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ABSTRACT. Let G be a compact group with dual object T' = I'(G) and let
M(G) be the convolution algebra of regular finite Borel measures on G. The
author has characterized the central idempotent measures on certain G, includ-
ing the unitary groups, in terms of the hypercoset structure of I'. The charace
terization also says that, on certain G, a central idempotent measure is a sum
of such measures each of which is absolutely continuous with respect to the
Haar measure of a closed normal subgroup. The main resule of this paper is
an extension of this characterization to products of certain groups. The known
structure of connected groups and a recent result of Ragozin on connected simple
Lie groups will then show that the characterization is valid for connected groups.
On the other hand, a simple example will show it is false in general for non-
connected groups. This characterization was done by Cohen for abelian groups
and the proof borrows extensively from Amemiya and It&’s simplified proof of
Cohen's result.

1. Canonical measures. Throughout the paper G will be a compact group.
The dual object I' of G is the set of equivalence classes of irreducible unitary
representations of G. For a €I, x , will denote the character of the class and
d(a) its degree. For ease of notation we define ¥ ,= x/da). A measure p €
MZ(G), the center of M(G), has a Fourier-Stieltjes transform

fila) = f Yau (ael).

B is idempotent, that is u *p = p, provided j(a) is always 0 or 1. J(G) will
denote the class of central idempotent measures on G.

If H is a closed subgroup of G let mH denote the normalized Haar measure
of H. M, is idempoten; mH € J(G) provided H is normal.

It is convenient to consider a larger class

F(G) = {u € M%(G): i(a) is an integer}.
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460 DANIEL RIDER

F(G) consists then of those central measures p that satisfy P(y) =0 for some

polynomial P with integral roots (for a noncompact G, F(G) will be defined in
this way). For p € F(G) we let E(u) = {a: f(a) £ 0}

The hypercoset structure of I' is described in [5]. If H is a closed normal
subgroup of G then EM,) = fa: ¥ |, =1} = H* is a normal subhypergroup of I\
If B €T the hypercoset /SHL consists of the a €I" such that x, appears in the
decomposition of xgX,, for some y € HY, Also BH' = {a: Yiy= ‘I’B|H}. The
hypercoset ring of I" is the smallest ring of sets containing all hypercosets,

There are two ways to attempt to characterize the measures in F(G).. First,
for p € F(G) and n an integer let E () = {a: i(a) = n} If p € J(G) then E (u)
= E(u). It is shown in [5] that every set in the hypercoset ring of I is E(y) for
some p € J(G) and that for certain groups the converse is also true. This implies,
for such groups, that for i € F(G) each E_(p) is in the hypercoser ring.

Second, some measures in F(G) arise naturally from well-known measures
on G.

Definition 1.1. A measure p is canonical if

p= 2 nuc ddx My,

where the sum is finite, n _ is an integer, H  is a closed normal subgroup and
1 f 2
—= an, .
Ca, |Xa| Ha

The following lemma, which connects the two concepts above, is an immediate
consequence of Theorem 1 of [1] and the fact that the intersection of two hyper-
cosets is a finite union of hypercosets.

Lemma 1.2, (a) Every canonical measure is in F(G).
(b) A measure y € F(G) is canonical if and only if each En("‘) belongs to
the bypercoset ring of T.

Ve will use the usual notation g <<v to indicate that g is absolutely con-
tinuous with respect to v, It is easy to see

Lemma 1.3, p € F(G) is canonical if and only if there are finitely many
closed normal subgroups H, and p = Zl‘i with p, << My .
13

2. The main result. Let I'| denote those a €I" with d(a) = 1. ', consists
of the complex homomorphisms of G and is the dual group of the abelian group
G/G' where G’ is the commutator subgroup of G. For a € I, we can identify
a and y,- Now if a, B €I it may happen that the tensor product a ® 8 is
irreducible. If it is we let af3 denote a ® B8 so that XaXp=Xop If Q€ r,
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CENTRAL IDEMPOTENT MEASURES ON COMPACT GROUPS 461

this is always the case. We also let Z = Z(G) denote the center of G.
Definition 21. G is said to satisfy condition 1 provided

lim Y (=0
d(a)—oa
forall x ¢ Z.

G is said to satisfy condition Il provided that for each positive integer t
there are finitely many irreducible representations B, «++ , B_ of degree t such
that if d(B) =t then B =ap, for some i and some a €l

Tt should be noted that groups having open centers, in particular abelian
groups and finite groups, satisfy both conditions. In [5] it is shown that unitary
groups do also. In §9 it will be shown, using a result of Ragozin [4], that every
compact connected simple Lie group satisfies both conditions.

We can now state the main result of the paper.

Theorem 2.2, Let G, (i € A) be compact groups satisfying conditions 1
and 11 and let G =11,G.. Then every measure in F(G) is canonical.

Together with Lemma 1.2 this then gives

Corollary 2.3. If G is as above then ECT is E(y) for some p € J(G) if
and only if E belongs to the bypercoset ring of T

Tt is well kndwn (cf. [3, Theorem 2.1.4]) that an idempotent measure of norm
1 on a locally compact group is of the form ymH for some compact subgroup H
and some y € I',(H). It follows that, for any compact group G, the elements of
F(G) of norm 1 are canonical.

Definition 24 A measure p € F(G) is irreducible if it cannot be written as
the sum of two mutually singular nonzero measures in F(G).

Definition 25. The support group L(y) of a measure p € M(G) is the smallest
closed subgroup that carries p.

Clearly if p € M2(G) then L(p) is normal. A rough idea of the proof of
Theorem 2.2 is to show that if p € F(G) is irreducible then p << m,_( )

The proof of Theorem 2.2 is in §8. §3 deals with projections of M(G) onto
the measures carried by the cosets of a normal Borel subgroup. §'4 contains re-
sults concerning F(G) for an arbitrary compact group G. In §5 it is shown that if
p is canonical and [u} > 1 then |u| > 1 + 1/700. This generalizes a well-
known result on abelian groups and is perhaps of independent interest. §$6 and
7 contain results about F(G) for G as in the hypotheses of Theorem 2.2, They
are an attempt to use the methods of Amemiya and Itd [1] for abelian groups in
this more general setting. In §9a result of Ragozin [4] is used to show that the
conclusions of Theorem 2.2 and Corollary 2.3 are valid for connected groups. An
example of where Theorem 2.2 fails is given in $10.
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3. Projections. Let H be a normal Borel subgroup of G. For p € M(G)
define

0,uE) = ¥ WE n Hx),

X

the sum being over distinct coset representatives of H.

Lemma 3.1. (a) I, is a homomorphism of the algebra M(G) into itself.
) 1, maps F(G) into itself.

Proof. (a) is proved in [7, Theorem 3.4.1] for H a closed subgroup and G
abelian. The proof works equally well for this more general situation. Since
H is normal it is easily seen that 1l,, maps MZ(G) into itself and (b) then
follows since Il is a homomorphism.

The following theorem gives the first indication that an irreducible measure
in F(G) is absolutely continuous with respect to the Haar measure of its support

group.
Theorem 3.2. Let p € F(G) be irreducible and bave support group L. If H
is a closed normal subgroup of G and 1l ,u+ 0 then H NL is open in L.

Proof. Write p=Myp + (p - Hyp). By Lemma 3.1 these last two measures
are in F(G). Since they are singular and p is irreducible we must have g =
Oyp. Also p=M,u and it is then easily seen that p =1, p.

Retopologize G so that the closed subgroup H N L is open; let G with
this new topology be denoted by G,. Since p is supported on countably many
cosets of H N L we have then that p € F(Gy). Now G, is a locally compact
group and, since H N L is a compact open normal subgroup, G, has small in-
variant neighborhoods. It follows from [6, Theorem 1] that g is supported on a
compact subgroup of G,. Thus, as an element of F(G,), p is supported on a
finite extension P of HN L. P is then a closed subgroup of G that carries p.
Hence L CP and so L is a finite extension of H NL; that is H NL is open
in L.

4. F(G) for arbitrary G. This section contains some lemmas concerning
F(G) for an arbitrary compact group G.

Lemma 4.1. If p € F(G) has support group L and T = {,],:aeE@}is
finite then p is canonical.

Proof. Let ‘I’a. FEREERS l,_ be the distinct elements of T. Then E(y) =
U4 aL These hypetcosets are dlsyomt and, since L carries g, fi is constant
on each a, L', Thus p=2 “ix".-mL for some constants @; so that p is canonical by

Lemma 1. 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CENTRAL IDEMPOTENT MEASURES ON COMPACT GROUPS 463

Lemma 4.2, Let H be a closed normal subgroup of G. If p € F(G) and
|l (HE) < Y then |p|(HE) = O.

Proof. Let a belong to the hypercoset BHY. This implies that ¥ | =
v '3| y SO that

|0 = ) < [1¥, - Fgldlel < 20plH) <1.

Since [ is integer valued this gives that { is constant on SH® It follows
easily that p is carried by H;that is |p|(H) =0, '

If ael and p € F(G) then it does not follow that ¥ u € F(G). The problem
of course is that the product of two irreducible characters decomposes, in
general, into a sum of several irreducible characters. However a sequence in I
may have the following property.

Definition 4.3. A sequence {a} CT' is an irreducible sequence if for each
B €T there is o(B) such that o @B is irreducible whenever a> a(B).

For example if G = II7G, and a; € T'(G) is given by some a; €I'(G,) then
fa} is an irreducible sequence. This example will be useful in the proof of
Theorem 2.2 because if {a} is an irreducible sequence and g € F(G) then every
weak limit point of {¥ g} also belongs to F(G).

The following lemma is a generalization of Helson’s translation lemma [7,
Lemma 3.5.1].

Lemma 4.4. Let L be a closed normal subgroup of G. Suppose {a} is a
sequence in I" with ¥ |, being distinct. Let p € MZ(G) be carried by L. If At
is @ weak limit point of {¥ y} then X and W, are mutually singular.

Proof. x|, decomposes into a sum of irreducible characters on L. Since
the ¥ |, are distinct any character of I'(L) which appears in ) .|, does not
appear in ¥ ﬁl . (for a£B). The remainder of the proof follows that of [7, Lemma
3.5.1] exactly.

Lemma 4.5. Let p € F(G) be irreducible. If {al} is an irreducible sequence
and ¥y converges weakly to a nonzero canonical measure A then . is also
canonical.

Proof. Let L be the suppott group of p. A is then also carried by L. Now
if H is a closed normal subgroup with IT A £10 then I p #:0. By Theorem 3.2
this implies that H N L is open in L. Thus the Haar measures that appear in
the canonical measure A are all absolutely continuous with respect to N L+ By
Lemma 4.4 we then have that ¥ |, are the same for a> a, so that

48 LATEES
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and
(2) I‘Paoli = ‘I’ao‘I’OJL for a> a,.

We will now show that

3) 12, I =1.

This gives, by (1), that p<'<'Arand so p <'<’)T(L which implies, by Lemma 1.3,
that p is canonical.

Since {a} is an irreducible sequence there is a> a, so that B=a a is
irreducible. Because of (2), [, ¥ zdll; £10 so that B € L*; that is ¥g|, =1.
(3) then holds because of (2).

The example of §10 will show that we can have g € F(G) being carried by
a closed normal subgroup H with g canonical when considered as an element of
F(H) but not canonical as an element of F(G). However we do have the following.

Lemma 4.6. Let p € F(G, x G,) bave support group L. Suppose that L C
G, x K where K is a finite normal extension of Z = Z(G,). Then if p is canoni-
cal with respect to G, x K it is also canonical with respect to G, X G,.

Proof. Without loss of generality we can assume that p is irreducible as an
element of F(G, x G,). Now g is the sum of finitely many nonzero measures
p; each of which is absolutely continuous with respect to m,,i, where H; is a
closed normal subgroup of G, x K. Now each H,C L so that K, = H, N (G, x Z)
is open in H;. Thus Il g, = p,. Buralso K, is normalin G, x G, and Mg p £
0 so that, by Theorem 3.2, K, =K, N L is openin L. Thus H, is also open in
L; so that p, <'<')TIHi <'<M,. This implies p < <M, which, by Lemma 1.3,
makes p canonical on G, X G,.

The previous lemma can be generalized to infinite products.

Lemma 4.7. Let G =IITG; and let p € F(G) bave support group L. Suppose
that L C G, x 13K, where each K, is a finite normal extension of Z, = Z(G,).
Then if p is canonical with respect to G, x 7K, it is also canonical with
respect to G.

Proof. Without loss of generality we can assume p is irreducible as an
element of F(G). By Lemma 4.6 we have that, for each n, p is canonical with

=" ol ;
respect to A, =II7G, x I ", K;. Thus for each n we can write

a(n)

) r= 2 P
j=!
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where each Bin is absolutely continuous with respect to m].‘ o the Haar measure
of H; .2 closed normal subgroup of A . Also H, ., C L. We can also assume,
for each fixed n, that the M. and hence the B are mutually singular. Now
Iz, 41 2.1 so that aln) < ||pll Thus we can assume that aln) = a for n>ng

For each n let the m , be ordered so that

G) M, M =0 forj<i
In
Then
© HHlm#=#l.n= ’ZHHI."FJ'JH»I'

Now HHI Finsl = Binp1 OF 0. Pick the smallest j so that it is not 0 and
apply IIH el to (6). Using the fact that Hina is normal in A, as well as
+
4+ (5) nges By p =t BY repeating thxs process, and also reordering the

)K] o Ve obtain that
’

%) 8,

in=lina (AZi<an>n).

Now let p; =g, . Then, for n>ny, p; € F(4). Since U° A is dense
in G we must then have that g, € M%(G) and so B € F(G). But the p; are
mutually singular and g is m-educxble so that a = 1 Hence p itself can be
written, for n > n,, as p= By o Thus p << ml,n and so p is carried by Hy ,
C:L. But since L is the support group of p and H 1,n is closed we must have
Hy , = L. Thus p, being absolutely continuous with respect to the Haar measure
of L, a closed normal subgroup of G, is canonical with respect to G

5. Norms of canonical measures. It is known [7, Theorem 3.7.2] that if p
is an idempotent measure on an abelian group and [|g|| > 1 thea [ju]| > V5/2.
This section contains a generalization of this to canonical measures on compact
groups.

Lemma 5.1. Let P = 2a_x, be a polynomial on G. Suppose a,>0 and
[Pl =Pl)=1. If

) |P(g) -z, <8, (1<i<p)

where |z,| = 1 then

4 2
@ Plgy e g) = II 2 5(28}’2) .
1
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Proof. The lemma needs only to be proved for p = 2 as the general case
then easily follows by induction. If T, is a representation affording ¥, we can
assume T (g, ) is a diagonal unitary matrix with diagonal entries bg, (1 <i
<d))and T (g ) is a unitary matrix with diagonal entries ¢, Then

Xa.(gl) = Z ba, Xa.(gz) = Z €a,i
i i
Xa(8182) = Z by, i€a, i
1

Since 2a,d(a) =1, (2) follows directly from (1).

Lemma 5.2. Let Q= ZE d(a)x o be a central idempotent polynomial on G.
I 1Qll; > 1 then

3) lell, > 1 +1/300.

Proof. Suppose
4 loll, <1 +1/300;

we will show [|Q|l, = 1. It can be assumed that G is the support group of Q.
Write |0|2 = S ,x, and |01% = 3y ,x, The a,and b, are nonnegative integers

and

) 2= [ 101X, <Mdla), b, = [ 104, < MPdla)
where

©) M= >E: d¥a) = o], = 0(e) = llolI2.

Also, by Hélder’s inequality,

@ T a,5,= fl01® 2 #2007

Define A,(g) = M~4Zb (1 - a ,Md(a))~ 1)y ,(g) and
Alg)=M"2 T all - b (M3~ Ny (o)-

It follows from (4)~(7) that

@® lao=Afd<1-lolT"<1/60 (i=1,2).
Thus
©) 0<|QI2/M* - |0l*/M* = 4, - A, <1/30.
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Hence, for all g, either

10) 10(g) < M/5 or

1) 10(g)] > 4M/5.

If g, and g, satisfy (11) then applying Lemma 5.1 to P = O/M shows |0(g,g,)|
> M/5 so that g g, must also satisfy (11). Hence the g for which (11) holds
form a closed normal subgroup H. Since (10) holds on HS we have from (4) and

(6) that

@ f lels [ el <—|—fjl>s [lol (-‘—Q,;'-)s;l—o.

It follows from (12) and Lemma 4.2 that the idempotent measure ch is carried
on Hjthat is Q vanishes on H. It was assumed however that G is the support
group of Q. Hence (11) holds for all g. But then 4M/5 < ||Q|, <1 + 1/300 so
that M = 1. This then implies that Q is just a character of degree 1 and the
proof is complete.

Theorem 5.3. If p is a canonical measure and ||| > 1 then ||p] > 1 +
1/700.

Proof. If p is reducible then ||u}| > 2. An irreducible canonical measure
is absolutely continuous with respect to N y for some closed normal subgroup
H. Also ||z} > |i(a)]. Thus we can assume that p is given by a polynomial
Q= X+ Dd(a)y,. Suppose [|Qff, <1+ 1/700. If either tQ is idempotent then
lQll, =1 by Lemma 5.2. Otherwise Q *Q and (Q *Q £Q)/2 are nonzero
idempotents with norms less than 1 + 1/300 and so, by Lemma 5.2, they all have
norm 1. It is easily seen from this that Q0 = y, - y, where y, and y, are
distinct characters of degree 1 with yi = y% . It follows that |Q| = 0 on a sub-
group of index 2 and |Q| = 2 on the complement of this subgroup. Thus [ju] =
"Q"1 =1

The estimates in 5.2 and 5.3 can easily be improved. It would be interesting
to know the best ones. A special case of 5.2 is that if [|d(a)x,ll, >1 then
fldla)x gl > 1+ 1/300, whenever x , is an irreducible character. It should be
noted that a group can be constructed having a sequence {a} CT" with d(a) —
oo and [|d(a)xll; =1 and having another sequence {B} with d(8) — = and

1< @l < 2.

6. F(G) for special G. This section contains some rather technical results
which are necessary for the proof of Theorem 2.2. We will first prove a special
case of that theorem.
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Theorem 6.1. Let G, (1 <i<n) be compact groups satisfying conditions 1
and 11 and let G =TIG,. Then every measure in F(G) is canonical.

Proof. The proof will be by induction on ||g||. If ||u]| = 1 then it is known
[3, Theorem 2.1.4] that p is canonical. Suppose that for such G every measure
in F(G) with nom less than A is canonical and let |}l <A + 1. We can assume
p is irreducible.

Say that p is of bounded representation type (b.s.t.) if there is M <o such
that 7(a)=0 whenever d(a) > M, If p is not of b.r.t. then, for some j £ 0, E].(pt)
contains a sequence {a} with d(a) — . Now a can be written as a= a,a,
.-+ 0 where a; €I(G)) and d(a)=d(a,) ... d(a ). For some i, say i =1,

d(a l) — =, Since G, satisfies condition LY a, = 0 off Z, = Z(Gl)' Thus since

W j=pa) = [V du

we having, using the Lebesgue dominated convergence theorem, that |p|(Z, x
I7G,) £0. Since p is irreducible it follows from Theorem 3.2 that L N (Z, x
I7G)) isopenin L (L is the support group of p). Thus L CK, x II3G, = G}
where K, is a finite normal extension of Z,.

There are now three possibilities:

(a) p is irreducible but not of bur.t. on G™

(b) p is irreducible and of ber.t. on G™

(¢) p is reducible on G*

For B eI'(K 1), d(p) < [Kl: z l]% < oo, Thus in case (a) we can repeat the
above process and obtain that L CK, x K, xII?G, where K, is a finite normal
extension of Z(G,). With respect to this new group, one of the above cases holds.

After a finite number of such steps we obtain that, for some rearrangement of
the G, and some m, LCH xH, = G* where H ; is a finite normal extension of
Z(H’;‘Gi) and H, <II" |G, and either (b) or (c) holds for this G* Since H, has
an open center it satisfies both conditions I and II. G* also satisfies condition
II because it is the product of groups that do.

If case (b) holds then by Theorem 6 of [5] and Lemma 1.1 we have that g is
canonical on G* (Theorem G of [5] is stated for | but it applies equally well
to F.) If case (c) holds then g is a sum of measures in F(G*) each of norm less
then A and so by the induction hypothesis p is canonical on G*. Lemma 4.6
then gives that p is canonical on G.

Lemma 6.2 Let G, (1<i <o) be compact groups satisfying conditions 1
and 11 and let G =TIG. Suppose p € J(G) satisfies

2 a € E(p) if and only if ||(¥, - Dyl < 1/300.
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Then p is canonical; in fact p = JRH for some closed normal subgroup H.

Remark. For abelian groups this is obvious. The problem in the nonabelian
case is that ¥ ¢ need not belong to F(G). It seems likely that the restriction
on G can be lifted but I have been unable to do so. It does hold, however, if G
is totally disconnected.

Proof. Let NI be the Haar measure of I G, CG and let p = p ) . Then
p, — ¢ weakly and p_ can be considered as an element of ](H'IGi). (2) still
holds for p_ which is canonical by Theorem 6.1, We will show that “‘l'“ =1 for
all . It then follows that [[u]l = 1 so that, by [3, Theorem 2.1.4], p is canonical.
Since 1 € E(u), where 1 is the trivial representation, ¢ is a Haar measure.

Since p, is canonical it can be written as p = Zjv, where v, € F(G) and
v; << z\ the Haar measure of a closed normal subgroup H We show first that
s =1. We can assume the A, are mutually singular and that ﬂH )t 0 for j>1.
Now if a € E(y) then

(3 (2, = v | < (¥, ~ D | <1/300.
Fix y € E(Vi) then by (3)

[@,- 0¥,

Since ¥ (y) is a nonzero integer, (4) implies that the decomposmon of a®y

4 v~ 17’.()/) <1/300.

contains an element of E(v ). Thus E(u) CyE(v) where y is the representation
con)ugate to y and yE(v ) consxsts of the B € F that appear in the decomposition
of y ®0 for some € E(u) Now v; < < A which implies that E(v) is the
union of finitely many hypercosets of H Thus E(y') is contained i m the union
of finitely many hypercosets of H'L s0 that there is w; € J(G) with w; << /\]
and p *@;=pt . Let j>1 and apply I]H to this last equality. Smce HH
=0 it follows that 0 = Il M= A,. Thisi 1s a contradiction so that s = 1 and
B, = )t

We can thus write gp_= QA where Q is a central idempotent polynomial on
H, and also 0= EEa oX "JHI where @,>0 and E C E(y'). It follows from (2)
that

@ Di
(5) (©/0(e) - 1)0ld\, < il oAy
Jite/e-vola, < X Spadm 0

Thus since ]‘]QI"’a’/\l = Q(e) it follows from (5) that

©) el = flolar, <1+1/300
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so that, by Lemma 5.2, {|p || = 1 and the proof is complete.

Lemma 6.3, Let p be a positive integer and M < es. There is & = 8(p, M) >
0 such that if G is as in 6.2 and p € F(G) satisfies the following:

@ [luh <M.
(b) There is a normal Borel subgroup T of G with |u|(T) =0.

(c) There are Borel bomomorphisms [, [, +++ » /p of T into the unit circle
with f, =1, fp # f].p. for i £j and for each i there is an irreducible sequence
{a} CE(u) with ‘l’a—' li pointwise on T.

) a€El) if and only if |(¥ - [ Jull <8 for some 1,
then =% fp%eeex fp’lemH for some integer A £0 and some closed normal sub-
group H.

Proof. & is chosen so that
) pdY2MP=1(pM + 2) < 1/300.
Clearly each fu € F(G) so that € F(G). Also, by (c),

f1ide=tim [, du 40 sochar 51) = [T (7)) £o.

Let B be a fixed element of E(w). Then B € E(fy) for all i so that, by
using (c), lim f‘I’ﬂ‘l’ Aar=71 ] of An #0. Since {a} is an irreducible sequence we
must have 8 @ a irreducible eventually and Ba € E(u). Thus (d) implies that

® I¥s¥, -7l < 8 for some ;.
Since p is carried by T it follows from (c) that

©) Mg = 7T = N T = Toul <.
Now since f, =1, E(w) CE(g) so thar there is & with
(10) (¥ 5 = 7)ull < 8.

We will show for such a % that

(11) /kw =®.

Since |, R and f .f p are both in F(G) it follows from (9) and (10) that (since
&< A)fkp // e Hence for this k and all i there is j with f,fp= / g« Since
{f u} are dxsunct it follows that

12 ffp:1<i<pd=tfp:1<i<plh

Now the f g are central measures so that if o is a permutation of (1,2 -4, p)
then
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(13) w"fcr(l)# *"'*fa(p)”"

Let A=pxpx++exp on GxGx...xG. Then, for y €T, it follows from
(12) and (13) that for some pemutation o

() o) = [ U1, do
|4
[Ty g e ) 1’11 1{g) @

- [V v g ) [ o) = [ 0. do = 3.

(11) then follows from (14).
Now let R = {g € T:|¥5(e) -, (g)| < & 1. It follows from (10) that

14

(15) lul(RE) < 8V2,
It also follows from Lemma 5.1 that if g, € R (1 <i<p)
(16) |‘Pﬁ(gl vos gp)-'f;(gl e gp)l <p281/2.
Then by (7), (11), (15), (16) and (a)

||(‘P'B -1o| = I|(‘I‘B - /"_k)wll

<o [ 1%y o g) = Tiley + e g Nl o ee x )
< p28Y 2P 4 2pMP=15Y2 < 1 /300,

(17)

The last inequality is obtained by integrating over § = R x+++x R and §¢
separately.

(17) holds for all B € E(w). Lemma 6.2 can then be applied to show that
w/@(1) is a Haar measure.

7. Some more technical lemmas. The main purpose of this section is to
prove Lemma 7.6,

Lemma 7.1. Let H be a closed normal subgroup of G. Suppose {a} is a
sequence in I such that

¢) W =1 ae ON).
Then, for a large enough, |¥ (g)] = 1 on H.

Proof. Since H is closed and normal we can write x|, = aZ{x 4; Where
B, €T(H) and apd(B) = d(a) for all i. Then
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&) g %1240, = a?pldta)) =2 = (pa2(B ).

By (1) and the Lebesgue dominated convergence theorem (pd z(ﬁl))‘l -1,
Thus eventually p =d(B8,) = 1. Thatis x|y = d(a)y where y eT'(H) and
dy) =1 sothat |¥ | =1 on H.

Lemma 7.2. Let H and K be closed normal subgroups of G with H open
in K. Let f be the characteristic function of H. Suppose {a} is a sequence in
I such that

3 [P (| = /(g ae. (mh).
Then, for o large enough, |¥ | =f on K.

Proof. From Lemma 7.1 we can assume |¥ | =1 on H. Write X |g =
a¥fx 5 where B; € T(K). It follows as in the previous proof that

“ (2B )1 = [ 19,12 M, = M (E) + of0).

Thus eventually (pdz(ﬁl))'1 =M (H) and so fi_p |¥ ]2, = O; thar is ¥ =
0 on K-H.

Lemma 7.3, Let H and K be closed normal subgroups of G with H open
in K. Let E CT be such that {‘l’alﬂz a € E} is finite, Then {‘I'OJK: a€eE} is
also finite.

Proof. 1f the lemma is false there is a sequence {a} CT such that ¥ .
are distinct and ¥ _|,, are all the same. By Lemma 4.4 ‘l’aomH, being a weak
limit point of {'¥ Jf("}, is singular to mK . But mH < <M, which gives a con-
tradiction.

The following lemma was proved by Amemiya and Tto (1] although not stated
in this form:

Lemma 7.4, Let p and v be nonzero regular Borel measures on some space
such that f p —v weakly where |f ||, <1. Then given k< |v||/||ull <1 there
is N such that

(5) I, = 7 el <20l - &+ - EY2) for m,m>he
Lemma 7.5. If, in the above, ||| = V|| then [ p — v in norm.

Proof. Letting £ be close to 1 in (5) shows that {f p} is a Cauchy sequence.

It also follows immediately from Lemma 7.4 that if 1 <A <[jv]| <|lull <A +
1/100A then

© ||(/" - /m);z" <1/4 for large n, m.
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Lemma 7.6, Le: G, (1< i <o) be compact groups satisfying condition II
and let G=TIG. Let p € F(G) have support group L. If p satisfies the follow-
ing two conditions then p is canonical.

(a) There is an integer N so that if P is a normal Borel subgroup of G and
H’;’G:. cP (G'.' is the commutator subgroup of Gi) then HPIJ. £0 implies PN L
is open in L.

(b) For each i there is M, <o sothat if a €E@) and a=a ... a where
a;, €T(G) then d(ai) <M.

Proof. The proof is by induction on [[pf|. Assume it is true for 1 < flulj <A
and let A <|lpll <A + 1/100A. We will show that T = {¥ |, : a € E(@)} is finite;
¢ is then canonical by Lemma 4.1.

We will assume T is infinite in order to obtain a contradiction. By using a
diagonal process and the fact that each G satisfies condition II it follows from
(b) that there is a sequence {a_} C E(z) such that

® o,=a ,a ;... where a i EF(G),
(ii) there are B, €T(G) suchthat @, ;= By, , for n > nli) where y,
€IG) and dly, ) =1, and

(iii) ‘I’a.nl L are distinct,

By taking a subsequence of {a } we can write

¢)) a'n=Bl”'BnynAn

o8
where d(y ) =1 and A eT(I7 | G).
Ve will first show that there is iy > N such that

(8) I‘P'BJLE 1 fori>i,.

Let P ={g: lim, _ ul‘l’p ()] = 1}. P isclearly a normal Borel subgroup and by
@) 'I’a — 0 on P¢ as n — s, Since n(a ) £0 it follows that |u|(P) £ 0.

Thus since HN G, CP it follows from (a) that PN L is open in L. In particular
PnLis closed so that by Lemma 7.1 there is iy > N such that l‘l‘ﬁil =1 on
PNL for i>iy. Ve will show PN L =L.

If PN L £L then, by Lemma 4.2,

)] |p{L-P nL)>1/2.

Also lim, _, “l‘l’pio 'I’/gpl =0 on L -PnN L sothat if p is large enough it
follows from Lemma 7.2 that
(10) ‘I»‘ﬁi '--lPBpEO on PNnL,

0
Let 6=p;--- 8, and let K = ﬂ‘;Gi' « Define ¢= ﬁ‘gll. *mK‘ It is easily seen
that ¢ £ 0, ¢ € F(G) and
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(11) g, = ﬁp+l vee ﬁnyn)\n € E(qS) for n> p.

Also since ¥y vanishes on L ~(L N P) it follows from (9) that ||¢|| < ulf -
<A. Also ¢ satisfies (a) and (b). (b) is easy. To see (a) (with p in place of
N) suppose K CQ and Ilpé #£0. Then Ilyu £ 0 sothat QN L is openin L.
Now the support group L*= L(¢) C(L NP)K. Thus L*Q CLQ. Q is open in
LQ and thus is also open in L*Q; that is L*N Q is openin L* It follows from
the induction hypothesis that ¢ is canonical.

Since ¢ is canonical it follows that for some closed normal subgroup H
with Tl; & £0 there is an infinite set I such that 0,€0 OHL for all n €I; that
is Yo IH are the same for » €1, Since ¢ *m ¢ we can assume K CH so

that HNL js open in L. By Lemma 7.3 this 1mphes that {¥, |L nel}is
finite, But a =00 so that we have a contradiction to (iii). Hence PNL=<L
and (8) is proved.

Now let 0, = ﬁ, ++ B,y,A,s A subsequence of {‘I’e p} converges weakly
to some @. Now © ;é 0 and © € F(G) this is because the ‘I’,gl are multiplicative

on L for i>i; and because {y A} is an irreducible sequence. Now w clearly

satisfies (b). To see (a) suppose pr #0; since @ <<p it follows that Il p £
0. Hence if HNG CP we have PN L openin L. But L(w) CL sothat PN L{w)
is open in L(co) The remainder of the proof is divided into two cases.

Case 1. |loll <A. Then o is canonical by the induction hy ypothesis. Let
H be a closed normal subgroup of G such that 0 £ I]Hm << mH. Since ¥ MH
- ol y Weakly it follows from Lemma 4.4 that {¥g,|,} is finite. Now 'I’e =1
on HN G so that f‘l’e |} is finite where S =H - HNG Also Mg £ 0 so "that
\) OL is openin L. "It follows from Lemma 7.3 that {'I’e lL} is finite and since
a, =By« Biy-10, this contradicts (iii).

Case 2. ||l > A. It follows here from the remark (6) after Lemma 7.5 that,
if n, m are large enough,

(12 ¥, -, dpll <1/4.
n m

Fixing n and letting m — oo in (12) then gives

(a3 ¥, ol <1/4
n
and
(14 W, w2l ~1/4> 4 -1/4.

By (13) and (14), using that I‘Penl <1,
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=¥y ol I =¥ 1Pl + [1¥g 170 - ¥g @l
n n n n

@ <2l - 1T ) + 1T - ol

<3/4 +1/50A.

Since ® is carried by L it follows that (a subsequence of) {¥g w} converges
weakly to some A € F(G). (15) shows that || - Al <1 so that p. A, Since [|A]
<|lo|l we must then have that ||| = lu}| so that by Lemma 7.5 ‘I’eﬂu — o in
norm. It then follows that, for a subsequence,

(16) Wy | =1 ae. (ul

Now (16) occurs on a normal Borel subgroup S which contains H[:G; + Thus,
by (a), SN L isopenin L. SNL isthen closed and carries p sothat SNL =
L. This gives, by Lemma 7.1, that

(17) ¥ 1=1 on L for large n
n

But then @9’1# € F(G) so that, because of (12),
(18) Yop=9, p
n m

Finally (17) and (18) show that ‘I’e | = ‘I’a |, which implies that ‘l’a L =
‘l‘a |, and this contradicts (iii).

8, Proof of Theorem 2.2

Theorem 2.2. Let G, (i € A) be compact groups satisfying conditions 1 and
Wand let G=1,G,. Then every measure in F(G) is canonical.

Proposition 8.1. If the theorem is true for countable products it is true for
any A.

Proof. Let p € F(G). We can assume p is irreducible and has support group
L. If p is not canonical then by Lemma 4.1 there is a sequence {a }C E(p)
such that ‘I’anl L are distinct. There is a countable set B CA such that a, €

[0, G) forall n. Let K=Tl, 4G, and v =p +My. Then E() contains

{a } and v is canonical since it can be considered as a measure on IIzG .. Itis

then easily seen that v is irreducible so that w“,,‘l.(v)} is finite, But L(V) N

L isopenin L so that {¥ "l .} is finite by Lemma 7.3 which is a contradiction,
It temains to prove the theorem when A is countable. The proof is by induc-

tion on ||ul. Assume it is true for |lu| <C and let |u}l < C + 1/100C. We can

also assume that p is irreducible,
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Proposition 8.2. We can assume p satisfies condition (b) of Lemma 7.6 and
that 1 € E(y).

Proof. Suppose E(y) contains a sequence {a} where a=a,a,-+. with a,
€ I‘(Gi) and suppose, for some j, that d(a,.) — o as a— oo, Since fi(a)# 0 and

G,. satisfies condition I it follows that

(D lul (II G, x Z(G )) £0.
ifj
By Theorem 3.2 we then have that L = L(u) CII, 40 < K; where K is a finite
normal extension of Z(G ). Doing this for all such ] we obtam that LcC HK G*
where K, =G, or K, is a finite normal extension of Z(G) Now each K, sansﬁes
condmons I and II and p satisfies condition (b) with respect to G*. If p is ca-
nonical with respect to G* then by Lemma 4.7 it is canonical with respect to G.
It can still be assumed that p is irreducible; if p is reducible as an element of
F(G*) then it is canonical on G* by the induction hypothesis and then it is canonical on G.
Let a=a, --- ay € E() and let K =TIYG/. Then ¥y +My = A e F(G),
1 € EQ) and ||A] < ||pll. Also A satisfies condition (b) since we can now assume
that ¢ does. We will show that if A is canonical then p is also. Suppose A =
Ev where v, << W(H for some closed normal subgroup H.. Let P be a normal
Borel subgtoup with K C P and Hpp # 0. Then since p 1s irreducible Mpp = p;
also II, m m since KC P. Thus I[,A = A so that IIPMH =My . for all j.
This unphes that Pn H; is open in H But Tl £ 0 so that H, n L is open
in L. Hence PN L is open in L. By Lemma 7.8 then i is also canomcal Ve
can thus assume g, like A, has 1 € E(u).

The remainder of the proof involves using Lemma 6.3 to show that p satisfies
condition (a) of Lemma 7.6.

Call a sequence {a } C E(p) an F-sequence if a =a .o+ with

a, ; €I'(G; ) and dla, ) 1 for i<n An F-sequence is ';nl u:eflucxble sequence
so that a subsequence of {‘I’a p} will converge weakly to some nonzero @ € F(G).
Let B be the collection of all such w. p € B since a =1 is an F-sequence.
Now if @ € B and [o}| < C then w is canonical by induction and g is then

canonical by Lemma 4.5. We can thus assume that w € B implies

) C <ol € lxll < € +1/100C.

It then follows, for @ € B, that, as in Case 2 at the end of the proof of Lemma
7.6, ol = ||l and

€)] “—‘f’a pt-ow| — 0 for some F-sequence.
n
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Then @ = fp for some [ € L) with |f| = 1 a.e. |p|. We will identify B with
the collection of such f.
Now another subsequence has

4 i'-a" —f a.e. |u.

Let § 1 be where (4) holds and |f| = 1. Then § I} is a normal Bore!l subgroup,
/(57 )= 0 and { is a Borel homomorphism of §; into the unit circle.

Now B is finite. Otherwise we would have ®; € B with »; — @ weakly
for some w # 0. Using (3) and a diagonal process on the sequences converging
to ®, we could then find an F-sequence {al} with

6) ¥, p-0l<1/2 and (¥, p-ol<1/2.

Since o, € F(G) this would give o, = @.

Let p=card B, M= ||| and & = 8(p, M) be the constant in Lemma 6.3.
By using (3) there is an integer N such that if a=a;a,++ € E(u) and dla )=
1 for i < N then

() H(ﬁa -l <8 for some f €B.

Now let T={\s ; over f with f € B. Each f is a homomorphism on T and
u[(T)= 0. Let K=TIYG' and A=p *M . Then A £0, ||| < M and, since
KCT, M(T) = 0. It also follows from (6) that a € EQ\) if and only if

)] |[(‘ia - A <& for some fu €B.
We can now apply Lemma 6.3 to A to obtain
8) /1)‘*/2)‘*"‘*/}‘=Amn

where the fA are the distinct elements of {A:feB}, A #0and H is a closed
normal subgroup.

Now Il u# 0 sothat H N L is open in L by Theorem 3.2. On the other
hand if P is a normal Borel subgroup, K CP and Ilpp #0 then p =Ilpp and so A=
IIA. Hence IIPmH = mH so that P N H is open in H, This then implies P
N L is openin L so that ¢ is canonical by Lemma 7.6.

9. Connected groups. We can now use Theorem 2.2 to characterize F(G)
for connected G.

Lemma 9.1. If G is a compact connected simple Lie group then G satisfies
conditions 1 and Il.

Proof. Ragozin [4, Theorem 2.2] has shown that if n = dimension G and
p € M?(G) is continuous then ”* € L,(G). For g £ Z(G) let p be given implicitly
by
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169 f/dp = f/(xgx’l)de(x).

It is easily seen that p is a central continuous measure and pla)= v o8 so
that (") (@)= (¥ (g))". By Ragozin's result and the Riemann-Lebesgue lemma
it follows that

) Y(g =0 as a—w(g¢2)

Condition I follows immediately. Also if {a} is a sequence with d(a)= ¢ then
(2) and the dominated convergence theorem show

3) 1= f Ixal2dMg = 2M2) + o1) as & — o

But then M .(Z) # 0 so that Z is open which is not possible since G is connected
Thus there are only finitely many a with d(a)= ¢t which implies condition II.

Theorem 9.2. If G is a connected compact group then every measure in

F(G) is canonical.

Proof. It is known (cf. [8, Chapitre V1) that a connected compact group G
is a factor group of a group G*=1IIG, x A where A is abelian and the G; are
connected simple Lie groups. By Lemma 9.1 and Theorem 2.2 every measure
in F(G*) is canonical. Since a measure in F(G) can be considered as a measure

in F(G*) the theorem follows.

10. An example. Unfortunately the characterization of F(G) does not hold
for all G as the following simple example shows. Let T x T be the two dimen-
sional torus and let G be the semidirect product of T x T and Z, where
(e, £)) = (2, 2,00 for 8 €Z,,8 # e. Let py (resp. p,) be the Haar measure
of Txe (resp. ex T). Then p=p, + g, € F(G) but p is not canonical. That
it is not canonical is seen by neting that p is singular to mH for every closed
normal subgroup H of G.

In this example p is a sum of (noncentral) idempotents each of which is
canonical with respect to its support group. It seems reasonable to conjecture
that for any G this is always the case.

Also if p is canonical or as in the example then the conclusion of Lemma
4.2 holds for any Borel subgroup H (whether or not it is closed and normal). It
would be helpful to know whether this is true for any p € F(G).

It also seems likely that there is 8 > 0 so that if p € F(G) and |u]l >1 then
flzll > 1 + & (cf. Theorem 5.3). Otherwise some strange elements of F could be
obtained by taking infinite products of measures on product groups.
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