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CENTRAL LIMIT THEOREM FOR SIGNED DISTRIBUTIONS1

KENNETH J. HOCHBERG

Abstract. This paper contains an improved version of existing generalized central

limit theorems for convergence of normalized sums of independent random varia-

bles distributed by a signed measure. It is shown that under reasonable conditions,

the normalized sums converge in distribution to "higher-order" analogues of the

standard normal random variable, in the sense that the density of the limiting

signed distribution is the fundamental solution of a higher-order parabolic partial

differential equation that is a generalization of the heat equation.

1. Introduction. Probability theory is often thought of as the study of nonnegative

bounded measures. However, several theorems usually considered to be purely

probabilistic are, in fact, true in more general contexts. Specifically, several authors

have extended such results to signed measures. For example, Hochberg [4] derives

generalizations of the Brownian motion or Wiener process to higher-order signed

stochastic processes, an analogue of the Itô stochastic calculus for these signed

processes, and a probabilistic-style analysis of the spectral properties of higher-

order elliptic operators.

Similarly, the central limit theorem for convergence of normalized sums of

random variables to the Gaussian distribution has been extended to the case where

the random functions are distributed by a signed measure. Zukov [8] derives such a

theorem for difference operators in a study of a problem in numerical analysis.

Studnev [6] states, without proof, other generalizations, with an application to

probability theory itself. Hersh [3] gives a more complete study of generalized

central limit theorems, though his results do not apply to the cases n = 0 (mod 2)

in what follows; that is, Hersh's theorems exclude the cases where the signed

distribution has a density function which is the fundamental solution of the

parabolic partial differential equation (2) below whose order is a multiple of four.

Our techniques include these cases.

In an earlier paper (Hochberg [4]), we derived two such central limit theorems,

which we restate in the following two propositions. Here

p2n(t, x) = (2»)-' C e^cxp{-ent} de
•'-oo

= (expH2",})-, (1)

where /(£) = (2ir)~xf'^o0e'xif(x) dx denotes the Fourier transform of /, is the

fundamental solution of the even-order parabolic partial differential equation
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As such, it is a higher-order analogue of the Gaussian, or normal, probability

density function

(27rí)-'/2exp{-x2/2í} = (exp{-j I2»})",

which is itself the fundamental solution of the heat equation du/dt = \d ht/dx2.

We note here for future reference that p2„(t, x), n > 2, is a signed function, and

that

/GO
Pln(t, x)dx = 1,

-oo

(ii)     f °° xJPln(t, x)dx = 0   for; = 1, 2,. . . , 2n - 1,
•'-oo

(in)    /" x^t, x)dx = (-l)"+1(2n)!i. (3)
•'-oo

Notation. By C" we denote the Schwarz class of infinitely differentiable func-

tions/with ]hn\x^aoxk(dJ / dxJ)j\x) = 0 for each k,j > 0.

Proposition 1.1 (Theorem 5.1 of Hochberg [4]). Let x¡,i= 1,2,..., be

independent random variables, identically distributed by a signed measure p, such that

/oo dp=\,
-oo

C x/dp = 0,      j- 1,2, .... 2/1-1,
•'-oo

= (-1)"+10)!,      j = 2n,

f \xt+l \dp\ < oo. (4)
•'-oo

Let Sn = xx + x2 + • • • +xn. Then, for any function <p G C" whose Fourier trans-

form <p has compact support, we have

Proposition 1.2 (Theorem 5.2 of Hochberg [4]). Let x¡ (i - 1, 2,... ), S1,,, a/i¿

p be as in Proposition 1.1, and /t*f íAe signed measure p have a density f(x) with

Fourier transform f such that \f\ < (2w)-1. Then, for any <p G C", we have

hm  £ { m( -A; j } = J"~ <p(x)p2n(l, *) dx. (6)

These theorems are proven using Fourier-analytic techniques; dependence upon

that approach is reflected in the statement of the results. For an application of

Proposition 1.2 to the theory of random evolutions and related semi-Markov

processes, see Kertz [5].

The signed function p2n(l, x) can be taken to be the density of a related signed

distribution function P2n. For a complete discussion of such signed distributions,
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see Hochberg [4]. When viewed in this context, we will say that the random

variable S^ distributed by P2n is the higher-order analogue of the "standard

normal" random variable 91(0, 1).

In this paper, we use a different method to prove a new version of the central

limit theorem for signed distributions which yields a stronger mode of conver-

gence-that of convergence in distribution-of the normalized sums of independent

random variables to the counterpart S2n of the "standard normal". Additionally,

we no longer require that the random variables be identically distributed. Maintain-

ing the style of our earlier work, we first state and prove the results for the case

n = 2, for which p4(t, x) is the fundamental solution of a fourth-order partial

differential equation, and then restate the theorem more generally for arbitrary

integers n > 2.

2. Central limit theorem for the case n = 2. We first consider the "signed

probability density function" p4(\, x) corresponding to the signed distribution

function P4. The following results will be necessary for the derivation of our

theorem.

Proposition 2.1. p4(\, x) satisfies the following:

(i) p4(l, x) belongs to the Schwarz class C" of rapidly decreasing infinitely

differentiable functions ;

(ii) p4(\, x) decays asymptotically as \x\ -» oo like |x|-1/3exp{-a|x|4/3} •

cos(è|x|4/3), where a = (3/8)4-x'3 and b = 31/2a.

Proof. Property (i) follows from the fact that/>4(l, x) is the Fourier transform of

a C™ function. Property (ii) is derived in Hochberg [4, §2] using the method of

steepest descent.

By Ck we will denote the set of functions {/: /,/',/", . .. ,f^£) are bounded,

continuous functions}. For a random variable x distributed by a positive or signed

measure P, we let E{x} = /?„* dP and \E\{x) - f™„x \dP\.

The main results of our paper now follow.

Theorem 2.2 (Central limit theorem). Let x¡, i = 1, 2,..., be independent

random variables distributed by a signed measure ¡i, such that

f

i

s:

du = 1,
•00

x{ du = 0,      j - 1, 2, 3,
00

= -4!,      j = 4,

klVH = y, < »,

2 y, = r„ (7)
¿-i

and  Yk/k5/4->0. Let Sk = xx + x2 + • • • +xk.   Then,   Sk/kx/*   converges in

distribution to the random variable S4 whose distribution is given by P4.
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Notation. Sk/k1/4^* S4 or Sk/kl/4-^* P4 as k -* oo. The latter is the "hybrid"

notation of Billingsley [1, p. 24].

Proof of the theorem. We adapt a technique suggested by Trotter's method of

operators (Trotter [7]) for convergence of suitably normalized sums of random

variables to the standard normal. Consider random functions {y¡, i > 1} distri-

buted by the signed measure P4 described above. Each y¡ has the same first four

moments as do the [x¡, i > 1}. Let all the x¡ and v, be independent, and let

zj = y\ + • • • +yj-i + xj+i + • • • +xkfoTj = 2,...,k-l, with z, = 2?_2x,

and zk = 2*~,1.y,- Clearly,

*>(£ *,)-*( 2 *)]-£[*<*»+ *,) - «pU + *,)]• (8)

By Taylor's theorem for <p G C5,

\<p(x + z) <p(z) + <p'(z)x + ^<p"(z)x2 + ¿<p'"(z)x3 + ¿<P""(*)*4

5!
:^II9(5)II[W5], (9)

(10)

where ||/|| = sup^^l/i*)!, from which we get, taking expectations,

\E{<p(x + z)} - E{<p(z)} - E{<p'(z))E{x) - I E{<p»(z)}E{x2}

-_L E{<p""(z))E{x4}\ < ^||<p(5>||[|£|{|x|s}].

Replacing x with v and then subtracting yields

\E{9(x + .)} - E{<p(y + z))\ < yr||«p(5>||[|£|{|x|5} + |£|{|>f}].    (11)

We now apply this result with x = x¡/k1/4,y = y¡/k1^4, z = zjkxt4, and sum

both sides of the inequality from /' = 1 to k. This gives

(12)

But from Proposition 2.1 it follows that |£|{|x|5} = /"J-xflo^l < oo, so the

bound in (12) is at most 0(Tk/k5/4), which approaches zero as k becomes infinite

by hypothesis. Thus for any <p G C5, we have

= E{<p(yj)} = C <p(x)p4(l, x) dx. (13)
•'-oo

Convergence in distribution of Sk/k1/4 to S4 now follows immediately from the

general criteria for convergence; see, e.g., Billingsley [1] and Chung [2].

3. Central limit theorem for arbitrary values of n. We now restate the results of

the previous section for random variables distributed by P2n, where n is any
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arbitrary integer bigger than 1. The proofs of these results are, of course, similar to

those already presented.

Proposition 3.1. p2n(\, x) satisfies the following:

(i)P2n(\, x) £ q°°;

(ii)/72„(l,x)~|x|(,-',>/(2',-1) exp{-aJx|2B/(2n-1)}œs(6n|x|2,,/(2',-1)) as \x\ -► oo,

where an and bn are fixed constants depending on n.

Theorem 3.2 (Central limit theorem). Let x¡, i = I, 2,...,  be independent

random variables distributed by a signed measure fi, such that

/oo

-00

x{d». = 0,      j = 1, 2,. . ., 2« — 1,
— 00

= (-l)"+1(2n)!,      j = 2n,

W2"* VjuI = y,. < oo,

/.'

/oo I;
— m

Í r, = r„ (14)
i-i

and Yk/kV"+X)/2"^>0. Let Sk = xx + x2 + ■ ■ • +xk. Then Sjk1'2"^ %2n (or,

equivalently, P2n) as k -» oo.
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