
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 186, December 1973

CENTRAL IDEMPOTENT MEASURES ON COMPACT GROUPS
BY

DANIEL RIDER(1)

ABSTRACT. Let  G be a compact group with dual object r = T(G) and let
M(G) be the convolution algebra of regular finite Borel measures on  G.   The
author has characterized the central idempotent measures on certain  G, includ-

ing the unitary groups, in terms of the hypercoset structure of  T.   The charac-
terization also says that, on certain  G, a central idempotent measure is a sum
of such measures each of which is absolutely continuous with respect to the
Haar measure of a closed normal subgroup.   The main result of this paper is
an extension of this characterization to products of certain groups.   The known
structure of connected groups and a recent result of Ragozin on connected simple
Lie groups will then show that the characterization is valid for connected groups.
On the other hand, a simple example will show it is false in general for non-
connected groups.   This characterization was done by Cohen for abelian groups
and the proof borrows extensively from Amemiya and Ito's simplified proof of
Cohen's result.

1.  Canonical measures.  Throughout the paper G will be a compact group.
The dual object T of G is the set of equivalence classes of irreducible unitary
representations of G.  For a e I\ x a will denote the character of the class and
día) its degree.   For ease of notation we define *$a= \Jdia).   A measure p e
M  (G), the center of MÍG), has a Fourier-Stieltjes transform

p(a) = /»Paap.      (a eD.

p is idempotent, that is p *p.=: ¡i, provided p(a) is always 0 or 1.  /(G) will
denote the class of central idempotent measures on G.

If H is a closed subgroup of G let 5I¡H denote the normalized Haar measure
of H.  3HH is idempotent; 5l¡H e /(G) provided ß is normal.

It is convenient to consider a larger class

FÍG) = ¡p e MziG):ßia) is an integer!.
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460 DANIEL RIDER

FÍG) consists then of those central measures p that satisfy P(p) = 0 for some

polynomial P with integral roots (for a noncompact G, FÍG) will be defined in
this way).  Fot fi £ FiG) we let E(p) = {a: p(a) 4 0}.

The hypercoset structure of T is described in [5].  If ß is a closed normal
subgroup of G then E(3H„) = {a: "PJ^ = 1} = H    is a normal subhypergroup of Y.
If ß e Y the hypercoset /3ß    consists of the a e Y such that xa appears in the
decomposition of XßXy fot some y eH .  Also j8ß   = {a: CJH = ^«1//»«  The
hypercoset ring of Y is the smallest ring of sets containing all hypercosets.

There are two ways to attempt to characterize the measures in FÍG).. First,
for p. e FiG) and n an integer let Enip) = {a: pía) = «j.  If p e /(G) then EA41)
= E(p),  It is shown in [5] that every set in the hypercoset ring of T is E(p) for
some p e /(G) and that for certain groups the converse is also true.  This implies,
for such groups, that for p e FÍG) each E (p) is in the hypercoset ring.

Second, some measures in FiG) arise naturally from well-known measures
on G.

Definition 1.1.   A measure u. is canonical if

a a

where the sum is finite,  n   is an integer, H   is a closed normal subgroup and

f=/lxJ2^   •ca      J a

The following lemma, which connects the two concepts above, is an immediate
consequence of Theorem 1 of [l] and the fact that the intersection of two hyper-
cosets is a finite union of hypercosets.

Lemma 1.2.   (a)   Every canonical measure is in FiG).

(b)  A measure p e FiG) is canonical if and only if each E iu) belongs to
the hypercoset ring of Y.

We will use the usual notation p < < v to indicate that p is absolutely con-
tinuous with respect to v.  It is easy to see

Lemma 1.3. p e FiG) is canonical if and only if there are finitely many
closed normal subgroups H. and p = 2p. with p.<<%[¡ .

2.  The main result.   Let Y.  denote those aeY with día) = 1.  Y. consists
of the complex homomorphisms of G and is the dual group of the abelian group
G/G   where G   is the commutator subgroup of G.   For aeY.  we can identify
a and ya.  Now if a, ß e Y it may happen that the tensor product a ® ß is
irreducible.  If it is we let aß denote a®ß so that XaXß= Xaß'  K aeY.
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this is always the case.   We also let Z = ZÍG) denote the center of G.
Definition 2.1.   G is said to satisfy condition I provided

lim      Vaix) = 0
¿(a)—oo

for all x i Z.
G is said to satisfy condition II provided that for each positive integer t

there are finitely many irreducible representations 73.» ••• » ß    of degree t such
that if diß) = t then ß = aß{ for some i and some a e T,.

It should be noted that groups having open centers, in particular abelian
groups and finite groups, satisfy both conditions.  In [5] it is shown that unitary
groups do also.  In §9 it will be shown, using a result of Ragozin [41, that every
compact connected simple Lie group satisfies both conditions.

We can now state the main result of the paper.

Theorem 2.2.   Let G. (¿ e A) be compact groups satisfying conditions I
and U and let G - II.G..   Then every measure in FÍG) is canonical.

Together with Lemma 1.2 this then gives

Corollary 2.3.   If G is as above then E C Y is E(p) for some p e /(G) if
and only if E belongs to the hypercoset ring of Y.

It is well known (cf. [3, Theorem 2.1.4]) that an idempotent measure of norm
1 on a locally compact group is of the form yMH for some compact subgroup H
and some y er,(77).   It follows that, for any compact group G, the elements of
FÍG) of norm 1 are canonical.

Definition 2.4.   A measure p e FÍG) is irreducible if it cannot be written as

the sum of two mutually singular nonzero measures in FÍG).

Definition 2.5.   The support group L(p) of a measure p e MÍG) is the smallest
closed subgroup that carries p.

Clearly if p e M  (G) then Lí¡i) is normal.  A rough idea of the proof of
Theorem 2.2 is to show that if p e FÍG) is irreducible then p < < 1,,   .■

The proof of Theorem 2.2 is in §8.  §3 deals with projections of Tvl(G) onto
the measures carried by the cosets of a normal Borel subgroup. §4 contains re-
sults concerning FÍG) fot an arbitrary compact group G. In §5 it is shown that if
p is canonical and ||p|| > 1 then ||p|| > 1 + 1/700.  This generalizes a well-
known result on abelian groups and is perhaps of independent interest.  §§6 and
7 contain results about FÍG) foi G as in the hypotheses of Theorem 2.2.  They
are an attempt to use the methods of Amemiya and Itô [l] for abelian groups in
this more general setting.   In § 9 a result of Ragozin [4] is used to show that the
conclusions of Theorem 2.2 and Corollary 2.3 are valid for connected groups.   An
example of where Theorem 2.2 fails is given in §10.
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3. Projections.   Let 77 be a normal Borel subgroup of G.  For p e M(G)
define

Hg p(E) = £ (i(£ n Ex),
X

the sum being over distinct coset representatives of H.

Lemma 3.1.   (a)   IT.  is a homomorphism of the algebra MiG) into itself.
(b)   Ilg maps F(G) into itself.

Proof, (a)  is proved in [7, Theorem 3-4.1] for H a closed subgroup and G
abelian.  The proof works equally well for this more general situation.  Since
77 is normal it is easily seen that Ilg maps M  (G) into itself and (b) then
follows since Ilg is a homomorphism.

The following theorem gives the first indication that an irreducible measure
in FÍG) is absolutely continuous with respect to the Haar measure of its support
group.

Theorem 3.2.  Let ¡i e FÍG) be irreducible and have support group L. If H
is a closed normal subgroup of G and II gp 4 0 then H nL is open in L.

Proof.  Write p = Ilgp + (p - Rgp).   By Lemma 3.1 these last two measures
are in FÍG).  Since they are singular and p is irreducible we must have p =
Dgp.   Also p = IlLp and it is then easily seen that p = Ilg n Lu.

Retopologize G so that the closed subgroup H n L is open; let G with
this new topology be denoted by GQ.   Since p is supported on countably many
cosets of H nL we have then that p e F(GQ). Now G0 is a locally compact
group and, since H nL is a compact open normal subgroup, GQ has small in-
variant neighborhoods.   It follows from [6, Theorem l] that p is supported on a
compact subgroup of GQ.  Thus, as an element of E(GQ), p is supported on a
finite extension P of H n L.   P is then a closed subgroup of G that carries p.
Hence L C P and so L is a finite extension of H nL; that is H nL is open
in L.

4. FÍG) for arbitrary G.   This section contains some lemmas concerning
FÍG) tot an arbitrary compact group G.

Lemma 41.   // p e FÍG) has support group L and T = ï9a\L' a e E(p)| is
finite then p is canonical.

Proof.   Let ?a  | l» " • • » 'a II  be tne distinct elements of T.   Then Eip) =
(JjaX •   These hypercosets are disjoint and, since L carries p, p is constant
on each aL .   Thus p = ïj^Xa*.   for some constants a. so that p is canonical by

Lemma 1.3.
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Lemma 4.2.   Let H be a closed normal subgroup of G.   If p e FÍG) and
\p\ÍHc)<lÁ then |p|(ßc)=0.

Proof.   Let a belong to the hypercoset ß'H1.   This implies that ^J^ =
Wg\H so that

\ßia)-pAß)\ < {\Va-*ß\M <2\p\ÍHcXl.

Since p is integer valued this gives that p is constant on ßH .   It follows
easily that p is carried by ß; that is |p|(ßc) = 0.

If a e Y and p e FÍG) then it does not follow that *V Ji e FÍG).  The problem
of course is that the product of two irreducible characters decomposes, in
general, into a sum of several irreducible characters.  However a sequence in Y
may have the following property.

Definition 4.3.   A sequence [a} C Y is an irreducible sequence if for each
ß eY there is aiß) such that a®/8 is irreducible whenever a> aiß).

For example if G = n~G¿ and a{ e YÍG) is given by some a{ eYÍG.) then
{a.} is an irreducible sequence.   This example will be useful in the proof of
Theorem 2.2 because if [ai is an irreducible sequence and p e FÍG) then every
weak limit point of W Ji} also belongs to FÍG).

The following lemma is a generalization of Helson's translation lemma [7,
Lemma 3.5.1].

Lemma 4.4.   Let L be a closed normal subgroup of G.   Suppose \a} isa
sequence in Y with VJ ,   being distinct.   Let p e M   ÍG) be carried by L.   If A'
is a weak limit point of W jA then \ and M,   are mutually singular.

Proof.  Xc^l decomposes into a sum of irreducible characters on L.  Since
the ¥JL are distinct any character of YÍL) which appears in Xa\ l ^oes not
appear in Xo\L (for a/'ß).  The remainder of the proof follows that of [7, Lemma
3.5.1] exactly.

Lemma 4.5.   Let p € FÍG) be irreducible.   If [a} is an irreducible sequence
and ^ ll converges weakly to a nonzero canonical measure \ then p. is also
canonical.

Proof.   Let L be the support group of p.  A is then also carried by L. Now
if ß is a closed normal subgroup with II^A ¡¿'0 then UHp4'0.  By Theorem 3.2
this implies that H fl L is open in L.  Thus the Haar measures that appear in
the canonical measure \ ate all absolutely continuous with respect to M,.   By
Lemma 4.4 we then have that ^a\L are the same for a> aQ so that

(D *a0f = A,
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and

(2) \\\1-\*Jl   f°<a>V

We will now show that

<3> l%lt-i.
This gives, by (1), that p< < Aand so p<< %L which implies, by Lemma 1.3,
that p is canonical.

Since ja! is an irreducible sequence there is a> ol. so that ß = aQa is
irreducible.  Because of (2), i^ a^L 4>0 so that /3 e LX; that is *¥ a\L ■ I.
(3) then holds because of (2).

The example of §10 will show that we can have p e FÍG) being carried by
a closed normal subgroup H with p canonical when considered as an element of
F(e) but not canonical as an element of FÍG).  However we do have the following.

Lemma 4.6.   Ler p e F(Gj x G2) have support group L.   Suppose that L C
G. x K where K is a finite normal extension of Z = ZÍG2).   Then if p is canoni-
cal with respect to  G.xKit is also canonical with respect to G.xG2.

Proof.  Without loss of generality we can assume that p is irreducible as an
element of F(Gj x G2).  Now p is the sum of finitely many nonzero measures
p¿ each of which is absolutely continuous with respect to %¡j., where Hi is a

closed normal subgroup of Gl x K.   Now each 77. C L so that 7Ç = H{ n ÍGl x Z)
is open in 77..   Thus IT, p. = p..   But also K. is normal in G, x G, and II^.p^'

Z I    ' * ^ Z

0 so that, by Theorem 3.2, K. = K.n L is open in L.   Thus H. is also open in
L¿ so that p¿ < < Mh. < <%L.  This implies p < <%L which, by Lemma 1.3,
makes p canonical on G, x G2.

The previous lemma can be generalized to infinite products.

Lemma 4.7.   Let G = TI~G. and let p e FÍG) have support group L.   Suppose
that L C G, x It^K. where each K- is a finite normal extension of Z. = ZÍG-).
Then if p ¿5 canonical with respect to Gt x IT^K. it is also canonical with
respect to G.

Proof.  Without loss of generality we can assume p is irreducible as an
element of FÍG).  By Lemma 4.6 we have that, for each n, p is canonical with
respect to A   = 1T?G. x II00, ,K..  Thus for each n we can writer n i   i n +i   i

«(»)

(4) ^ Z Py,»
7=1
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where each p.     is absolutely continuous with respect to fll. n, the Haar measure
Also ß„. .CL  We can also assume,of H.   , a closed normal subgroup of A .

fot each fixed n, that the )H.     and hence the p.     ate mutually singular.  Now
'jl\\.  Thus we can assume that ain) = a fot n >.nn.\\p.   || > 1 so that ain)<

For each n let the %.     be ordered so thati.n

(5)

Then

(6)

n„     JR.    =0    for;<t.
;.n

%^"'l^"fn«l./^'
Now IIu     u.      , = p.      , or 0.   Pick the smallest / so that it is not 0 andl.nW.n+t     r;.n+I
apply n¡¡ to (6).   Using the fact that H. .     .  is normal in A    as well as
A    j (5) gives p.     = p.      j.   By repeating this process, and also reordering the
n\.   , we obtain thatl.n

(7) HnmHn*\       ^ < I <«>">"()•

Now let p. = a.   .  Then, for n > nn, p. e FÍA ). Since l)°° A    is dense
in G we must then have that p. e Mz(G) and so p. e FÍG).  But the p. ate
mutually singular and p is irreducible so that a = 1.  Hence p itself can be
written, for n >nQ, as p = Pj n-   Thus p < < )llj     and so p is carried by ßj
CL.   But since L is the support group of p and ßj      is closed we must have
ßj     = L.   Thus p, being absolutely continuous with respect to the Haar measure
of L, a closed normal subgroup of G, is canonical with respect to G

5.  Norms of canonical measures.  It is known [7, Theorem 3.7.2] that if p
is an idempotent measure on an abelian group and ||p|| > 1 then ||p|| > V5/2.
This section contains a generalization of this to canonical measures on compact
groups.

Lemma 5.1.   Let P = 2a^abe a polynomial on G.   Suppose aa>0 and

(1) \P(g1)-zi\<8i     il<i<p)

where \z.\ = 1 then

(2) P(gl'-'gp)  -    fl *í ï&y2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



466 DANIEL RIDER

Proof.   The lemma needs only to be proved for p = 2 as the general case
then easily follows by induction.  If Tais a representation affording Xawe can
assume TÁg.) is a diagonal unitary matrix with diagonal entries b    . (1 < t
< ¿a) and Taig2) is a unitary matrix with diagonal entries c    ..  Then

XckJ =   22 *«,<• XaW =  2 ca,i    and
f i

Xa(glg2)=  £ ¿a,¿ca,¿-
i

Since 2aac7(a) = 1, (2) follows directly from (1).

Lemma 5.2.   Let Q = Sg ¿(a)y a be a central idempotent polynomial on G.
If IIQU^I then
(3) Hell^ 1+1/300.

Proof.   Suppose

(4) ilQllt < 1 + 1/300;

we will show llQllj = 1.   It can be assumed that G is the support group of Q.

Write |Q|2 = 2aa^aand \Q\i=^bcXa'   ^he flaand Tj>a are nonnegative integers
and

(5) aa= f\Q\2xa<Mdia),      *a„ f \Q\4xa< M^a>
where

(6) A«=  Z ¿2(a)=||ö||oo = e(e)=||Q||2.
E

Also, by Holder's inequality,

(7) L«A=Jlel6>M5iieiir4.

Define Aj(g) = ¿VT4£&a(l - a aiMdia))-x)xaig) and

A2(g) = M"2 L «a(l - ba<M3Aa))-l)xt4>'

It follows from (4)-(7) that

(8) flAlL = A.(e)<l-||ôll74<l/60      (¿ = 1,2).
Thus

(9) 0 < |Q|2/M2 - |Q|4/M4 =A2-Al< 1/30.
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Hence, for all g, either

(10) \QÍg)\ < M/5    or

(H) \QÍg)\ > 4M/5.
If gj and g2 satisfy (11) then applying Lemma 5.1 to P = Q/M shows  |Ô(gjg2)j
> M/5 so that gjg2 must also satisfy (11).  Hence the g for which (11) holds
form a closed normal subgroup H.  Since (10) holds on H    we have from (4) and
(6) that

It follows from (12) and Lemma 4.2 that the idempotent measure Q%G is carried
on ß; that is Q vanishes on ß   .   It was assumed however that G is the support
group of Q.  Hence (11) holds for all g.  But then 4M/5 < ||Ô||j < 1 +- 1/300 so
that M = 1.  This then implies that Q is just a character of degree 1 and the
proof is complete.

Theorem 5.3.   // p is a canonical measure and \\p\\ > 1 then \\p\\ > 1 +
1/700.

Proof.  If p is reducible then ||p|| > 2.  An irreducible canonical measure
is absolutely continuous with respect to )!!„ for some closed normal subgroup
ß.  Also ||p|| > |p(<x)|.   Thus we can assume that p is given by a polynomial
Q = lA±l)d(a)xa.  Suppose ||Q||j < 1 + 1/700.  If either ±Q is idempotent then
llôlli = 1 by Lemma 5.2.   Otherwise Q *Q and ÍQ * Q ±Q)/2 ate nonzero
idempotents with norms less than 1 + 1/300 and so, by Lemma 5.2, they all have
norm 1.  It is easily seen from this that Q = yt - y, where y, and y2 ate
distinct characters of degree 1 with y\=y\-  It follows that |Q| = 0 on a sub-
group of index 2 and |Ô| = 2 on the complement of this subgroup.   Thus  ||p|| =

11011, = i.
The estimates in 5.2 and 5.3 can easily be improved.   It would be interesting

to know the best ones.   A special case of 5.2 is that if ||¿(<x)^J| 1 > 1 then
HaXa^Ji > 1 + 1/300, whenever Xais an irreducible character.  It should be
noted that a group can be constructed having a sequence I a} C Y with día) ~*
oo and ||¿(a)xa||i ■ 1 and having another sequence 1/31 with diß) —» ~ and

6.   FÍG) for special G.   This section contains some rather technical results
which are necessary for the proof of Theorem 2.2.  We will first prove a special
case of that theorem.
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Theorem 6.1.   Let G. (1 < ¿ < t?) be compact groups satisfying conditions I
and II and let G = IIG..   Then every measure in FÍG) is canonical.

Proof.   The proof will be by induction on ||p||.   If ||p|| = 1 then it is known
[3, Theorem 2.1.4] that p is canonical.  Suppose that for such G every measure
in  FÍG) with norm less than A is canonical and let ||p|| < A + 1.   We can assume
p is irreducible.

Say that p is of bounded representation type (b.r.t.) if there is M ,< oo such

that p(a) = 0 whenever día) > M.  If p is not of b.r.t. then, for some / 4 0, E.í¡i)
contains a sequence {a] with día) —» oo.   Now a can be written as a= a a
...a   where a. e T(G.) and día) = día.) • •. día ).   For some ¿, say i = 1,

nil \ n J
día ) —» oo.  Since G. satisfies condition I,Ta  —» 0 off Z   = ZÍG ).  Thus since

(1) / = p(a) = /Vp
we having, using the Lebesgue dominated convergence theorem, that |p|(Z, x
II2G.) 4 0.  Since p is irreducible it follows from Theorem 3.2 that L H(Z   x
n"G¿) is open in L (L is the support group of p).   Thus L CKlx H*^ = G*
where K    is a finite normal extension of Z .

There are now three possibilities:
(a) p is irreducible but not of b.r.t. on G .
(b) p is irreducible and of b.r.t. on G .
(c) p is reducible on G .
For ß e YÍKA, 4/3) < [K : ZA'A < oo. Thus in case (a) we can repeat the

above process and obtain that L CK.x K2 xn*G¿ where K is a finite normal
extension of ZÍG A.  With respect to this new group, one of the above cases holds.

After a finite number of such steps we obtain that, for some rearrangement of
the G. and some m, LcHxH2 = G   where 77    is a finite normal extension of
Z(IT"G.) and 77, = 1T\.G. and either (b) or (c) holds for this G*.  Since 77, has1     1 ¿ m +1    i 1

an open center it satisfies both conditions I and II.  G   also satisfies condition
II because it is the product of groups that do.

If case (b) holds then by Theorem 6 of [5] and Lemma 1.1 we have that p is
canonical on G .  (Theorem 6 of [5] is stated for / but it applies equally well
to F.)  If case (c) holds then p is a sum of measures in FÍG ) each of norm less
then A and so by the induction hypothesis p is canonical on G .   Lemma 4.6
then gives that p is canonical on G.

Lemma 6.2. Let G. (l < ¿ < 00) be compact groups satisfying conditions I
and II and let G = IIG..   Suppose p e /(G) satisfies

(2) a e Eip) if and only if ||(Wa - l)p|| < 1/300.
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Then p is canonical; in fact p = ÎIÎ„ for some closed normal subgroup H.

Remark.   For abelian groups this is obvious.   The problem in the nonabelian
case is that ^ap need not belong to FiG).   It seems likely that the restriction

on G can be lifted but I have been unable to do so.  It does hold, however, if G
is totally disconnected.

Proof.   Let M   be the Haar measure of IIo* ,G. C G and let p = u *M . Thenr r+li ~r     ~        r
pr—*p weakly and p   can be considered as an element of JÍW.G ).  (2) still

holds for p   which is canonical by Theorem 6.1.  We will show that ||p || = 1 for
all r.   It then follows that ||p|| = 1 so that, by [3, Theorem 2.1.4], p is canonical.

Since 1 e Eip), where 1 is the trivial representation, p is a Haar measure.
Since u   is canonical it can be written as tt  = 2? v. where v. e FiG) andrr rr 1   ; ;

v. < < A., the Haar measure of a closed normal subgroup H..  We show first that

s = 1.  We can assume the A. are mutually singular and that IJ// A. = 0 for /' > 1.
Now if a e Eip ) then

(3) ||(Va-l)v.||<||CPa-l)pr||< 1/300.

Fix y eEiv) then by (3)

(4) ÍQíf^myd,\Mwjfydvrv.íy) < 1/300.

Since Ciy) is a nonzero integer, (4) implies that the decomposition of a ® y
contains an element of Eiv).   Thus Eip) C yEiv) where y is the representation
conjugate to y and yEiv) consists of the ß e Y that appear in the decomposition
of y ® 6 fot some 6. e Eiv). Now v. < < A. which implies that Eiv) is the
union of finitely many hypercosets of ß..   Thus Eip ) is contained in the union
of finitely many hypercosets of ß.  so that there is a>. e /(G) with o> ■ < < A.
and p  *G). = p .   Let j> 1 and apply II//    to this last equality.  Since 11// A.
= 0 it follows that 0 = II// p  = A..   This is a contradiction so that s = 1 and

pT = A,.
We can thus write p = Qk. where Q is a central idempotent polynomial on

ßj and also Q = 2ßa ^ a\H where aa > 0 and E C E(p^). It follows from (2)
that

(5) | (fi/fi(i)-i)fik< Z——--<V<4«>      w
Thus since Jlöl^Aj = Q(e) it follows from (5) that

(6) flfijl = ¡\Q\d\ < 1 + 1/300
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so that, by Lemma 5.2, ||p || = 1 and the proof is complete.

Lemma 6.3.   Let p be a positive integer and M < ».   There is 8 = Sip, M) >

0 such that if G is as in 6.2 and u e FÍG) satisfies the following:
(a) ||p||<M.
(b) There is a normal Borel subgroup T of G with  |p|(Tc) = 0.

(c) There are Borel homomorphisms f., f 2, •••>/.. of T into the unit circle
with /j = 1, /.p 4 f V- f0T i 4 j end for each  i there is an irreducible sequence

fajCE(p) with ya~'/■ pointwise on T.
(d) a e Eifi) if and only if ||(?a- 7" ¿VII < ° for some   *•

then a = /jP * /jP * • • * * fji = AÎHg for some integer A40 and some closed normal sub-
group 77.

Proof.  8 is chosen so that

(7) pS1/2Aii'-1(pM + 2)<l/300.

Clearly each /p e FÍG) so that <y e FÍG).  Also, by (c),

J/f¿p = lim fVadp. 4 0 so that <S(l) = U ifpfil) 4 0.

Let ß be a fixed element of E(<u).   Then 73 e Eíf.¡i) fot all i so that, by
using (c), lim F^ßV¿d¡i = f^ofdfi 4 0.  Since {a} is an irreducible sequence we
must have ß ®a irreducible eventually and ßa e E(p).   Thus (d) implies that

(8) l<V«-7>l<«     for some/.
Since p is carried by T it follows from (c) that

(9) ik^-at;.vii = ii(v"-/;vii<s.
Now since f ^ = 1, EicS) CE(p) so that there is k with

(10) ||(^-/-)p||<.3.
We will show for such a k that

(11) /*» - "•

Since /^p and /¿/ p are both in F(G) it follows from (9) and (10) that (since
8 < H) f kfi = /,/ p • Hence for this k and all ¿ there is / with /¿/¿p = /p. Since
{/pi are distinct it follows that

(12) j/./fcp : 1 < i < p] = ¡/tp : 1 < i < p}.

Now the /p are central measures so that if o is a permutation of (1, 2, • • •, p)
then
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(13) ö-Zo-d/**-"*/^/»-

Let A = pxpx-"xp on G x G x • • • x G.  Then, for y e Y, it follows from
(12) and (13) that for some permutation o

(,>f(y)=/V*>
(14) -/-/*y<«i-«Mi-*,) n/w*

(11) then follows from (14).
Now let R = \g e T:\Vßig) - /"¿(g)| < S^ ¡.  It follows from (10) that

(15) \p\iRc)<8V2.

It also follows from Lemma 5.1 that if g. e R (1 < i < p)

(16) \Vß(gl---gp)-7k(g1--gp)\<P2oV2.

Then by (7), (11), (15), (16) and (a)

||(^-1)W|| = ||(^-/>||

(17) < /• ■ • f I V«l • • • *P) 'T¿8i~ ■ 8PU\ß\ x • - • x |p|)
< p28V2Mp + 2pMp~l8in < 1/300.

The last inequality is obtained by integrating over S = R x • • • x R and Sc

separately.
(17) holds for all j8 e Eico).  Lemma 6.2 can then be applied to show that

<ú/ú)íl) is a Haar measure.

7.   Some more technical lemmas.  The main purpose of this section is to

prove Lemma 7.6.

Lemma 7.1.   Let H be a closed normal subgroup of G.   Suppose [a} is a
sequence in Y such that

(1) PWI-1    a.e. 0iH).
Then, for a large enough, |W (g)| = 1 on H.

Proof.   Since H is closed and normal we can write xj/i = "^^Xß ■ where
ß. e YiH) and apdiß) = día) fot all z.   Then
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(2) fH l'ai2«**» = «2pWa))-2 = ipd2ißx))-\

By (1) and the Lebesgue dominated convergence theorem ipd iß.))~ —» 1.

Thus eventually p = 4/3 j ) = 1. That is xa\n = dia)y where y e T(77) and
4y)=l so that |f J - 1 on 77.

Lemma 7.2.  Let 77 and K be closed normal subgroups of G with H open
in K.   Let f be the characteristic function of 77.   Suppose [a] is a sequence in
Y such that

(3) l*a<*>l-/(*>    *«.   0Hk).
Then, for a large enough,  |T | =f on K.

Proof.   From Lemma 7.1 we can assume |f J s 1 on.H,  Write XcJk ■
flS^a. where /3¿ 6 r(7C).   It follows as in the previous proof that

(4) (pá2^))-1 = /K |Va|2rf»K = Î«K(77) + o(l).

Thus eventually ipdHßA)'1 = JRK(77) and so /K_H |fJ2¿RK = 0; that is ?a=
0 on K - 77.

Lemma 7.3. Let H and K be closed normal subgroups of G with 77 open
in K. Let E C Y be such that i*Jg: a e E] is finite. Then J^JK: a e E] is
also finite.

Proof. If the lemma is false there is a sequence {a} C Y such that ^JK

are distinct and fjg are all the same. By Lemma 4.4 Wa îlîg, being a weak
limit point of i^jligi, is singular to 3HK . But 5Hg ■<•< 3HK which gives a con-
tradiction.

The following lemma was proved by Amemiya ándito [l] although not stated
in this form:

Lemma 7.4.   Let p and v be nonzero regular Borel measures on some space
such that f p —*v weakly where \f \x < 1.   TieTi given k < ||ir"||/||p|| < 1 there
is TV such that

(5) W« - />H < *MK» - k + d - ^ V2>    /«r   * 777 > *.

Lemma 7.5.   If, in the above, ||p|| = \\v\\ then f p —» v ¿72 7707177.

Proof.   Letting fc be close to 1 in (5) shows that {/ ¡i] is aCauchy sequence.

It also follows immediately from Lemma 7.4 that if 1 <A  < ||v|| < ||p|| < A +
1/100 A then

<6> IK/„ - fmM\ < 1/4   for large 77, m.
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Lemma 7.6.  Let G. (l < z < oo) be compact groups satisfying condition U

and let G = IIG..   Let p e FiG) have support group L.   If p satisfies the follow-
ing two conditions then p is canonical.

(a) There is an integer N so that if P is a normal Borel subgroup of G and
U.G1. CP (G'   is the commutator subgroup of G.)  then Up 40 implies POL
is open in L.

(b) For each i there is M. < » so that if a e Eip) and a= a,... a   where
a. eYÍG) then dia)<M.. i

Proof. The proof is by induction on ||p||. Assume it is true for 1 < ||p|| < A
and let A < \\p\\ <A+ 1/100A. We will show that T = !*a|L: a e Eip)} is finite;
p is then canonical by Lemma 4.1.

We will assume T is infinite in order to obtain a contradiction.   By using a
diagonal process and the fact that each G. satisfies condition II it follows from
(b) that there is a sequence {a } C Eip) such that

(i)  a   = a   .a   .... where a'   . e YÍG.),n n, l    n, l n,i i
(ii) there are iß. eYÍG) suchthat a    . = ß .y   .for « > n(z') where y

e YÍG) and díyn ¿) = 1, and
(iii)  "S a |i   are distinct.
By taking a subsequence of \a } we can write

(7) a = ß. ... ß y A

where ¿(y ) = 1 and A   e YilT. G).'n n n+1     z
We will first show that there is iQ > N  such that

(8) IVl»!    forI'^V
i

Let P = lg: lim. __ M \^/ß.ig)\ = 1|.  P is clearly a normal Borel subgroup and by
(7) fa -• 0 on Pc as n -» »..  Since pía) 40 it follows that |p|(P),¿0.
Thus since   11^G' C P it follows from (a) that P n L is open in L.   In particular
P fl L is closed so that by Lemma 7.1 there is z'Q > N such that \^ß\ = 1 on
POL for i > z0.  We will show Pn L = L.

If P O L 4L then, by Lemma 42,

(9) |p|(L-POL)>l/2.

Also lim   _ „, |f'ßi   • • • *$ß J =0 on L-PnL so that if p is large enough it
follows from Lemma 7.2 that

(10) */%   -f-   -0    on POL.
o v

Let 0 = j8¿ •.. ß    and let K = U^G^.  Define   4> = %P *ÎHK.  It is easily seen
that rp ̂  0, rp e F(G) and
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(ID ".'^I-W,.6^    for « > p.

Also since ^g vanishes on L -ÍLn P) it follows from (9) that ||<£|| < ||p|| - Vi
< A.  Also ft satisfies (a) and (b).  (b) is easy.   To see (a) (with p in place of
TV) suppose K C Q and   Hq<p 4 0.  Then Ilgp ^ 0 so that Q O L is open in L.
Now the support group L*= Lift) C(L np)K.  Thus L*Q CLQ.   Q is open in
LQ and thus is also open in L Q; that is L   n Q is open in L .  It follows from
the induction hypothesis that ft is canonical.

Since ft is canonical it follows that for some closed normal subgroup 77
with IlgcA 4 0 there is an infinite set 7 such that o   eo    77    for all n el; that
is Wo- |# are the same for 72 e 7.  Since ft *MK = ft we can assume 7< C 77 so
that 77 n L is open in L.   By Lemma 7.3 this implies that {fo- |r: 72 e /} is

n
finite.   But a   = do    so that we have a contradiction to (iii).   Hence P n L = Ln n
and (8) is proved.

Now let d = ß: — ß y A . A subsequence of {1*0 p! converges weakly
to some tu. Now o 4 0 and ta e FÍG); this is because the *Hr ate multiplicative
on L fot i > ¿q and because iy X j is an irreducible sequence. Now tu clearly
satisfies (b). To see (a) suppose Upcü 4 0; since tu < <p it follows that Hpp 4
0. Hence if ÎT^G.' C P we have Pn L open in L. But Lia) CL so that P n L(tu)
is open in L(ty).   The remainder of the proof is divided into two cases.

Case 1. \\cú\\ <A, Then tu is canonical by the induction hypothesis. Let
77 be a closed normal subgroup of G such that 0 »¿ligia < <7Hg. Since ^e p|g
—»tu Ig weakly it follows from Lemma 4.4 that i^ôn|g} is finite. Now îj si
on lT^C:' so that We |sl is finite where S = 77 • H^G1. Also Ilsp ¿ 0 so"that
S nL is open in L.   It follows from Lemma 7.3 that yV$ |,| is finite and since

n
a   = ß   ... ßj _i0   this contradicts (iii).n     '  i ' *o        n

Case 2.   ||tu|| > A.   It follows here from the remark (6) after Lemma 7.5 that,
if tí, 777 are large enough,

(12) ||(?, -yg vil < 1/4.
n m

Fixing 72 and letting m —»o» in (12) then gives

(13) \9e n-o, || < 1/4
n

and

(14) We i»||>1M-l/4>A-l/4.
n

By (13) and (14), using that  1*0 I < 1,
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ll/i-Vfl *>ll < lld -IV'VIMII^lV-^ll
n n n n

<2t||p||-||iPöp||] + ||?flfi-«»
n n

< 3/4 + 1/50A.

Since tu is carried by L it follows that (a subsequence of) [9d co} converges
weakly to some A e FiG). (15) shows that ||p - A|| < 1 so that p= A.  Since ||A||
< \\<ó\\ we must then have that ||<u|| = ||p||  so that by Lemma 7.5 ¥# p —♦ ta in

fl

norm.  It then follows that, for a subsequence,

(16) |*fl I - 1    a.e. (|p|).
n

Now (16) occurs on a normal Borel subgroup S which contains IIj G. .   Thus,
by (a), S n L is open in L.   S O L is then closed and carries p so that S O L =
L,  This gives, by Lemma 7.1, that

(17) \9e I 2 1    on L for large n.
n

But then f© p e F(G) so that, because of (12),
n

(18) ^p = ¥ep.n m

Finally (17) and (18) show that "So L = ftf   |,   which implies that ¥a |L =
m    1 j n m n
ft  L   and this contradicts (ni).m u

8.  Proof of Theorem 2.2.

Theorem 2.2.   Let G. (¿ e A) be compact groups satisfying conditions I and
II awrf Zei G = ÎT^G..   Tien ei/ery measure in F(G) is canonical.

Proposition 8.1.   // the theorem is true for countable products it is true for
any A.

Proof.   Let p e FiG).  We can assume p is irreducible and has support group
L.  If p is not canonical then by Lemma 4.1 there is a sequence {a^} C E(p)
such that ¥a |r   are distinct.   There is a countable set ß C A such that a   €„ 'i- n
r(TJßG.) for all n.  Let K = IlA_ßG. and v = p *%K.  Then E(v) contains
{a } and v is canonical since it can be considered as a measure on IIRG .  It isn o   1

then easily seen that v is irreducible so that {?a \L(VA is finite.  But Lív) O
L is open in L so that {¥a \L} is finite by Lemma 7.3 which is a contradiction.

It remains to prove the theorem when A is countable.  The proof is by induc-
tion on ||p||.   Assume it is true for ||p|| < C and let ||p|| < C + 1/100C.  We can
also assume that p is irreducible.
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Proposition 8.2.   We can assume p satisfies condition (b) of Lemma 1.6 and

that 1 eEi¡i).

Proof.   Suppose E(p) contains a sequence {a} where a=a a   ••• with a.
e r(G¿) and suppose, for some /, that día.) —» oo as a—» oo.  Since pXct) 4 0 and
G. satisfies condition I it follows that

(1) \p.\(l\GixZiG))4 0.(n <v
By Theorem 3.2 we then have that L = Li^i) C II. ,G. x K. where K. is a finite
normal extension of Z(G.).  Doing this for all such / we obtain that L C UK. = G
where K. = G. or Tv. is a finite normal extension of ZÍG.). Now each K. satisfiesiii i i
conditions I and II and p satisfies condition (b) with respect to G*.  If p is ca-
nonical with respect to G* then by Lemma 4.7 it is canonical with respect to G.
It can still be assumed that p is irreducible; if p is reducible as an element of
7-tG*) then it is canonical on G* by the induction hypothesis and then it is canonical on G.

Let a=al-.. aN e Eip:) and let K = lT^G/.  Then \¡i *\ = Xe FÍG),
1 e E(A) and ||A|| < ||p||.  Also A satisfies condition (b) since we can now assume
that p does.  We will show that if A is canonical then p is also.  Suppose A =
1v. where v.<<%H   tot some closed normal subgroup 77..   Let P be a normal
Borel subgroup with K C P and Hpp 4 0.   Then since p is irreducible IL,p = p;
also np3HK = ÎIÎK since KCP.   Thus IIpA = A so that 11^^. = Jü«. for all /.
This implies that P n 77 - is open in 77..   But 11// .p 4 0 so that 77. n L is open
in L.   Hence P O L is open in L.   By Lemma 7.6 then p is also canonical.  We

can thus assume p, like A, has 1 e Eip.).
The remainder of the proof involves using Lemma 6.3 to show that p satisfies

condition (a) of Lemma 7.6.
Call a sequence \a ] C Eifi) an F-sequence it a   = a   , a   2 "• with

a    . er(G.) and día    .) = 1 fot i<n.   An F-sequence is an irreducible sequence
so that a subsequence of vVq. pi wi}l converge weakly to some nonzero ca e FÍG).

n
Let B be the collection of all such <a.   p e B since a   = 1 is an F-sequence.
Now it oj e B and ||<a|| < C then ca is canonical by induction and p is then
canonical by Lemma 4.5.  We can thus assume that <a e B implies

(2) c < IMI < y| < C + 1/100C.

It then follows, for ta e B, that, as in Case 2 at the end of the proof of Lemma

7.6, M = M and

(3) ||W   p-<u|| —» 0    for some F-sequence.
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Then ú> = fp foi some / e Lip) with |/| = 1 a.e. |p|.  We will identify ß with
the collection of such /.

Now another subsequence has

(4) *a   -/   a.e. |p|.
n

Let S. be where (4) holds and |/| = 1.  Then S. is a normal Borel subgroup,
\p\ÍSc, ) = 0 and / is a Borel homomorphism of S, into the unit circle.

Now B is finite.  Otherwise we would have eu. e B with a. —*(o weakly
for some <u í¿ 0.  Using (3) and a diagonal process on the sequences converging
to tu. we could then find an F-sequence fa.] with

(5) ||fap-a>.||<l/2    and    ||?a p- a>|| < 1/2.
i i

Since tu. e FÍG) this would give cu. = <u.
Let p = card B, M = ||p| and 8 = Sip, M) be the constant in Lemma 6.3.

By using (3) there is an integer N such that if <x= at a2 • • • e Eip) and dia.) =
1 for z < /V then—

(6) ||($a - /)p|| < 8   tot some / e B.

Now let T = MS. over / with f e B.   Each / is a homomorphism on T and
|p|'(Tc) = 0.   Let K = n^G/ and A = p *ÎRK. Then A / 0, ||A|| < M and, since
KCT, |A|(TC) = 0.  It also follows from (6) that a e E(A) if and only if

(7) B(?a - fM < S   for some /p e B.

We can now apply Lemma 6.3 to A to obtain

(8) /jA*/2A*...*/9A = Alw

where the /A are the distinct elements of {/A: / e B}, A 4 0 and ß is a closed
normal subgroup.

Now IluP / 0 so that H n L is open in L by Theorem 3.2.   On the other
hand if P is a normal Borel subgroup, KCP and IIpp 4 0 then p = Ilpp and so A«
UpA.  Hence Up%H = 5HH so that P n ß is open in ß.  This then implies  P
n   L is open in L so that p is canonical by  Lemma 7.6.

9.  Connected groups. We can now use Theorem 2.2 to characterize FÍG)
fot connected G.

Lemma 9.1.   // G is a compact connected simple Lie group then G satisfies
conditions I and II.

Proof.   Ragozin [4, Theorem 2.2] has shown that if n = dimension G and
p e M   (G) is continuous then p" e Lj(G).   For g jt ZÍG) let p be given implicitly
by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



478 DANIEL RIDER

(1) Sídp. = $fíxgx-l)dtGix).

It is easily seen that p is a central continuous measure and p\ía) = xílaíg) so
that (pn) (a)= CPa(g))n.   By Ragozin's result and the Riemann-Lebesgue lemma
it follows that

(2) 'W-O    as a ^oo ig 4 Z).

Condition I follows immediately.  Also if {a! is a sequence with día)= t then
(2) and the dominated convergence theorem show

(3) 1 = / \Xa\2 dlG = t%ÍZ) + o(l)   as a -, oo.

But then 3lîG(Z) 4 0 so that Z is open which is not possible since G is connected
Thus there are only finitely many a with día) = t which implies condition II.

Theorem 9.2.   If G is a connected compact group then every measure in
FÍG ) is canonical.

Proof.  It is known (cf. [8, Chapitre V]) that a connected compact group G
is a factor group of a group G*= IlG. x A where A is abelian and the G. are

connected simple Lie groups.   By Lemma 9.1 and Theorem 2.2 every measure
in FÍG*) is canonical.   Since a measure in FÍG) can be considered as a measure
in FÍG*) the theorem follows.

10.  An example.  Unfortunately the characterization of FÍG) does not hold
for all G as the following simple example shows.   Let T x T be the two dimen-
sional torus and let G be the semidirect product of T x T and Z2 where
oit y t2) = (í2, t j)S for 8 eZ2,8 4 e.   Let pt (resp. p2) be the Haar measure
of T x e (resp. e x T).  Then p = p, + p2 e FÍG) but p is not canonical.  That
p is not canonical is seen by noting that p is singular to M„ for every closed

normal subgroup 77 of G.
In this example p is a sum of (noncentral) idempotents each of which is

canonical with respect to its support group.  It seems reasonable to conjecture
that for any G this is always the case.

Also if p is canonical or as in the example then the conclusion of Lemma
4.2 holds for any Borel subgroup 77 (whether or not it is closed and normal). It
would be helpful to know whether this is true for any p e" FÍG).

It also seems likely that there is 8 > 0 so that if p e FÍG) and ||p|| > 1 then
llpll > 1 + 5 (cf. Theorem 5.3).  Otherwise some strange elements of F could be
obtained by taking infinite products of measures on product groups.
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