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STUDIA MATHEMATICA, T. LXVIT. (1980)

Central limit problem for symmetric case:
Convergence to non-Ganssian laws

by
V. MANDREKAR and J. ZINN (Bast Lansing, Mich.)

Abstract. A general theorem is proven giving necessary and sufficient con.
ditions for the row suwms of a uniformly infinitesima) symmetrie triangular array
(with independence in each row) to be conditionally compact. Using this limit theorems
are proven in spaces of type p-Rademacher, cotype g-Rademacher and type p-stable.
Characterizations of these spaces in terms of these Limit theorems are also obtained.

0. Imtrodaction. This paper is devoted to the study of the Central
Limit Problem in a real separable Banach space B, We first establish
necessary and suffieient conditions for the row sums of a triangular array
of uniformly infinitesimal gymmetric independent random variables to
be stochastically honnded as well as to be compact, in the cage that the
limit points are non-Gaussian. These results generalize o result in Teller
([5], p- 309) as.well as some work of G. Pigier ([26], Theorem 3.1). The
main tools are a result of Le Cam ([16], p. 237) amd ideas involved in’
proving some inequalities as in (H~J [8] and Jain f111). As a consequence
of these results wo characterize Banach spaces for which the clasgical
conditions hold. In partioular we show that the spaces in which classical
conditions ([6], p. 116) are neocssary and suificient are ‘isomorphic to
IEibert space and the spaces for which both halves of the domain of
attraction problem hold for stable laws of oxder p < 2 are precigely the
type p-#table Bannch spacer. Wo also derive from the necessary con-
ditions in the latter problem the existenco of the ath moment of the norm,
with regpect; 6o the Taws in the domuin of normal sttraction of the stable
Luw of ovder p for a <2 p. Our work includes some of the reeent work of
Woyezynsle [20] and Marcus and ‘Woyezynski ([19], [20], [21]).

Acknowledgeent. Wo would like to thank Gilles Disier for allowing
us to incorporate some of the results of [27 1in Section 4.

1. Preliminaries and notation. Let 7 be a roal separable Banach.
spaco with. the (tepelogical) duad 1’ und Borel field & (B). Let (2, #, #)
be a probability space; then X on Q to B will be called an I-valued random
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variabls if X is (#(¥), #)-measurable. We note that due to the separ-
ability of B, X iy strongly measurable. The distribution induced by X,
namely Po X! will be called law of X and written as & (X). We say that
an F-valued random variable X is symmetric if Z(X) = Z(—2X). We
ghall be dealing with truncation. For an FH-valued random. variable X
and a subset 4 < # we denote by

(X, 4) X if
T =

’ 0 it

Xed,
(1.1)

X g4,

‘We denote by

(1.2) X, A) = (X, A%

and note that X = 7(X, 4)+7(X, 4).

A family of symmetric #-valued random variables {X,,, j ==1,2, ...
vy By 2 =1,2, ...} will be called a symmetric triongular X-array if
for each », {X,, j=1,2,...,k,} is an independent family of random
variables. Associated with a triangular array we shall use the following
notation:

Toy,
@) 8y = 3 Ty = L(8,),
=1
o Tog,,
(1.3) = M #X,, TV = 3 #(tX,, B
§=1 =1
kﬂ»
(©) 8u(8) = D (X, By,
i=1 '

‘where 7-and 7 are as in (1.2), (1.3) and B, = {&| |z < d}.

We conelude the section by recalling some standard results amd
definitions. We say that a sequence of finite measures ko, on (B, 2(B))
converges weakly to & finite measure » it [gdy, —> [gdv for every bounded
continuous funetion ¢ on &. It is known that {1, is weakly condlition ally
compact (for short, compa.ct) iff for every &> 0 exists a compact sob

K (&) such that »,(K (e )) < ¢ and, sup v, (H) is finite. Given 2 finite mearure »
on (¥, #(H)) we denote by e(v), the exponential of », defined ag
e(») = exp( —»(E {5 21
i p( () +2 -

where 3, i the dirac measure at zero and »** is n-fold convolution of ».
If furtl;fer, v = Z(X) for some H-valued random wvariable X, then e(y)

=2 lej) where {X;} independent B-valued random variables with % (&)
=
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= Z(X) and N ig Poisson random variable with parameter one, inde-
pendent of the sequence {X;}>,. Finally the characteristic functlon of
a cylindrical measure g ([4]) is defined to be

P4 fexp (i<y, wyypde for yel,

where {+, > denotes the duality function on B’ x H.

" 2. Stochastic houndedness and compactness of row sums. A gequence
{¥, )1 of E-valued random variables is said to bo stochastically bounded
if for every &>> 0, 3 finite such that P {|[¥, | > ¢} < sfor all n. Given a sym-
matrie triangular X-array we get the following extension of Feller’s
Theorem ([5], p. 309).

2.1. TumoneMm. Let 8, be as in (1.3); then 8, is stochastically bounded iff

(a) for every & > 0, there exists ¢ large so that sup F,(Bf) < &,

e

(b) for every ¢ > 0 sup B8, (0)|F 18 finite.

J-1

1
Prootf. Since X,; = 3 X,,— 3 X, we have by the triangle in-
. J=1 J=1

1 1—1
equaliby || Xl < || 2 Xoll | 2 wll- Hence -
(2.2) P(l:g}']x I M]]>t)<P(122f ”2‘ X > 41)-

By independence,
ko, v

P max ([ Xyl > 1) =1~ Hl —P(IXnll > ).

el

(2.3)

By the exponential mequa,hty
(2.4) 1P (X, > ) < exp[P (Xl > D]
From (2.2), (2.3), {2.4) and Lévy incquality we get for all 7,
- (“Sn” > %t) 2 1*01([]( —-Fn t )
Ienco wo get (a) from stochastic boundedness of {8,}. Let now o> 0;
then following an argument gimilar to ([11], Lomma B.3) we get fori> 0,
P (18, (e}l > #) < 22 (18, > 1).

Therctore for every o> 0, {8,(0)%., i stochastically bounded. Let ¢
be tixed. Following the proof of Hoffmann-Jergensen ([8], Theorem 3.1)
we gob that B8, (6)|? < 3K, where K = 2 -3"¢? +8 -3¥1% . Herxe i, i8 chosen
o that

1
‘P(HSIL” >y < ETZ"S? .
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To prove the converse,

k?’b
(i8> 20 < P18, > )2 (| 37X, B | > 1)

Ty,
< FES P+ Y PUT > o)

=1

Given &> 0, choese o, 50 that sup IO (F) « . Bince supB |8, (el is

w k(3
finite we get Hmeup P (||, > 2t} < & giving stochastic boundedness of {8,}.
w0t
- Before we study compactness of {8,}, we give some general regults,
2.5. DErinrrroN. We say that a symmetric X-Griangular aray is
uniformly infinitesimal (UI) it max P{X,;| > 6}-»0 for every ¢ > 0.

L5k,

2.6. DeFINITION. (2) A probability measure # on J i said to be infi-
nitely divisible (i.d.), if for each n, there exists a probability measure g,
on (B, 4(H)) such that g = " (If u, exists, it is unique.)

(b) A probability measure @ on (F,#(H)) is said to Lo centered
Gaussian if for each y e B, poy™" is symmetric Gaussion.

icm

2.7. Remark. By the uniqueness of the measures p, of Definition

2.6(a) if s symmefric, the measures u, of Definition 2.6(a) are gymmetric,
It is known ([247, [13]) that each symmetric i.d. measure x4 can be written

a8 p = pv, where ¢ i3 centered Gaussian and » = lime(»,) where 4, i3
n
an increasing sequence of symmetric finite meagures. Furthermore, the

meagure o and v are unique. We shall refer to » above as non-Gaussian i.d.
‘We note that y is i.d. implies that yoy* is 1.d. for y € B'®. The follow-

Ing result gives a converse in case x4 is symmetric.

2.8. TEBOREM. Lot B be a real separabls Banach space and Lo symmetrio
probabilily measure on Borel subsets of . Then p iz 1.4, iff woy™! is i.d.
for all y € I'*, for all k. '

Proof. The “only if” part of the theorem being obvious, it guitices
to prove the “if” part. Let » be a non-negative integer then, for each ¢ el
there exists asymmetrie measure u, (y) on B, poy~1 = Ea (), Sinee ,‘uo !
%s id. we get for all £, ¢.,-1(1) > 0 (teR) giving {a, ()t g B, b 1)
is a eylinder measure ([4]). Call it u,; then Pugor=1(8) = @, 1, (1) for all
teR*. We then get ¢,(y) = Prgw) (1) = ¢ (), giving u mﬂj;;‘j” As @ ois
symmetric this implies ([4]) that g, is a measure, giving the result.

For H-valued r.v. Z and y = (g, ¥s, ..., y,) e B'F, {y, Z> will denoto
.(<y11 Z>7 <y2! Z>’ R | <y7),7 Z>)‘
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2.9. TanoREM. The symmelrie i.d. laws on B coincids with the limdt laws

of row sums of Ul symmeirie triangular arrey. ' -

Proof. Let {X,;,§ =1,2,...,%; n =1,2,...} be a Ul symmetric

triangular array. Then for each & and y e B, {<y, X0, j =1, ..., k,,

n=1,2,...}is a UL symmetric triangular array of B*valued random
kn

variahlos, Lot 8, = 3 X,. and g bo weak limit of #(8,), then yoy=* is
feut,

fe,
the weak limit of #{ 3 <y, X,>) giving woy™! L.d. by aresult in [24],
Fe=l

p. 199. Now p being symmetric we got, by Theorem 2.8, that g is

i.d. Suppose g I8 syminetrie Ld. then for ench , 4 == @& where w, is

© a symmetric probability messure on %, Let {Xibict,m (0=1,2,..., 1)

be triangular array such that for caeh m, {X,;}..... ., arve independent
identically distributed with distribution w,. Olearly, p = limg". It
n

therefore remaing to prove {X.d.. . i, (n'=1,2,..) are uniformly
infinitesimal. Since g, is symmetric and @* is relatively compact we get
by ([24], p. B9) {#,, » =1,2,...} is relatively compact. Also we get
by the one-dimensional regult ([17], p. 297) <y, X0 — S0 y~" for oll #.
This imnplies p, = &;. Eence

112;'}:32])(“4 will > &) = u{w: [l > &} -0

We now give conditions for the convergence of row swms to a non-
Gausgian i.d.

2.10. Tewosnm., Let {X,, §=1,2,..., %, n=1,2,...} bs a UI
symmetric Wriongular arvay and S,, S,(0) TL(0), p, elc. be as in (1.3).
Then {uy,} is conditionally compact with all limit points non-Qaussian iff

(a) for each & > 0, T is conditionally compact,

(b) ldimsupEjESn(é)H” =0 (0 < p< oo

0

for every > 0. -

Proof. 8inee {u,} in conditionally compact we got by ([16], Theorem 2)
that (a) holds, Using symmetry, we got as in ([11], Lemma 5.3), v(X,;, Ba)
oz J( Xy - Xy) where Xp; has (e same law as ;. Tonce we gob that
{!// (S,]((’i))}n,,, is conditionadly eomipact if {u,} is. Forthermore, for y e I/
and F,, - 2 (X)),

Iy, T

(211) By, B, (8)5 v DIy, w(Xyy, Bt = Y [y, ad3F g,
Jeal el (lliesd

By classical conditions ([6], p. 116) for convergence to non-Gaussian i.d.
Jaws we gob . '
Iy,

(2.12) lim, sup

Yy )R yyd = 0,
S0 M Gl (G| s}
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Since B; = {#| <y, > < |ly[d} we get from. the conditional compacimoess
of {(8,(8): m=1, >0}, (2.11), (2.12) and Chebychev’s inequality,
for every ¢>0,

P8, (8)> et —0 uniformly in » as 8- 0.

Given % > 0 choose 8, such that V4 < §,
SE‘PP(HSn(é)” > 0P (16)HP) < 45377,
Now following the proof of Theorem 3.1 ([8]) we got that
S}Llpﬂllﬂn(ﬁ)ﬁ” L4381y,

From this condition (b) follows.
To prove the econverse, givon s > 0 choose 6 > 0 so that

(2.13) Sup B8, ()i < §""!
[ 3

and K = Bj, symmetric compact so that

(2.14) TP (K < fe.

Choose o simple function t: B — ¥ such that o —t() <% on K, and
8(x) = 0 oft T with n << §and n SupI{ (H) < Je

"’n
(218) - P{|%— :l HZ,)| > 4s}
<P{|L§T vt —H(Xag)s B || > 26} +1>{“ (&g —4(Xs), By | > 2]
Now the second term of the RHS of the above inequality does not excoed
kzn:l’{l Xy — X y) > 6} = él’{llxm'—t Xl > 8, X,y ¢ K}

since {X; EK}n{HXM—t(X,nj)l > 6} =
But (X)) = 0 if X, ¢X, givinw

(2.16) HZ‘ X —1(X,) H>2e} FO(Ee,

The first term on the RHS of (2.15) does not exceed
(2.17) {HE Ty, BTy £ = o) 4
T

%P {”Z (Xﬂf.”t(xni5’ Bd)l(Xm & K)” > 6}

=1

Qentral limit problem 285

Since (X)) =0 for X, ¢X and B, = K° we get that the first term
of (2.17) does not excecd

(2.18) {”Z (X Bs)

The sooond tierm of (2.17) by Chebychev and the triangle inequalitics is

> e} ——EilS (3)°.

< {1]g) JJZH (Xg = 8(Xpg), B) 1 Xy € K| andl homeo does mot exceed

(n /a1, (A’ ) uging the faet that for X, e I, | X, — (X131 < 7 and X, > 4.
Thug the goeond term of (2.17) does not exeeed

(2.19) ZFSQ”(E)‘

Using (2.13), (2.14), (2.16), (2.18) and (2.19) we get that {%(8,)} is flatly
eongenfirated. Now ay before, for any ¢ > 0 and X and 6 ag in (2.13) and
(2.14)

P IIS,; (o)] > 22)

<P (“2, T Xy By By) -I—ZT X, B, n]()”>27{ Xye By Kforsomel< )

7" n
o+ P Xyl > 8, X,y ¢ K).

(=1
Uging the fact that K < B, first the argument of (2.18) and then. that of
(2.18), yields that for all ¢ > 0, {8,(¢)} is stochastically bounded. Hence
<y, 8,(¢)> is stochastically bonunded. Using the proof of Theorem 2.1
and condition (a) implies that {{y, 8,>} is stochastically bounded. Now
{[1], Theorem 3.1) completes the proof.

2.20, Remark., Wo note that in. the sulficiency part of Theorem 2.10,
wo have not used the TT hypothoesis on the trisngulay array.

3. IR-type, cokype and convergence conditions. This section is devoted
to the charpeterization of the Bunach gpaces J for which classical con-
ditions hold. We start with the definition.

3.1, Dmruvreron. A Banach space X iy said to be of E-type p if for
o fomily {X,, X,, ..., X,} of symmetric independent random variables
with finite pth moment there exists o constant ¢ independent of n and the
random variables such that

(3.2) B\ X+ ... + X <0 D BIXP.
FESS
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Wel note thab ([9], p. 589), condition (3.2) is valid for {X,, ...

y Xy} ifE
it is valid for X; =guo, (¢ = 1,2, ...,

%), where {eg)}., arc symmetric

independent Bernoulli random variables and for all {®,...,»,} < B,
Hence we have the nomenelature E-type (Rademacher type).
3.3, TumormM. Let {X,, j=1,2,..,k;n=1,2,...} be a UI

symmetric triongular array of B-valued randow variobles such that #(8,)
= FL(Z) where ¥ (Z) s non-Gaussian. Then thers exists a o-finite-moasure J
on B, T finite oulsidc every neighbourhood of zere such that ¥ converges
weakly to T for all 6> 0 such that F(0B,) = 0.

Proof. We note that #(Z) being a non-Gaussian infinitely divisible
law, by ([24], p. 103) there exists a unique o-finite-meagure &, finite outside
the neighbourhood of zero guch that for each y e ' {y, Z> has Libvy meagure
Goy~ . Let {6;}i.; bo 9 sequence of pogitive real numbers converging b6
zero. By Theorem. 2.10, using Cantor's diagonalization procedure we geb
that there exists a subsequence {n'} of {n} such that for each &, FiW
converges to a finite measure, say, Fy. Furthermore Fy, 4. Let us {define
F = IimF,c. Then #'is o-finite. Using the fact that L ({y, 8,>) = Z(, Z>),

gives by classical results and the uniqueness of @ that Foy ™ = Goy~Vy e 7,
Thus ¥ == G and, in particular, F¥ = & outside the neighbourhood of zero.
Hence F iz the unigue limit of every convergent subsequence.

3.4. COROLLARY ([29], Theorem 4). Tha following properties of o Banach
space B are equivalent

(i) B is B-lype p.

(if) For each UI symmeiric triangular array (X, §=1,2,..., %,
n =1, 2 ...} of B-valued random variables and a o-finite measurs 1‘, sams fy'mg

(=) F“’) -converges wealkly to F® = I pe Where T, is as in (L3},

By = {o| o< 6} ang &-3 -F(8B;) = 0; and

(b} hm lim 2 f 1l oy () =

7 =1 lalis ’
we have Z(Sn) = F(Z) whew Z(Z)is an i.d. probability measure with charde-
teristic function )

(3:5) expf[eos(y, o —L1F(dw), yelV.

Proof. (i) implies (il): We first observe that conditions (@) and (h)

imply " L ! el” F'(de) < oo for pome &> 0. Sinee, condition (a) gives,
F=4
[ ]® F (dar) < f o] >147) @t = j llml‘ (loll > £4) d
Tl f<za

which implies the desired result by econdition (b) and ]i‘atou s Lomma.
Now X is of R-type p, F is finite outside every neighbourhood of zero

icm
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and for some 52> 0, [

Jjell=a
funetion of & measure u on & ([7]). Let Z bo spuch that £(Z) = u. Alse
by (3.2) condition (b) implies the condition (b)-of Theoremn 2.10 giving
£(8,) compact. Now by using the given conditions and UL (see [13],
pp. 145-146) we got Z({y, 80) = Z({y, Z>) fov each. y e B’ giving

flwl[P P de is finite implies (3.5) is the characteristic

,‘/J(S ) == Z (%) To prow the converse assume {}7, < T is such that

S i, | converges ancd ’>’.z w; doos not converge aw, Then by ([107, p. 40
2} s = & y (103, 1

Lhm-ca oxigts Hubﬂoqumwu ey e (B by o) such  that
by, PR '

.!/’(J 7)_, njwj} w8y, the mensnze degenerato ot zoro. Define Xy = g 4@, 45
4T

(LG5 hy). Now Iy == %-(5% W 6,% N j)mm,d henee I, = j, 45 d,} +d_y).

ety
Cleaxly {Xoy, § == 1,

array. Yurthermore, condition Z |l finite implies FY = 0 for all ¢ > 0

oy ly mox=1,2) s a UL symmefric triangnlar

and sineo

o e Al
i 10 s < 2w,
Hoehasie {Fill e}

bachbn,
z( ) c,'x,) converges to zero smee F=0in
i

o

algo condition (b), giving
(I
o]

this cage. This proves that 3w <« oo implies 3 &, converges in disbri-
, =

bution. Fenee by ([LO], p. 40) 4.5 Bub this gives K is of R-type p.

3.6. DurINTTIoN. We say that Bis of cotype g if for a family {X, ..., X}
of symmetrie independent random variables with finite gth moment there
exigta o congtant O independent of » (and the random variables) such that
(8.1) XAt X 0 2} X

Fo
We note a8 bafore that the condition (3.2) is valld iff for any sequence
{oey = B, 35w, converges in distribution implies 3l is finite ([9]).

8.8, Uonormany. The following proporties of & Banach space B are

equivalont
(i) ¥ is of eolype q.

(i) For each UL symmetrio triengular array {Lp,§ =1 y Yy ey Iy

n == 1, 2, ...} of Bualued random variables £(8,) = & (Z), Z non- Gauswm
imp‘dz'os

Ty,
(3.9) tim Tm Y [ sl (dew) = 0.

LN ™ P
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kﬂ
Here F,; = Z(X,;) ond 8, = > X,,.
=1

Proof. In view of Theorem 3.3, it suffices to show that condition (b)
of Theorem 2.10 implies (3.9). But this is o consequence of F being of
cf)type g and (3.7). To prove the converse, SUPPOSe D &&; CONVETEER in
distribution but Jll[? = co. Then there exists {37, and {k,)2,

bl =
(tay by~ 00} such that lim 3 Jo|? +» 0. Dofine now X, = g,; #,,,,
) n 'n,"‘]" N 4Ty
J=1,2,.., %, Then {X,, i=1,2,..,k, n=1,2 .3 i5 a UL
symmetrie triangnlar array and

Ey, Lyt
ZX” == Z g% — 0,
i It

Hence by (ii)

lim Lim E loy[# = 0.
=0 n aliss
by <yt Fip}

But z; —+ 0 since ,Ze,mj converges. Hence for » sufficiently large

Lutk

- " ’
Lm 3 |zl = 0 contradicts the asyumption giving B is of cotype ¢.

% gt

From Corollaries 3.4, 3.8, Theorem 3.3 and Kwapied’s Theorem; we get

3.10. CoROITARY. A Banach space I is isomorphic to a Hilbert spaca 1ff
for sw.wy UI synmmetric triangular array of B-valued random variables the
Jollowing are equivalent wiih the notation (1.3)

(1) 2(8,) = u, p non-Gaussian 4.d.

(i) (a) There ewists a o-finite measwre F on B such that IO

CONVOrYes
wealkly to O = F| B3 for each § > 0 with F(B,) = 9, " !]
&,

(b) limTim } [ [z Fy(dz) = 0.
L = i
Furihermore, in either case F is the Lévy measure associated with e
3.11. DepmarioN. A Banach space B is said to be of type p-stable if
for {@}2, = B with 3'(m,|° finite we get Yz, converges a.o. if {m;} ave
m.dependent, identically distributed symmetric gtable random lv'agr;abies
With g, (f) = exp{— [t|¥).

From Definition 3,11, Corollary 3.4 and ([22], P iti
. TOPORiti :
get the following corollary with = posifion 2.4) we

oo

1
Op =p f (cOSu-—l)Wdu.

o

icm
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3.12. Coroneary. Tt p << 2. Then the following conditions are eguiv-
abent

(L) M ds of bypo p-stable.

(2) There exisls q:>p such that for every UL symwmetric triangular

on B = {w ol == 1} we have with the notation (1.3),
(3.13) lim I”,,L{ml il ==t amel
Al ed

o S} mH)

for dash > 0 and d-oontimuily sot A; and

Tim Tint f floo|[® B, (di) == O

e e

(3.14)

implios L8,,) = L(Z) where Z is an B-valued stable rondom variable = -

(B15)  gem @) = oxp [~ [IKy, wIT(@w), yeB'; where I'= o,
&

Furthermore, (8.13) 48 necessary for £(8,) = Z(Z).

Proof. The only fact that romains to be proved is that if B is p-stable
then, (3.15) is & oharactorishic funetional of & measure 4 on H. But this
in known ([2], [23], [187. The lagh statoment follows by Theorem 3.3.

4. Spaces of stable Lype and. the domain of attraction. We say that an
F-valued random variable X is in the domain of attraction of a E-valued
random variable ¥ if theve exist b, >0 and @, e B (n =1,2,...) such

that & (‘lb FXa a,n) converges weakly to .2 {¥). It is shown in [15]

that ¥ has non-ompty domain of attraction iff £ (Y) is stable. In case
B, == ™ wo sny that X i8 in the domain of normal adtraction of Y. Recently,
(237, [28] seo algo [2], [L8]) it wus shown that only on stable type spaces H,
the T6vy reprosentution of non-Guussian stable laws can be completely
determined. The problom wo shall study in this section is to determine
propertics of the distribution of X. In oase B is o Hilbert space the problem
wal complately solved o, ([1471). Tn Banaeh spacos B of gtable type partial
rowtchts om, Ghis problem, wore obtainod in (197, (207, [22], [29]). Oux methods
are difforont from all those ns we only use Corollary 3,12 and techniques
developed in [14] naing the work of Feller ([B]).

Remark. Wa note that X les in the domain of attraction of Z iff X
i in the domain, of attraction of 14 fox 0 <4 < oo

4.1, Trmorsm, The following conditions are equivolent for p < 2.

(1) I s of type p-siablo.

(i) A symmetrio random variable X Yies in the domain of altraction
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of - & symmetric stable T-valued rendom wartable Y with Par)\Y)
= exp|[— fl(y, wPL(du)] and T'(Z) > 0 iff

(4.21) Z() =
(see [8], D. 276) and for every I“continwily set A,

PNX| > t) 45 regularly varying with ewponent (—p)

1 P([X|>1,X[|X[ e 4) T(4A)
(4.2.2) P(xI>0  I(@)"

(i) PP X| >~ 0 o8 t— oo ¢ff X Uey tn the domain of normal
altraction of ¥ == 0.

Proof. (i) = (ii): We firgt note that
(4.3) Ut) = [ IXI14P =gZ, () ~1"%(t),

IXl=t

. [

where Z, () = [ %4 'Z(u)du. From (4.8) and ([], Theorem 1, p. 281)
4

we gob for g > p

BZE) _g-p

(4.4) im ==

oo U(H) »

Using an argument of ([8], p. 314) we get {b,} b, - oo, bbﬁ

— —+ 1 gneh that
(4.5) N nb € U (b,) = 4.
n '

i1

From (4.5) (putting ¢ = &) we get (3.14). Now (4.4) and (4.5) lmply

nP(IX] > bty > L7
P
Hence by (4.2.2) we get for a I’—continuity seb 4,
' . I'(A)
(4.6) lim nP ( X[ > byt, o A) =1Ps = A AV (56
I X E!XH =€ 7 T3] I(AYET? (say).

Thig gives (3.18). By Corollary 3.12 wo get that X lics in the domain of

attraction of Z; where

Doy () =e§cp[—cj;J f](y,u)[”ﬁrlu] with ¢, ~;pf (cogu —1) pllldu
z

By the remark preceding Theorem 4.6 we get X lies in the domadin of

attraction of ¥. Conversely, by (3.12) we get that it X is in the domain

‘ of attraction of the stable law L(Y) then (3.13) is satistied. But {8.13)
lmplles (4.5} using the fact that the b, mvolved satisty 3, — co and

=1 ({15], p. 136) as in ([14], p. 160-161). In the above proof {_Xj 7
n+1
=1,2,

n?

b
., w} is clearly UL

icm®
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(i) -+ (3il)s Assume Shad X and 0 are independent and symmetrie, X
H-valued and 0 realwvalued, satidying #P(|X|]>8 -0 a8 - co
and He™ e @, Ghoose 6 ¢ with o) =1 and define ¥ = X--0e.
Wo first show that Y satisfies tho lypothoses of (if).

As in Teller ([, p. 271, I8t edition) for ¢ > 0 and ¢ > 0,

PLYN = o] 2 LI = 5(1 4 e) 12 (18] < 2e] P [10] > 21+ 2) JP [LX; < te],

PINY Y 0]z PUXY 2 60— e) ] PTIOL 5 601 ~e)] -+
- PLIX| > te]P[|6] > te].

Tleneo Z(E) ~ POV 5= 8) iv roguliely varying of oxponent (—p).
By ([61, p. 2116)
0 ar
nl (%W’“ € ) = A% g (),

where I ds supportod on {-:1}, I"{:-1} > 0 and I is symmetric. Heneo
for every A > 0 there exists o symunetric closed interval J such that interior
(N2 [~A4, A amd & 82 0 such that

0
() & [=A, 41, and al (mm;- e (JoF ) < 8.

Now choose 8, 5 0 suel that [(Je) " Re = (J°)%, where the §-ball
it compubed with rospoeet to the nomn on #. Then since ¢ P (X > 1) — 0,
theve oxigty ng - - 0, (e, &) such that @ 3 n, implies wP (X1 > §yn'?) < e.
Therefors,

ul ( " ¢Ja) ( LT, 1X) < am‘f”)+aw<|nxn> By}

s nl’( fmﬁ e[(Jo) ]ﬂ")-k 8

i nl (»-gw & (J°) ) deg o Ot

1fp

Heneo {'nl' (m, B € } i couditionally comipaet outside cach neighberhood

of O w . ‘ '
On the other hand the conditions on the tail of (X imply that for

i N
oach &8, f 3 X,) w4 % 0. Therefor
Jel

& [J( (‘L“'{lf,,a‘” )] v & (f(0e)  for each fe B,

ol
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This implies by the one-dimensional result that nP(f(¥) " & ) = F-f'(+),
where dF = -y and Fig gupported on { £ e} and r {e} =I;{ — e}
= I'({1}). We then obtain that

n_P(nl—:ie ) = .

This yields
PUYI>t XX e _ Fllyl>t,yillie}
P> 1) F{llyl > 4}
The hypotheses now imply :
SEs e,
J=1

n
By stability of ¢ we then have }' X, /n'--0¢ = 0¢. Finally this implies

i=1

b P
> XM 5 0.
F=1
(lii) = (i): First we show that (iii) is a super-property. Let X2~
={X: Q—~H| "P(|X| > ¢}~ 0 ag ¢~ oo} and define the quasi-norm
A,(1) on LP™ by A,(X) = [supePP(|X| > c)]"?. Now let CL(p,r)

e>0
={X: Q- B||X|}, = sup B8, /#"P|l < oo}, where §, iy the sum of the

n
symmetrized Xs. By (ifi) (see Proposition 2.1, [26], and also [11], The-
orem B.7) for » <p, we may define the inclusion map T: (Z¥'™, 4,)
—{CL(p,), [ Il,,¢}- By a trivial application of the closed graph theorem there
exighs & constant B < co such that |XJ|,, < BA,(X). It is also easy to
see that X e LP> if and only if X ean be a.pprommated in Ay(-) norm by
simple funections. Now if Yis a Smele function. then by the flm‘re-dlm(.n-

gional central limit theorem 11mE i 2 ¥ in'P( = 0, since 2 > p. Hence tho

range of T is included in the set of X’s such that
lim E”ZX, " = 0.
£

Henece (iii) is & super- property

By the Maurey—Pisicr-Krivine Theorem ([22], Theorem 2.3 and [307)
it now sufficey to show that (iii) does not hold in . For this purpose let {&}
and {N;} be independent sequences of i.i.d. random variables with

Plgg =1) =Py = ~1) = 4,

1 {In{lnn), n = 27,
PN, Zzn)=—-—- wher LL% = !
& ) nLLn’ © " 11 otherwise,

Oeniral limit problem 293

and P(N,;e{l,2,...}) =1. Now let

oo
X =g 2 B = & Z%f’w

J\’I—N <r(N 2y re=1

where {e,} is the natural basis for I and
W = I[N} -, < v N+ 2,].
Then

wP(|X], > (2n)P) = nP(N > n) = 2311—171%741)

S !
On the other hand, if Ff% — 0 in probability, then Sy

i 0 in probability,

hn
where §,, ZXM and X,; = ¢ 2 P €, From the proof of Theorem 3.1

in [8] we hnyve

f | b
Sl/p < B+2-8°F [ ma il H”] .
K 2 I<jen B

But X5 = 2N,I[N, < n). Henco

r »

< oo,
»

sup B L
k nI wie

Now by Khintehine’s inequality for the Rademacher functions, there
existy K, < oo, such that

2 2,
hicdo) Sn = I8 “3%1” N _1 &1 Psy 3 ME .7 Pyr i
i N 24'"""1/» 2, wie
mal Teal
1 n"t’u y 1 nitn
7
2l Y P( \ o ) S R
Pasl tea )
’n)ln
\1 — Y, s A
n Z...J L=, i, "
Pty

whero

) , . -1 144
P, == P(N2—N < < N2p N) = 1 ( - Z ﬂw-gb\N{

+;/1 + z_w)
K3
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Now 5 < ——— for some 0<9d, 0< nd = P>
0 - T 8 3 [o o) o
LLv\p*\erLr ’ : P22 Pe 2z
Therefore

L—p) 'z —p,)*t  (since r > n)

0 n—1
zl=—=—] -
( %LL%)

Then
C — niin 1 ¢ P n!-\-"n 1 T
A,z 6(1— - > 01— = | el
- ( nLL'rL) g rLL¢ 6( nLLn) (Zia, ’I‘LT)(LLM)

¢ \"'/ Ln
265 [1— ——) (=
> 0L )( nLLn) (L]’m)_> °

4.7. Tremarks. After this work wag completed we received. some
work of A. Araujo and B. Giné. Tt contains different conditions for the
~ general domain of attracion problem similar to those in [14]. However,
our condition as well ag proof are simple and follow easily from our main
Theorem 2.10. Thus our methods are entirely different.

We have algo received work [3] of de Acosta, Araujo and Giné which
containg conditions for convergence to i.d. laws. However, again their
conditions and methods are entirely different. Tn both works, they consider
the general (non-symmetric) case.

4.8. TEROREM. If X is in the domain of attraction of & symmelrie stable
low of indew p < Aon any real separable Banach space B, then

PR > 1) ~

as t— oo, where L(t) is a slowly varying fundion ([5], p. 276). In particular,
for any symmetric stable random varioble on B we get B|X|? is finits for
0<g<p.

‘We note that in the latter part one only uses the fact that a gymmetric

stable random variable is in ifs own domain of normal aftraction ([18],
p. 139). '

Note added in proef: We thank Professor S.A. Chobanian for peinting out an
error in the original version of Theorem 2.8.
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Weighted norm incqualities for the Lusin area integral
and the nontangential maximal functions for
functions harmenie in a Lipschitz domain

by
BIJORN . T. DAHLBERG (Gotoborg)

Abstract, 'Wo prove weighted integral inequalitics between the Lusin area inte-
gral ond the montangential maximal funetion of a Innction harmonic in a Lipschitz
domain. These inequalitics are extensions o the Lipschitz case of inequalities obtained
by Gundy and Wheoden [7] for functions harmonic in a half space.

1. Introduction. In this paper we shall prove integral inequalities
between arca integrals and nontangential maximal funetions for functions
harmonic in o Lipschitz domain @ < B" That is, we shall assume that
to each boundary point P e there is associated an open cone e
with vertex at P guch that I(P) « £. If now u is harmonic in 2 we define

Afu, P) = [ 1P—QPvu(@pran(Q))’
rry
and
N{w, P) = sup|u(@)].
I(P)

Here Vu denotes the gradient of  and m denotes the Lebesgue measure.
Our main rexlt is that if the cones I'(P) satisfy suitable regularity con-
ditions (bo be formulated later) then for all harmonie functions  vanishing
at o fixed point £* we have

0, [ B{A(w)dp= [ (¥ (w)dp < O, [ 4 (w)) du.
an 2]

o 14

(1.1)

Tlere w8 allowed to vary over o wide class of moeagures which ineludes
the surface measure of 42 and the harmonic measure. Tho precige assunp-
tion on w s that p is positive, nonvanishing on any component of 20
and that there are mumbers 4 > 0 and 0 > 0 such that for all P e 82 and.
all ¥ = 0 wo have that whenever B < A(P?, 7) then

RN (’;}{gf((zf,)y?j')’) and p{A (P, 29) < Cpfd (1, 7).

A

(3.2)

¥

ulA (P, )
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