x[X

ðAðxÞ! BðxÞÞ; ð7Þ

A < B ¼
^
x[X

ðAðxÞ $ BðxÞÞ: ð8Þ

S(A,B) and A < B are called the degree of subsethood of A in B and the degree of equality

of A and B, respectively. Note that S(A,B) can be seen as a truth degree of ‘for each x [ X:

if x belongs to A, then x belongs to B’. Similarly, A < B can be seen as a truth degree of

‘for each x [ X: x belongs to A if and only if x belongs to B’. < is a fuzzy equivalence

relation, i.e. A < A ¼ 1 (reflexivity), A < B ¼ B < A (symmetry) and ðA < BÞ^ ðB <
CÞ # A < C (transitivity), which is called a Leibniz similarity. We denote the fact that

SðA;BÞ ¼ 1 by A # B (A is fully contained in B). Hence, we have

A # B if and only if for each x [ X : AðxÞ # BðxÞ: ð9Þ

For more details we refer to (Belohlavek 2002, Hájek 1998).

3. Central points

3.1 Fuzzy closure operators

Suppose S is a system of fuzzy sets in X, i.e. S # LX . We consider the following type of

problems. Given B # S, what are the fuzzy sets A [ S which are similar to every A0 [ B

to a degree at least 1? To assess similarity of A and A0, we use< defined by (8). That is, A

being similar to A0 to a degree at least 1means A < A0 $ 1. Furthermore, we assume that S
is a system of fixpoints of an L-closure operator (fuzzy closure operator) C in X, see

Examples 3.1, 3.6 and 3.7 for particular examples.

Recall (Belohlavek 2001, 2002, Rodrı́guez et al. 2003) that an L-closure operator C in

X is a mapping C : LX ! LX satisfying

A # CðAÞ; ð10Þ

SðA1;A2Þ # SðCðA1Þ;CðA2ÞÞ; ð11Þ

CðAÞ ¼ CðCðAÞÞ; ð12Þ

for every A;A1;A2 [ LX . As a consequence, we also have

ðA1 < A2Þ # ðCðA1Þ < CðA2ÞÞ: ð13Þ

R. Belohlavek and M. Krupka4



The set fix(C) of all fixpoints of C is defined by

fixðCÞ ¼ {A [ LX jCðAÞ ¼ A}:

kfixðCÞ;# l is a complete lattice in which the infima
V

and suprema
W

are given by

^
j[J

Aj ¼
\
j[J

Aj;
_
j[J

Aj ¼ C
[
j[J

Aj

 !
;

for every {Aj j j [ J} # fixðCÞ. In this paper, we often denote subsets of fix(C) by B.

Correspondingly, we denote the infimum and the supremum of B by
V

B and
W

B,

respectively.

Example 3.1. Clearly, the identity mapping C : LX ! LX , i.e. CðAÞ ¼ A for every A [ LX ,

is an L-closure operator in X. In this case, fixðCÞ ¼ LX .

Remark 1. The concept of an L-closure operator generalises the well-known concept of a

closure operator. Namely, for L ¼ {0; 1}, L-closure operators coincide with ordinary

closure operators.

3.2 Central points, closed balls and blocks

Definition 3.2. Let B # fixðCÞ. Given a threshold 1 [ L, let

C1ðBÞ ¼ {A [ fixðCÞ j for everyA0 [ B : A < A0 $ 1}:

We call the elements of C1(B) 1-central points of B.

That is, C1(B) is the set of all fixpoints of C for which the degree of equality to every

A0 [ B is at least 1. In a sense, C1ðBÞ contains all fixpoints which are 1-similar to every

fixpoint from B.

Example 3.3. If B is empty or 1 ¼ 0, then C1ðBÞ ¼ fixðCÞ.

Definition 3.4. Let A [ fixðCÞ. Given a threshold 1 [ L, let

B1ðAÞ ¼ {A0 [ fixðCÞ jA < A0 $ 1}:

We call the set B1ðAÞ a closed 1-ball with centre A.

Example 3.5. If 1 ¼ 0, then B1ðAÞ ¼ fixðCÞ.

Note that it follows immediately from the definitions that

B1ðAÞ ¼ C1ð{A}Þ: ð14Þ

Remark 2. The concept of similarity can be regarded as dual to the concept of a distance.

A simple way to illustrate this correspondence is the following one. For any metric space

M with a distance function d, there can be introduced an L-equivalence < on M, with L

being the unit real interval [0,1] with Goguen (product) structure, by putting

ðx < yÞ ¼ e2dðx;yÞ;

International Journal of General Systems 5



where d(x,y) is the distance of the points x and y. On the other hand, for any L-equivalence

< on M satisfying

x < y ¼ 1 iff x ¼ y;

we can define a metric on M by

dðx; yÞ ¼ 2lgðx < yÞ:

Note that the above relationship is a special case of a general relationship between metric

distances and fuzzy equivalences which are transitive w.r.t. a continuous Archimedean

t-norm, such as the Goguen (product) t-norm, which is described by De Baets and Mesiar

(2002).

Now, any closed 1-ball with centre A in fix(C) coincides with the closed ball with

centre A and radius 2lg 1 in the metric space kfixðCÞ; dl. This illustrates the fact that the
concept of a closed ball has its well-known counterpart in the theory of metric spaces.

However, let us emphasise that such a counterpart is available only for L ¼ [0,1], equipped

with a continuous Archimedean t-norm ^.

The notion of 1-central point seems to have no counterpart in the theory of metric

spaces.

Example 3.6. The notions of 1-central points and closed 1-balls generalise those studied by

Belohlavek and Krupka (2008a). Namely, Belohlavek and Krupka (2008a) introduced the

following concepts. Let L be a complete residuated lattice with a support set L. For B # L

and 1 [ L, the set C1ðBÞ of central points and the closed 1-ball with centre c [ L were

defined by

C1ðBÞ ¼ {a [ L j for each b [ B : a $ b $ 1};B1ðcÞ ¼ {a [ L j a $ c $ 1}:

Clearly, if we let X ¼ {x} and identify the L-sets in X with truth degrees from L, i.e.

identify A [ LX s.t. AðxÞ ¼ a with a, then the notions of 1-central points and closed 1-balls

are particular examples of the corresponding notions introduced in this paper.

Example 3.7. Another example in which central points and closed balls naturally

appear comes from concept analysis of data with fuzzy attributes (Belohlavek 2002,

2004), see also (Ganter and Wille 1999) for formal concept analysis of data with binary

attributes. Let kX; Y; Il be a formal fuzzy context, i.e. X and Y are sets of objects and

attributes, and I : X £ Y ! L is a fuzzy relation between X and Y. For x [ X and y [ Y,

I(x,y) is interpreted as the degree to which object x has attribute y. Let " : LX ! LY and

# : LY ! LX denote the associated operators, i.e.

A "ðyÞ ¼
^
x[X

ðAðxÞ! Iðx; yÞÞ; B #ðxÞ ¼
^
y[Y

ðBðyÞ! Iðx; yÞÞ:

Let BðX; Y; IÞ ¼ {kA;Bl jA " ¼ B;B # ¼ A} denotes the associated concept lattice.

Elements kA;Bl [ BðX; Y; IÞ are called formal concepts and represent particular clusters

in the data described by kX; Y; Il. A and B are called the extent and the intent of kA;Bl and
represent the collection of all objects and attributes covered by the formal concept kA;Bl.
Consider the set

ExtðX; Y ; IÞ ¼ {A j kA;Bl [ BðX; Y ; IÞ for some B [ LY}

R. Belohlavek and M. Krupka6



of all extents of kX; Y ; Il. It can be easily shown that ExtðX; Y ; IÞ ¼ fixðCÞ for the

L-closure operator C : LX ! LX defined by CðAÞ ¼ A "#.

Since BðX; Y; IÞ ¼ {kA;A "l jA [ ExtðX; Y; IÞ}, B(X,Y,I) can be identified with

Ext(X,Y,I). Given a threshold 1 [ L and a set B # BðX; Y; IÞ of formal concepts, C1ðBÞ,

i.e. the set of 1-central points, is the set of all formal concepts which are similar to every

formal concept from B to a degree at least 1. Such a set may be desirable particularly if B is

large, and we need just a representative formal concept(s) instead of B. In such a case, it is

particularly interesting to ask for the best representative formal concept, i.e. for which the

similarity degree to every formal concept from B is the largest possible. We call such

elements optimal central points and investigate them in Section 3.3.

Remark 3.

(a) Recall that for a binary relation T between sets U and V, the Galois connection

(Ore 1944) induced by T is a pair of mappings "T : 2U ! 2V and "T : 2V ! 2U

defined for M [ 2U and N [ 2V by

M "T ¼ {v [ V j for each u [ M : ku; vl [ T};

N #T ¼ {u [ U j for each v [ N : ku; vl [ T}:

If U ¼ V and T is symmetric, then "T coincides with #T, and we write just M T instead

of M "T or M #T .

(b) Consider the Galois connection induced by the 1-cut 1< of< , i.e. by the symmetric

binary relation 1< between fix(C) and fix(C) defined for A;A0 [ fixðCÞ by

kA;A0l [ 1< if and only if A < A0 $ 1: ð15Þ

Clearly, 1< is a tolerance relation which need not be transitive. kA;A0l [ 1<means that A

and A0 are similar to a degree at least 1. As a result of the definitions, for B # fixðCÞ and

A [ fixðCÞ, we have

C1ðBÞ ¼ B
1< and B1ðAÞ ¼ {A}

1<:

Note also that B1ðAÞ is just the class of tolerance
1< given by A.

From the basic properties of Galois connections, we get the following assertions.

Lemma 3.8. For B;B1;B2 # fixðCÞ,

B1 # B2 implies C1ðB1Þ $ C1ðB2Þ; ð16Þ

B # C1ðC1ðBÞÞ; ð17Þ

C1ðBÞ ¼ C1ðC1ðC1ðBÞÞÞ; ð18Þ

C1ðBÞ ¼
\
A[B

B1ðAÞ: ð19Þ

Note that (19) states that 1-central points of B are just the points common to all closed

1-balls with centres A [ B.

As a consequence, we get the following lemma.
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Lemma 3.9. For B # fixðCÞ,

B #
\

A[C1ðBÞ

B1ðAÞ: ð20Þ

For A [ fixðCÞ,

A [ C1ðB1ðAÞÞ: ð21Þ

Proof. (20) follows from (17) and (19). Due to (17), {A} # C1ðC1ð{A}ÞÞ ¼ C1ðB1ðAÞÞ,

whence (20). A

The following lemma is another direct consequence of the observation made in

Remark 3 and the well-known properties of Galois connections.

Lemma 3.10.

1. The mapping cl1 : 2
fixðCÞ ! 2fixðCÞ defined for D # fixðCÞ by cl1ðDÞ ¼ C1ðC1ðDÞÞ is

an ordinary closure operator in fix(C).

2. The set fixðcl1Þ ¼ {D # fixðCÞ jD ¼ cl1ðDÞ} of all fixpoints of cl1 equipped with

# is a complete lattice.

3. D [ fixðcl1Þ if and only if D ¼ C1ðBÞ for some B # fixðCÞ, i.e. fixðcl1Þ contains

just sets of 1-central points.

We now present a description of the set C1ðBÞ of central points in our general setting.

First, we need the following lemma.

Lemma 3.11. A [ C1ðBÞ iff SðA;
V

BÞ ^ Sð
W

B;AÞ $ 1.

Proof. By definition, A [ C1ðBÞ means that for each A0 [ B, SðA;A0Þ $ 1 and

SðA0;AÞ $ 1. Hence, to prove the assertion, it suffices to check that (a) SðA;A0Þ $ 1 for

each A0 [ B is equivalent to SðA;
V

BÞ $ 1 and (b) SðA0;AÞ $ 1 for each A0 [ B is

equivalent to Sð
W

B;AÞ $ 1.

(a) By definition and using ð
V

BÞðxÞ ¼
V

A0[B A0ðxÞ,

SðA;
^

BÞ ¼
^
x[X

AðxÞ!
^

A0[B

A0ðxÞ

 !
¼
^
x[X

^
A0[B

ðAðxÞ! A0ðxÞÞ:

Hence, SðA;
V

BÞ $ a iff for every A0 [ B, SðA;A0Þ $ a.

(b) Since A [ fixðCÞ, we have

Sð
_

B;AÞ ¼ S C
[

B
� �

;CðAÞ
� �

$ S
[

B;A
� �

by (11). On the other hand, (10) yields
W

B $
S

B, which implies

Sð
W

B;AÞ # Sð
S

B;AÞ. Hence,

S

�_
B;AÞ ¼ S

[
B;A

� �
¼
^
x[X

^
A0[B

ðA0ðxÞ! AðxÞÞ ¼
^

A0[B

SðA0;A

�

and thus Sð
W

B;AÞ $ a iff for each A0 [ B, SðA0;AÞ $ a. A

The next theorem shows that central points form particular intervals in the lattice

kfixðCÞ;# l.

R. Belohlavek and M. Krupka8



Theorem 3.12. For any B # fixðCÞ,

C1ðBÞ ¼ Cð1^
_

BÞ; 1!
^

B
h i

:

Note that [_,_] denotes an interval in kfixðCÞ;# l, i.e.

Cð1^
_

BÞ; 1!
^

B
h i

¼ A [ fixðCÞ jCð1^
_

BÞ # A # 1!
^

B
n o

;

and that fuzzy sets 1^
W

B and 1!
V

B are defined by�
1^

_
BÞðxÞ ¼ 1^ ð

_
BÞðxÞ and ð1!

^
BÞðxÞ ¼ 1! ð

^
BÞðx

�
:

Proof. By Lemma 3.11, A is a central point iff SðA;
V

BÞ $ 1 and Sð
W

B;AÞ $ 1, which

is equivalent to A # 1!
V

B and 1^
W

B # A. Since fixpoints of C are closed

under !-shifts, see Belohlavek (2002), we get 1!
V

B [ fixðCÞ. However, 1^
W

B

need not be a fixpoint. The least fixpoint greater than or equal to 1^
W

B is Cð1^
W

BÞ.

This proves the theorem. A

The following theorem describes closed balls.

Theorem 3.13. For any A [ fixðCÞ,

B1ðAÞ ¼ ½Cð1^AÞ; 1! A�:

Proof. Directly from Theorem 3.12 using (14). A

Consider now, in addition to 1< , cf. (15), the binary relation 12< on fix(C) defined by

kA;A0l [ 12< if and only if A < A0 $ 12 ¼ 1^ 1: ð22Þ

Since 1^ 1 # 1, kA;A0l [ 1< implies kA;A0l [ 12<. Hence, classes (i.e. closed balls,

cf. Remark 3(b)) of 1< are contained in classes of 12< , i.e. B1ðAÞ # B1 2 ðAÞ. Likewise,

blocks of 1< are blocks of 1
2

< . However, there is an interesting relationship between the

closed balls B1ðAÞ and maximal blocks of 12< which we now investigate.

Lemma 3.14. For each A [ fixðCÞ, B1ðAÞ is a block of 12< .

Proof. By Theorem 3.13, B1ðAÞ ¼ ½Cð1^AÞ; 1! A�. It follows from Belohlavek and

Krupka (2008b, Theorem 2) that

B ¼
h
Cð12 ^ ð1! AÞÞ; 12 ! Cð12 ^ ð1! AÞÞ

i
is a maximal block of 1

2

< which contains the fixpoint 1 ! A. Now, since 12 ^ ð1! AÞ #
1^A, we get Cð12 ^ ð1! AÞÞ # Cð1^AÞ. Similarly, since 12 ^ ð1! AÞ #
Cð12 ^ ð1! AÞÞ, we get 1! A # 12 ! Cð12 ^ ð1! AÞÞ. We proved B1ðAÞ # B which

completes the proof. A

Lemma 3.15. For B # fixðCÞ, C1ðBÞ is non-empty if and only if B is a block of 12< .

Proof. Due to Theorem 3.12, C1ðBÞ is non-empty iff Cð1^
W

BÞ # 1!
V

B. Furthermore,

B is a block of 12< iff 12 # Sð
W

> B;
V

BÞ. Indeed, this follows by a slight modification
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of Ganter and Wille (1999, Proposition 54) by observing that Sð
W

B;
V

BÞ ¼
W

B <
V

B

and that, due to Belohlavek and Krupka (2008b, Lemma 1), 1
2

< is a complete tolerance

relation on kfixðCÞ;# l. To prove the lemma, we thus need to check that

C

�
1^

_
BÞ # 1!

^
B iff 12 # S

�_
B;
^

B

�
: ð23Þ

Let Cð1^
W

BÞ # 1!
V

B. Since 1^
W

B # Cð1^
W

BÞ, we get 1^
W

B # 1!V
B from which 12 # Sð

W
B;
V

BÞ readily follows.

Conversely, if 12 # Sð
W

B;
V

BÞ, then 1^
W

B # 1!
V

B, from which we get

Cð1^
W

BÞ # Cð1!
V

BÞ ¼ 1!
V

B, because of monotony of C and the fact that 1!V
B is a fixpoint of C. The proof is completed. A

We say that a closed 1-ball B1ðAÞ is maximal if B1ðAÞ ¼ B1ðA
0Þ for every A0 with

B1ðAÞ # B1ðA
0Þ. The following theorem describes a relationship between closed balls and

maximal blocks of 12< .

Theorem 3.16. For B # fixðCÞ, B is a maximal closed 1-ball if and only if B is a maximal

block of 1
2

< . In particular, if B is a maximal block of 1
2

< , then C1ðBÞ – 0 and B ¼ B1ðAÞ

for every A [ C1ðBÞ.

Proof. Let B1ðAÞ be maximal. Due to Lemma 3.14, B1ðAÞ is a block of
12< . There exists a

maximal block B of 12< for which B1ðAÞ # B (the existence of B follows from Zorn

lemma). Due to Lemma 3.15, C1ðBÞ – Y. Take an arbitrary A0 [ C1ðBÞ. Due to (20),

B # B1ðA
0Þ. Therefore, B1ðAÞ # B # B1ðA

0Þ. Maximality of B1ðAÞ as a closed 1-ball yields

B1ðAÞ ¼ B, i.e. B1ðAÞ is a maximal block of 12<
Conversely, let B be a maximal block of 12< . Observe first that if B # B1ðAÞ, then

B ¼ B1ðAÞ. Indeed, due to Lemma 3.15, B1ðAÞ is a block of 12< and hence B ¼ B1ðAÞ

follows from the fact that B is a maximal block of 1
2

< Therefore, to prove the claim, it is

sufficient to realise that C1ðBÞ – Y (Lemma 3.15) and that for every A [ C1ðBÞ, we have

B # B1ðAÞ due to (20). A

3.3 Optimal central points

Consider now the following problem. Theorem 3.12 describes the set C1ðBÞ of 1-central

points of B. Every A [ C1ðBÞ is good in the sense that the degree A < A0 of its similarity to

any A0 [ B is at least 1. However, some central points from C1ðBÞ may be better than

others. We call the best ones the optimal central points of B.

Definition 3.17. Let B # fixðCÞ. A [ fixðCÞ is called an optimal central point of B if and

only if ^
A0[B

ðD < A0Þ #
^

A0[B

ðA < A0Þ ð24Þ

for every D [ fixðCÞ.

Remark 4. Note that according to the principles of fuzzy logic,^
A0[B

ðD < A0Þ

R. Belohlavek and M. Krupka10



can be understood as the truth degree of ‘for every A0 [ B: D is similar to A0’. Therefore,

for an optimal central point of B, such a degree is the highest possible.

We now turn to a characterisation of optimal central points and their existence in terms

of radii. We need the following concepts.

Definition 3.18. We say that 1 [ L is an admissible radius of B # fixðCÞ if C1ðBÞ – Y.
We call 1 the radius of B for A if 1 is the largest radius for which A [ C1ðBÞ.

Observe that for any B and A, the radius of B for A is
V

A0[BðA < A0Þ. This observation

and (24) thus yield an alternative characterisation of optimal central points.

Lemma 3.19. A is an optimal central point of B if and only if for every D [ fixðCÞ, the

radius of B for A is larger than or equal to the radius of B for D.

The following theorem provides a characterisation of optimal central points of B.

Theorem 3.20. Conditions 1–3 are equivalent.

1. The set of all optimal central points of B is non-empty, and 1 is the radius of B for

some optimal central point A.

2. The set of all optimal central points of B is non-empty, and 1 is the radius of B for

any of the optimal central points.

3. 1 is the largest admissible radius of B.

Any of the conditions 1–3 implies condition 4.

4. The set of all optimal central points is equal to C1ðBÞ.

Proof. ‘1 ) 2’: (24) implies that the radii of B for any two optimal central points A1 and

A2 are equal.

‘2 ) 3’: Assume 2. Clearly, 1 is an admissible radius of B. If 10 is an admissible

radius of B, then for any D [ C10 ðBÞ, we have 1
0 #

V
A0[BðD < A0Þ. Now, for any optimal

central point A of B, (24) and the assumption
V

A0[BðA < A0Þ ¼ 1 giveV
A0[BðD < A0Þ # 1, whence 10 # 1, proving 3.

‘3 ) 1’: For A [ C1ðBÞ, 1 #
V

A0[BðA < A0Þ. On the other hand, since
V

A0[BðA <
A0Þ is an admissible radius (the radius of B for A), we have

V
A0[BðA < A0Þ # 1, whenceV

A0[BðA < A0Þ ¼ 1. Since for any D,
V

A0[BðD < A0Þ is an admissible radius, we getV
A0[BðD < A0Þ # 1 ¼

V
A0[BðA < A0Þ, proving 1.

To complete the proof,we check ‘2 ) 4’:Assume2.Clearly, every optimal central point

of B is in C1ðBÞ. If A is not optimal, then
V

A0[BðA < A0Þ , 1 and hence A � C1ðBÞ. A

Remark 5. Note that condition 4 of Theorem 3.20 nor the condition saying that the set of

optimal central points of B is non-empty and is equal to C1ðBÞ implies conditions 1–3.

Consider the following example (cf. Example 3.6). Let L be the Gödel algebra on the

real unit interval L ¼ [0,1]. Let X ¼ {x} (singleton). Then S ¼ {{0=x}; {0:5=x}; {1=x}} is

a set of fixpoints of an L-closure operator C. This claim follows from Belohlavek (2001)

by verification of the fact that S is closed under intersections and that a ! A [ S for

every a [ L and A [ S. Consider B ¼ {{0:5=x}; {1=x}}. A moment’s reflection shows

that the set of optimal points of B is B. Now, B ¼ C0:4ðBÞ, but the largest admissible

radius of B is 0.5.

We now turn to the existence of optimal central points of B. We need the following

lemma.
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Lemma 3.21.

1. 1 is an admissible radius of B if and only if 1^ 1 # Sð
W

B;
V

BÞ.

2. For every z [ L, z ^ ðz ! Sð
W

B;
V

BÞÞ is an admissible radius of B.

3. 1 is an admissible radius of B if and only if 1 ¼ 1
V
ð1! Sð

W
B;
V

BÞÞ.

4. The set

R ¼ z ^ ðz ! Sð
_

B;
^

BÞÞ j z [ L
n o

ð25Þ

is the set of all admissible radii of B.

Proof. Denote d ¼ Sð
W

B;
V

BÞ.

1. Using Theorem 3.12, C1ðBÞ – Y iff ½Cð1^
W

BÞ; 1!
V

B� – Y iff Cð1^
W

BÞ #
1!

V
B iff 1^ 1 # Sð

W
B;
V

BÞ (the last two conditions are equivalent due to (23)).

2. ðz
V
ðz ! dÞÞ^ ðz

V
ðz ! dÞÞ # z^ ðz ! dÞ # d, hence the claim follows from (1).

3. Using (1), 1 is an admissible radius of B iff 1 # 1! d which is equivalent to

1 ¼ 1
V
ð1! dÞ.

4. A consequence of 2 and 3. A

The following theorem presents a necessary and sufficient condition for the existence

of optimal central points of B.

Theorem 3.22. A set B # fixðCÞ has optimal central points if and only if the set R from

(25) has a largest element. This element is the largest admissible radius 1 of B, and C1ðBÞ is

the set of optimal central points of B.

Proof. It follows from 4 of Lemma 3.21 and from Theorem 3.20. A

For some of the well-known structures of truth degrees, the description of optimal central

points can be made more particular. As an example, consider the setting of Example 3.6 and

assume that the complete residuated lattice L is the real unit interval [0,1] equipped with

Łukasiewicz t-norm and its residuum. Then if B ¼ ½a; b�, the largest admissible radius ofB is

ða 2 b þ 2Þ=2 and the set of optimal central points of B contains just one c [ ½0; 1�, namely

c ¼ ða þ bÞ=2. In the rest of this paper, we show that such more particular descriptions are

available if the complete residuated lattice L has square roots. According to Höhle (1995), a

complete residuated lattice L has square roots if there is a function
p

: L ! L satisfyingffiffiffi
a

p
^

ffiffiffi
a

p
¼ a; ð26Þ

b^ b # a implies b #
ffiffiffi
a

p
; ð27Þ

for every a; b [ L.

Example 3.23. (Höhle 1995) For Łukasiewicz, product, and Gödel algebras on [0,1] have

square roots. They are given by

ffiffiffi
a

p
¼

a þ 1

2
for Łukasiewicz;ffiffiffi

a
p

¼ ordinary number-theoretic square root of a for product;ffiffiffi
a

p
¼ a for G€odel:
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Theorem 3.24. IfL has square roots, then any subset B # L has optimal central points. For

the corresponding largest admissible radius 1, it holds

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

�_
B;
^

B

�s
: ð28Þ

Proof. According to 1 of Lemma 3.21 and (26), 1 is the largest admissible radius of B.

The rest follows from Theorem 3.20. A

Corollary 3.25. If L has square roots, then for any subset B # L, the set of optimal

central points is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

�_
B;
^

B

�s
^
_

B;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

�_
B;
^

B

�s
!
^

B

" #
:

Example 3.26. Consider the setting of Example 3.6 and let L ¼ ½0; 1�. In this case, for

a; b [ L, we have Sða; bÞ ¼ a ! b. Let B # ½0; 1� and denote ½a; b� ¼ ½
V

B;
W

B�. For

Łukasiewicz, product and Gödel algebras on [0,1], Theorem 3.24 gives the following

description of the set O of optimal central points of B:

O ¼
a þ b

2

( )
for Łukasiewicz;

O ¼
{
ffiffiffi
a

p
·
ffiffiffi
b

p
} if a . 0 or a ¼ b ¼ 0;

½0; 1� if 0 ¼ a , b;

8<
: for product;

O ¼

½a; 1� if a , b;

{a} if a ¼ b;

8<
: for G€odel:
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Hájek, P., 1998. Metamathematics of fuzzy logic. Dordrecht: Kluwer.
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Press.
Rodrı́guez, R.O., Esteva, F., Garcı́a, P. and Godo, L., 2003. On implicative closure operators in

approximate reasoning. International journal of approximate reasoning, 33, 159–184.
Schreider, J.A., 1975. Equality, resemblance, and order. Moscow: Mir Publishers.
Ward, M. and Dilworth, R.P., 1939. Residuated lattices. Transactions of the American Mathematical

Society, 45, 335–354.

R. Belohlavek and M. Krupka14


