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1. Introduction

A discussion of strong mixing and uniform ergodicity is presented, partly in
terms of their relation to the central limit problem. Some of the gaps in one's
understanding of the proper domain of validity of the central limit theorem for
stationary sequences are pointed out. A definition of strong mixing appropriate
for stationary random fields is given. A version of a limit theorem for stationary
random fields with asymptotic normality is then derived. The argument for
this limit theorem uses martingalelike ideas.

2. Stationary sequences

By this time there is an extensive literature on the central limit theorem for
stationary processes, especially with respect to asymptotic normality. However,
much of this is still rather unsatisfactory since it leads to effective computational
results only under limited circumstances. We shall give a brief sketch of some
of the ideas that have been used. For convenience, discrete time stationary pro-
cesses will be discussed for the most part since the case of continuous time
parameter processes can usually be easily reduced to the discrete time case.

Let {X, n = - 1, 0, 1, - } be a discrete time parameter stationary pro-
cess. The Borel fields R,n = 4(Xk, k _ n), Em = M(Xk, k _ m) are generated
by the random variables up to time n and from time m, respectively. They
represent the past relative to n and future relative to m, respectively. A condition
called strong mixing was proposed in [12] and amounted to

(2.1) sup IP(BF) - P(B)P(F)l - 0
BeQo, Fea5

as n - oo where P is the probability measure of the stationary process. The con-

dition has interest on its own but it was originally proposed together with some
additional moment conditions to get asymptotic normality for partial sums of
the random variables of a process properly normalized. A later version of such
a central limit theorem using strong mixing can be found in Ibragimov's paper
[6]. However, the condition (2.1) also has an amusing alternative interpretation
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in terms of prediction. Suppose we were to predict the indicator function IF of
the event F E -Em, m > n, in terms of the past relative to n. The best predictor
in terms of mean square error would be P(F I n) with

(2.2) EIP(F I -4m) - IF12 = P(F) -JF P(FI4m) dP.

The predictor making no use ofthe available information would simply approxi-
mate IF by the constant P(F). The error would then be

(2.3) EIP(F) - IF12 = P(F) - P(F)2.
It would then be appropriate to call a process uniformly purely nondeterministic
if

(2.4) sup f [P(FI 0) -P(F)]dP -O

as m -. oo. A simple argument making use of the basic properties of conditional
probabilities leads to the following lemma.
LEMMA 2.1. A stationary process is strongly mixing ifand only if it is uniformly

purely nondeterministic.
A weaker condition than (2.1) was considered by Cogburn [2]. Let T be the

shift transformation of the stationary process. He called the process uniformly
ergodic if

in
(2.5) sup |- P(B r) TkF) - P(B)P(F) -°0

BEclo, Fe.O n k1
as n -+ ox. Let h.(*) be a sequence of instantaneous functions (measurable).
Consider the sequence of partial sums k= I h, (Xk) already adjusted (say by
normalization) so that the typical term converges to zero in probability as n -+ ac.
Ifthe process is uniformly ergodic, such partial sums can always be approximated
in distribution by infinitely divisible laws. In fact, Cogburn has shown that if
{Xk} is Markov, uniform ergodicity is not only sufficient, but also necessary for
this approximation property to always hold. Uniform ergodicity certainly
implies strong mixing. It is natural to ask how much stronger it is. If {Xk} is
uniformly ergodic, it can have a tail field consisting of at most a finite number of
cyclically moving sets (see [2]). Suppose we consider the random walk on the
circle group generated by the probability measure ?1, that is, the Markov process
with transition function

(2.6) P(x, A) = ,1(A - x)

where x E (0, 1] and A is a Borel set. The invariant measure is the uniform
measure on (0,1]. Let {Xk} be the stationary Markov process generated by
(2.6) and the invariant measure. Then if {Xk} is uniformly ergodic and has a
trivial tail field, it must be strongly mixing. It would be very interesting to find
out whether or not this is true generally.
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So as to get a better understanding of a condition like (2.1), we look at it in
the case of a stationary Markov process. Let P(*, *) be the transition probability
function ofthe process and p the invariant probability measure. Given a function
f, let liflip denote the LP(dy) norm of f, 1 < p < oo. Set

(2.7) (Tf ) (x) = j P(x, dy)f(y).

A simple argument shows that strong mixing for the stationary Markov process
with transition function P(, *) and invariant measure ,u is equivalent to

(2.8) sup 0l,

as n -* oo where by f 1 1 we mean Ef(X.) = ff(x)4u(dx) = 0. Let us consider
the following condition of Harris (see [5] and [10]). Assume that

00

(2.9) E Pj(x,A) = oo
j=l

for every x and every measurable set A with ju(A) > 0. Here Pj(*, ) is the jth
step transition function generated by P(, *), that is,

(2.10) Pi+1(x, A) = f Pj(x, dy)P(y, A), j = 1, 2,*.

One can then show that if there are no cyclically moving sets (the Markov process
is purely nondeterministic) then (2.9) implies that

(2.11) Var(U - P(x, )) -°0
as n -4 oo for each x where Var ('i) is the total variation of the set function.
However, this implies that (2.8) is satisfied; the process is strongly mixing. In
particular, this means that any stationary positive recurrent Markov chain with
trivial tail field (no nontrivial invariant or cyclically moving sets) is strongly
mixing. Similarly one can show that uniform ergodicity is equivalent to

i n

(2.12) sup nj=1 0

as n -4 oo for a stationary Markov process. It is clear that if a stationary Markov
process satisfies the Harris condition it is uniformly ergodic. However, it is
easy to construct many Markov processes which are strongly mixing but do not
satisfy the Harris condition.

It is surprising that even with such tools available, in the case of stationary
Markov chains there isn't any central limit theorem that naturally and fully
generalizes the one available for independent and identically distributed random
variables. Let {Xk} be a stationary ergodic Markov chain. Assume that h = hn
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and set Yk = h(Xk). There is then an old but very elegant result due to Doeblin
[1] that runs as follows. Let 1 0x1 < 0C2 < *-- < o._ n be the successive
distinct (random) times that the trajectory of the chain {Xk} hits a fixed state i
between one and n. Let

j+ 1l-1

(2.13) Zj= Yk
k=j

Doeblin's result states that (1/X/n) 1 l {Yk - E(Y)} is asymptotically normally
distributed as n -G C if

(2.14) 0 <a2 = E(Z - EZ)2< GO

However, conditions directly in terms of the transition probabilities of the pro-
cess {Xk} and the moments of the Yk would be much more natural. A require-
ment involving (2.13) unfortunately makes use of information on hitting distri-
butions as well. There is no broad result of the kind one would like. However, one
can obtain a very limited result of this type. Assume that the chain has no
cyclically moving states. Consider a fixed state i of the chain. The number of
times the state is occupied in n steps is asymptotically normal (when appropri-
ately centered and normalized) if the recurrence time distribution for the state
has finite second moment. An argument of Feller (see [3]) indicates that the
recurrence time distribution for i has finite second moment if and only if
Ent_ |P-(/ul ) <loo. By a standard comparison argument we obtain the

following result.
LEMMA 2.2. Let {Xk} be a stationary Markov chain that is purely nondeter-

ministic. Consider any bounded nonconstant function f on the states of the chain.
If for some state i

(2.15) Epi, I
< 00

(this then holds for every i) and a'2(1j=. f(Xj)) -. oo as n -+ oc, it follows
that (1/ n) I%= {f(Xj) - E(X)} is asymptotically normally distributed as
n - co.
The techniques referred to thus far involve strong specifications such as (2.1)

or (2.5) on the asymptotic behavior of the process. One could alternatively try
to get a result that involves the specific functional f dealt with more explicitly
rather than a global requirement on the underlying process. An interesting result
of this sort has been obtained by Gordin [4]. The argument depends on a re-
duction to a central limit theorem for martingale differences.
THEOREM 2.1. Let f be a measurable function on the probability space of an

ergodic stationary process. If

(2.16) E /2IE(f(w)1__ )12 EE E21f(w) - E(f(w)In)I2 < °°
n= 1 n =1



STATIONARY PROCESSES 555

and

(2.17) a2( f(rjw)) _ a2n a2 > o.

then (1/I/ n u) YEI (f(TjW) - Ef) is asymptotically Gaussian as n -o o with
mean zero and variance one.

In particular cases it is not clear whether Gordin's theorem would allow one
to obtain results obtained by very special techniques more readily. An example
of such a result obtained by computations with cumulants is the following
theorem of Sun [14].
THEOREM 2.2. Let {X; n = -1. 0, 1, }, EX _ 0, be a stationary

Gaussian process with absolutely continuous spectrum and spectral density f E L2.
Assume that

Ii sin2 (N/2)2
(2.18) N- 2 f ) dA

N-.c 27cA sin (A/2)
exists with 0 < a < oo. Consider the derived process Yn = G(Xn) obtained by a
real instantaneous function G where EYn 0 and EY,2 < oo . Then N- 1/2 N=1 Yn
is asymptotically normal with mean zero and finite variance.

3. Stationary fields

In this section we shall consider getting a central limit theorem for stationary
processes with a multidimensional time index, that is, for stationary fields. Since
the essence of all the ideas dealt with in this section already arise fully in the
two dimensional case, no generality will be lost in dealing with a real-valued
stationary random field {Xn m(w): n. m = -1, 0, 1, }. In the usual
Kolmogorov construction, one would have the points w = (Wn,m) of the prob-
ability space real-valued functions on pairs of integers with Xn m(w) = Wnm.
There are the two commuting shift transformations T1, z2 with T1W = (Wn+ 1,m)
and T2 0 = (Wn,m +1). Stationarity of the process amounts to invariance of the
probability measure P under these two shifts, that is, for any measurable set A
(set in the Borel field X of the process where X4 is the Borel field generated by the
random variables Xn, m)

(3.1) P(T1A) = P(T2A) = P(A).

There are some additional preliminary observations we shall make before
discussing the central limit theorem. By ergodicity of the process one means that

1 ni n2
(3.2) lim E P(T'Tk A) = P(A)

nl,n2- nln2 j=1 k=1

for each measurable set A. A set A is said to be invariant if -r,A = T2A = A up
to an exceptional set of probability zero. Just as in the case of stationary
sequences, one can show that the process {Xn, m} is ergodic if and only if the only
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measurable invariant sets are trivial, that is, of probability one or probability
zero. The process {X., m} is mixing if for every pair of measurable sets A and B

(3.3) lim P(A n TrkTk2B) = P(A)P(B)

where Ik = (k2 + k2)1/2. It is interesting to see what these conditions amount
to in the case of a Gaussian stationary process {Xn, m} with mean EXn,m 0.
The covariances
(3.4) r,,p = E(Xn,mXn+x,m+p)
have the Fourier representation

(3.5) r, p = fW f exp {iac + ifl3} dF(A, p)
in terms of monotone nondecreasing function F of bounded increase commonly
called the spectral distribution function of the process. The following results
characterize the class of ergodic and mixing Gaussian stationary processes.
LEMMA 3.1. The Gaussian stationary process {Xn, m; n, m = * -,-1,0, I, * * *}

is ergodic if and only if the spectral distribution function of the process has no
jumps.

A simple adaptation of the proof given in [9] for a one dimensional time
parameter to the present context leads to the desired result.
LEMMA 3.2. The Gaussian stationary process {X, m} is mixing if and only if

(3.6) lim rk1,k2 = 0.
Ikl-oo

The argument of [9] is again all that is required.
Let us now introduce some notation that will be helpful in stating and deriving

the central limit theorem. A derived stationary process

(3.7) Y1.p = f(TzTp w)
is given by the measurable function f on the probability space of the process
{X,,, m}. Actually we can for the most part think of the derived process given by
an instantaneous function
(3.8) Y,= f " p)

First we shall discuss a simple adaptation to the case of multidimensional
index of the idea of strong mixing. Consider the following idea of strong mixing.
Let S and S' be two sets of indices. The Borel fields a(S) = 4(Xrx Tz S) and
R(S') = i3(X,, T E S') are the Borel fields generated by the random variables
with subscript -r belonging to S and S', respectively. Let d(S, S') be the distance
between the sets of indices S and S'. We shall say that the process X is strongly
mixing if

(3.9) sup IP(AB) - P(A)P(B)I . (p(d(S, S'))
Aeft(S), B tq0(S-)

where (p is a fuinction such that p (d ) O+ as d -oo .
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A result like that of Kolmogorov and Rozanov [8] for Gaussian stationary
fields will be obtained now by a similar argument.
THEOREM 3.1. Let {X,.m} be a Gaussian stationary field with absolutely con-

tinuous spectrum and continuous positive spectral density

(3.10) f(a, t1) = a-,-F(A, 4u)
(looked at as a function on the compact 2-torus (-n, it] x (-rc, 7t]). The process
is then strongly mixing.

Just as in the paper of Kolmogorov and Rozanov, one can show that a
Gaussian stationary process is strongly mixing ifand only ifthe maximal correla-
tion between H(S) and H(S') (the Hilbert spaces generated by linear forms in
random variables with indices in S and S', respectively) is bounded by a function
p(d(S, S')) which tends to zero as d -* oo. If

(3.11) p(d) = sup Corr (4, 4')
4c-H(S), 4'eH(S')

it is clear that

(3.12) p(d) = sup P P2(1)2(tl)f(u) d
Pl, P2f

(here tj = (A, L) and dtl = dAdlp) with

Pl('l) = Z cj exp {iTj * }

(3.13) P2(t1) = E f1exp {-izyr}
rjes,

trigonometric polynomials and

(3.14) jf lpi(?1)12f(q)dtl < 1, i = 1,2.

It then follows that

(3.15) p(d) < sup {p(ti)f() dr
p

where the p are trigonometric polynomials of the form

(3.16) p(71) = E aexp {i - Tj}

satisfying I Ip(i)lf('1) dii. Using the basic lemma in the Kolmogorov-Rozanov
paper [8] it follows that

(3.17) p(d) _ inf ess sup If(i) -P(q)1p A P1)f(i)
where one lets p run over all polynomials of the type

(3.18) p(71) = E aj exp {il-Tjl}.
lrjl <d
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By the Weierstrass approximation theorem for trigonometric polynomials it
follows that p(d) -+ 0 as d -+ oo so that the process is strongly mixing. A random
field arising in a simplified fluid flow model is given in [13]. Heuristically,
arguments like this are occasionally used to justify a Gaussian approximation
for the velocity distribution in the final period of decay of turbulence.
Rozanov briefly discusses quasi-Markov Gaussian random fields in [11]. A

regular (with respect to interpolation) Gaussian field on the lattice points in the
plane is quasi-Markov if and only if it has an absolutely continuous spectrum
with spectral density

(3.19) f(2, j) = a(l - ocos(A + p) + Pfcos9L - 1))1
By inspection one can show that one must have ++ < 1 to insure integra-
bility and a simple approximation using (3.17) shows that p(d) in this case must
decrease at least exponentially as a function of d.
We shall now consider a central limit theorem for a two dimensional stationary

random field that is an analogue of the Theorem of Gordin for stationary
random sequences. As before {X, m} is ergodic and stationary with {Y, m} as
given by (3.7) a derived stationary field. Let {Hn, m} be the Hilbert space ofsquare
integrable functions measurable with respect to

(3.20) n,m = -4(Xi,k;j < n or j = n, k . m).

Set Sn,m = Hn,m E Hn,m -1 (the orthogonal complement of Hn,m- in Hn, m).
Assume that

(3.21) EY,,m -=0, EYn2,, < oo.

The projection operator (orthogonal) on a space H will be denoted by P(H),
Assume that the function f generating the Y process is in the direct sum
eDnom=- o Sn,m It then follows that if

k

(3.22) fk = P () Sn, m f
n,m=-_k

then fk - f in mean square as k -+ oc. For convenience let

(3.23) pel,e2 = P(Sel, el)
and

Ulf (W) = f(TW)
(3.24) U2f (w) = f (T2W)-

The operators U1 and U2 are unitary. Now

(3.25) f = fk + f-fk= Z Pl,g2fk + f -fk
e1,e2 = -
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00

= Z U1tIU12Ptle,2fk
ti,t2= -

k-1 -1

+ -(U1U2 - U1- U2 + I) Z Z UIMU2'2p?lt2fk
el >° 2 > ° MI==-1 M2 = -e2

-1 -1

+ (U1 - I) E Ur1Pt',-2fk + (U2 - I) U2 pt,,{2fk}
m1 =-'1 m2=t2

+ (U1U2 - U1- U2 + I) UU2Mf2pf
el>O°2<0 ml=-tj M2=0

-1 -t2-i
(U1 - I)l U1 1Ptlt2fk - I) -UI) l U'2Ptt2fk}

mI = -I m2=O

r -UU -i - 1

+ ZEs(U1U2 -Ui U2 +1I) Z Z U711U~2mPgitfk
?,<0°2>O mIO M2=-12

-ti-i -1i

- (U1 -I) Z UMIPtt,-2fk + (U2 2I)Z 2Pt.t2fk}
ml =O M2=-t2

-
Z .(U1U2 - U1- U2 + I) Z Z uiU2P i2fk

ti<0 t2<0 mi=O M2=0

-ti-1 -?2-1
- (U1 -I) Z UM1lpt1t2fk - (U2 -2I) Z U l2P,t2fk

m1=0 m22=

TT\S' - -1 -ti1-i1
+ (Ul -I) y- Y_ Y_- Y Ulm'Ptlo,fk

{i>0 ml=-t1 11<0 mjO=

+((U2-I) - - ) 2f
L2>0 M2=-t2 12<0 M2=0

= hk + (Ul U2 - U1 U2 + I)9k + (Ul -I)g'k + (U2 I)gk + f fk,

where

(3.26) hk = IZ Ui UI"'Pnmfk.
n m

Notice that
M-1 N-1

(3.27) E NE (Ym,n - U1mU2hk)
m=O n=O

Mi-1 N-1

= Nf Um,UL2(f - hk) = {U NU2 - UM - U2N + I}gk
m=O n=O

N-1 M-1
+ Z (Ur _ I)Un2gk, + Y (U2 - I)kUl9

n=O m=O

M-I N-1

+ YE
n 0

2(f fk)
m=O n=O
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Set ak = f - fk. Consider

(3.28) E[akU"'U2ak] = c(m, n; k)
and

(3.29) EYa,#Ya+m,#+n = Cm,n.
Assume that

(3.30) E jc(m, n; k)I -| 0,
m, n

as k -. oo and that

(3.31) E ICm,nI < °°
m, n

with

(3.32) Cm, n, =U2 > 0.
m, n

Then (_/MN)m o XJo (Ym,n -U nUhk) converges to zero in mean

square. The sum of the first three terms on the right of (3.27) normalized by
MN obviously tends to zero in mean square. The last term over MN is

small in mean square because of condition (3.30) if k is large. Thus (3.27)
normalized will be small in mean square as M, N -- oo if k is sufficiently large.
However the process {U7'Uhk}has the property

(3.33) E{U7mUn2hkj|im,n-1} 0
for all m, n and is ergodic. Further, conditions (3.30), (3.31), and (3.32) imply
that the variance o2(hk) is positive for sufficiently large k and that a2(hk) 2a2
as k -+ oo. A variant of the standard development of a central limit theorem for
martingale differences (see [7]) indicates that (1/M-N) Im' VN--oTU'nU2hk is
asymptotically normally distributed with mean zero and variance a2(hk). A
standard approximation argument then shows that (1/MN) mo n=o Ym,n
is asymptotically normally distributed with mean zero and variance a2. We there-
fore have the following central limit theorem.
THEOREM 3.2. Let {Xm,n} be a strictly stationary ergodic random field.

Assume that {Ym, } is a derived randomfield generated by the measurablefunction
f as in formula (3.7). Let Ef = 0,Ef2 < oO withf in eDn'm=m oo Sn, m,. If conditions
(3.30), (3.31), and (3.32) are satisfied then (1/ MN) =r0iyt-J Ym,n is
asymptotically normally distributed with mean zero and variance a2 > 0.
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