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CENTRAL LIMIT THEOREM FOR THE EDWARDS MODEL 

BY R. VAN DER HOFSTAD, F. DEN HOLLANDER AND W. K6NIG1 

Universiteit Utrecht, Universiteit Nijmegen and TU Berlin 
The Edwards model in one dimension is a transformed path measure 

for standard Brownian motion discouraging self-intersections. We prove 
a central limit theorem for the endpoint of the path, extending a law of 
large numbers proved by Westwater. The scaled variance is characterized 
in terms of the largest eigenvalue of a one-parameter family of differential 
operators, introduced and analyzed by van der Hofstad and den Hollan- 
der. Interestingly, the scaled variance turns out to be independent of the 
strength of self-repellence and to be strictly smaller than one (the value 
for free Brownian motion). 

0. Introduction and main result. 

0.1. The Edwards model. Let (Bt)t,o be standard one-dimensional Brown- 
ian motion starting at 0. Let P denote its distribution on path space and E the 
corresponding expectation. The Edwards model is a transformed path mea- 
sure discouraging self-intersections, defined by the intuitive formula 

(0.1) PT _ exp[-1J dsJ dt S(Bs Bt)], T > O. 

Here 8 denotes Dirac's function, ,l3 E (0, oo) is the strength of self-repellence 
and Z6 is the normalizing constant. 

A rigorous definition of Pp is given in terms of Brownian local times as fol- 
lows. It is well known [see Revuz and Yor (1991), Section VI.1] that there exists 
a jointly continuous version of the Brownian local time process (L(t, x))&>, X 

satisfying the occupation time formula 
t 

(0.2) j f(Bs) ds = L(t, x)f(x) dx P-a.s. (f: R -* R+ Borel, t> 0). 

Think of L(t, x) as the amount of time the Brownian motion spends in x until 
time t. The Edwards measure in (0.1) may now be defined by 

(0.3) dPT 1 Fx r, L(,X)2 dx, 
dP ZT P[ /3] L(T, 

T~~~~~~ where Zp = E(exp[-,lf3 L(T, X)2 dx]) is the normalizing constant. The ran- 
dom variable fR L(T, X)2 dx is called the self-intersection local time. Think of 
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this as the amount of time the Brownian motion spends in self-intersection 
points until time T. 

The path measure Pp is the continuous analogue of the self-repellent ran- 
dom walk (called the DombJoyce model), which is a transformed path mea- 
sure for the discrete simple random walk. The latter is used to study the 
long-time behavior of random polymer chains. The effect of the self-repellence 
is of particular interest. This effect is known to spread out the path on a linear 
scale (i.e., BT is of order T under the law P8 as T -* oo). It is the aim of this 
paper to study the fluctuations of BT around the linear asymptotics. Our main 
result appears in Theorem 2. 

0.2. Theorems. The starting point of our paper is the following law of large 
numbers. 

THEOREM 1 [Westwater (1984)]. Forevery /3 E (O, oc) there exists a 6*(83) E 
(0, oo) such that 

(0.4) limP ( '8 T -O*(/3) <e BT ><)= 1 for every e > 0. 

[By symmetry, (0.4) says that the distribution of BT/T under P6 converges 
weakly to 2(8o0*(p0) + &o0*(p)) as T -> oc, where 80 denotes the Dirac point mea- 
sure at 0 E JR.] 

Theorem 1 says that the self-repellence causes the path to have a ballistic 
behavior no matter how weak the interaction. Westwater (1984) proved this 
result by applying the Ray-Knight representation for Brownian local times 
and using large deviation arguments. 

The speed 0*(,3) was characterized by Westwater in terms of the smallest 
eigenvalue of a certain differential operator. In the present paper, however, we 
prefer to work with a different operator, introduced and analyzed in van der 
Hofstad and den Hollander (1995). For a E R, define Xa: L2(IR ) n C2(IR ) 
C(Rli) by 

(0.5) (Yax)(u) = 2ux"(u) + 2x'(u) + (au - u2)X(U) 

for u E R+ = [0, oo). The Sturm-Liouville operator Xa will play a key role 
in the present paper. It is symmetric and has a largest eigenvalue p(a) with 
multiplicity 1. The map a + p(a) is real-analytic, strictly convex and strictly 
increasing, with p(O) < 0, lima,oO p(a) = -o and limaoo p(a) = oo. [The 
operator Xa is a scaled version of the operator _Ya originally analyzed in 
van der Hofstad and den Hollander (1995), Section 5, namely (Yax)(u) = 
(y2a-)(u/2) where Y(u) = x(2u).] 

Define a*, b*, c* E (0, oo) by 

(0.6) p(a*) = 0, b* - 1 c* 2 p/(a*)3 

Our main result is the following central limit theorem. 
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THEOREM 2. For every /3 E (0, oc) there exists a UJ*(,3) E (0, oc) such that 

(0.7) lim PJ BT - 0*(f3)T C BT > for all C E fR 

where SX denotes the normal distribution with mean 0 and variance 1. The 
scaled mean and variance are given by 

(0.8) 0*(13) = b*/3l/3, o*(18) = C* 

Theorem 2 says that the fluctuations around the asymptotic mean have the 
classical order VY, are symmetric, and even do not depend on the interaction 
strength. 

The numerical values of the constants in (0.6) are 

(0.9) a* = 2.189 ? 0.001, b* = 1.11 ? 0.01, c* = 0.7 ? 0.1. 

The values for a* and b* were obtained in van der Hofstad and den Hollander 
(1995), Section 0.5, by estimating p(a) for a range of a-values. This can be 
done very accurately via a discretization procedure. (A rigorous upper bound 
for a* is given in Lemma 6 in Section 4.1.) The same data produce the value 
for c*. Note that c* < 1. Apparently, as the path is pushed out to infinity, its 
fluctuations are squeezed compared to those of the free motion with 0*(0) = 0, 
U*(O) = 1. 

0.3. Scaling in ,13. It is noteworthy that the scaled mean depends on ,3 
in such a simple manner and that the scaled variance does not depend on ,l3 
at all. These facts are direct consequences of the Brownian scaling property. 
Namely, we shall deduce from (0.7) that for every ,l3 E (0, oo), 

(0.10) O*(63) = o*(l)pl/3, o*(,3) = U*(l). 

Indeed, for a, T > 0, 

(0 1 1) (BT9 (L(T9 XE)R) =2 (a1/2 BaT) (a-1I L(aT, al/ IXE)R) , 

where =_ means equality in distribution [see Revuz and Yor (1991), Chap- 
ter VI, Example (2.11), 1?]. Apply this to a = ,2/3 to obtain, via (0.3), that 

(0.12) P (BT)1 = P,32,3T(p 1/3Bp2/3T<), 

where we write A(X)-l for the distribution of a random variable X under a 
measure A. In particular, we have for all C E R, 

P3( BT - 0*(1)133T < C I BT > ) 

(0.13) ) T = 1 (Bp2/3T - O*()f/T> 
p2(1)f3T/3 I CBp23 
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The r.h.s. tends to X((-oo, C]) as T - oo [in (0.7) pick [3 = 1 and replace 
T by ,82/3T]. Since the pair (0*(,3), o*(,3)) is uniquely determined by (0.7), we 
arrive at (0.10). 

0.4. Outline of the proof. Theorem 2 is the continuous analogue of the 
central limit theorem for the Domb-Joyce model proved by Konig (1996). We 
shall be able to use the skeleton of that paper, but the Brownian context will 
require new ideas and methods. The remaining sections are devoted to the 
proof of Theorem 2. We give a short outline. 

In Section 1, we use the well-known Ray-Knight theorems for the local 
times of Brownian motion to express the l.h.s. of (0.7) in terms of two- and zero- 
dimensional squared Bessel processes. The former describes the local times in 
the area [0, BT]; the latter describes the local times in (-oo, 0] (respectively, 
[BT, 0c)). 

In Section 2, with the help of some analytical properties of the operator X" 
proved in van der Hofstad and den Hollander (1995), we introduce a Girsanov 
transformation of the two-dimensional squared Bessel process. The goal of this 
transformation is to absorb the random variable exp(-,[ fBT L(T, X)2 dx) into 
the transition probabilities. The transformed process turns out to have strong 
recurrence properties. The Gaussian behavior of (BT - 0*(,8)T)/lIi is traced 
back to the asymptotic normality of the inverse of a certain additive functional 
of this transformed process. Thus, the central limit behavior is determined by 
those parts of the Brownian path that fall in the area [0, BT]. 

In Section 3, we prove a central limit theorem for the inverse process. Fur- 
thermore, as a second important ingredient in the proof, we derive a limit 
law and a rate of convergence result for the composition of the transformed 
process with the inverse process. 

In Section 4, we finish the proof of Theorem 2 by showing that the contribu- 
tion of the local times in (-oc, 0] U [BT, oc) remains bounded as T -* oc and is 
therefore cancelled by the normalization in the definition of the transformed 
path measure in (0.3). 

1. Brownian local times. Since the dependence on ,3 has already been 
isolated [see (0.13)], we may and shall restrict to the case ,3 = 1. 

Throughout the sequel we shall frequently refer to Revuz and Yor (1991), 
Karatzas and Shreve (1991), van der Hofstad and den Hollander (1995). We 
shall therefore adopt the abbreviations RY, KS and HH for these references. 

The remainder of this paper is devoted to the proof of the following key 
proposition. 

PROPOSITION 1. There exists an S E (0, oo) such that for all C E X, 

(1.1) lim exp(a* T)E (exp (- L(T, X) dx) 1O<BT<b*T+CT) 

= SXC*2((-00, C]), 
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where a*, b* and c* are defined in (0.6), and X#,2 denotes the normal distribu- 
tion with mean 0 and variance a2. 

Theorem 2 follows from Proposition 1, since it implies that the conditional 
distribution of (BT- b*T)/VIi given BT > 0 converges to X*2 [divide the l.h.s. 
of (1.1) by the same expression with C = oo and recall (0.3)]. 

Sections 1.1 and 1.2 contain preparatory material. Section 1.3 contains the 
key representation in terms of squared Bessel processes on which the proof of 
Proposition 1 will be based. 

1.1. Ray-Knight theorems. This subsection contains a description of the 
time-changed local time process in terms of squared Bessel processes. The 
material being fairly standard, our main purpose is to introduce appropriate 
notation and to prepare for Lemma 1 in Section 1.2 and Lemma 2 in Sec- 
tion 1.3. 

For u E IR and h > 0, let r' denote the time change associated with L(t, u); 
that is, 

(1.2) th = inf{t > 0: L(t, u) > h}. 

Obviously, the map h F-+ r' is right-continuous and increasing, and therefore 
makes at most countably many jumps for each u E IR. Moreover, P(L(,r, u) = 
h for all u > 0) = 1 (see RY, Chapter VI). The following lemma contains the 
well-known Ray-Knight theorems. It identifies the distribution of the local 
times at the random time r' as a process in the spatial variable running 
forwards, respectively backwards, from u. We write C2(IR+) to denote the set 
of twice continuously differentiable functions on RI -(0, ox) with compact 
support. 

RK THEOREMS. Fix u, h > 0. The random processes (L(,r, u + v))v,o and 
(L(,r, u - v))v,o are independent Markov processes, both starting at h. 

(i) (L(,r, u + v)),>0 is a zero-dimensional squared Bessel process (BESQ?) 
with generator 

(1.3) (G*f)(v) = 2vf"(v), f E C2(R+). 

(ii) (L(,r, U - v))VE[o ] is the restriction to the interval [0, u] of a two- 
dimensional squared Bessel process (BESQ2) with generator 

(1.4) (Gf)(v) = 2vf"(v) + 2f'(v), f E C2(R+). 

(iii) (L(,r' -v))v>o has the same transition probabilities as the process in (i). 

For the proof, see RY, Sections XI.1-2 and KS, Sections 6.3 and 6.4. 
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1.2. The distribution of ((L(T, x))XER, BT). The RK theorems give us a 
nice description of the local time process at certain stopping times. In order to 
apply them to (0.3), we need to go back to the fixed time T. This causes some 
complications (e.g., we must handle the global restriction fR L(T, x) dx = T), 
but these may be overcome by an appropriate conditioning. 

This subsection contains a formal description of the joint distribution of the 
three random processes 

(1.5) (L(T, BT + X))x>O, (L(T, BT- X))XE[O, BT]' (L(T, -X))X>O, 

in terms of the squared Bessel processes. The main intuitive idea is that, up 
to a P-null set [recall (1.2)], 

(1.6) {r I= T} = {BT = u, L(T, BT) = h} for all u, h > O. 

This has two consequences. 

1. Conditioned on {BT = u, L(T, BT) = h}, the three processes in (1.5) are 
the squared Bessel processes from the RK theorems conditioned on having 
total integral equal to T. 

2. The distribution of (BT, L(T, BT)) can be expressed in terms of the squared 
Bessel processes. 

We shall make this precise in Lemma 1 below. 
Before we proceed, let us briefly mention some earlier works on the distri- 

bution of (L(T, X))XER with T > 0 either fixed or random independent of the 
motion. Perkins (1982) proves that (L(1, x))XER is a semimartingale. Jeulin 
(1985) uses stochastic calculus, in particular Tanaka's formula, to recover the 
RK theorems and Perkins' result and to prove the conditional Markov prop- 
erty in x of the triple (L(1, X), xA B1, ft. L(1, u) du) given inf,<i B,. In Biane 
and Yor (1988) the RK theorems are extended to the case where T is an ex- 
ponentially distributed random time, independent of the Brownian motion, 
under the conditional law P(. IL(T, 0) = s, BT = a) for any fixed s, a > 0. 
Finally, Biane, Le Gall and Yor (1987) also deal with the intuitive idea (1.6) 
when identifying the law of the process ((1/V1r)BU o)U1E[O 1] 

Let us now return to our identification of the law of the process 
((L(T, x))XER, BT). In order to formulate the details, we must first introduce 
some notation. For the remainder of this paper, let 

(1.7) (XV),>0 = BESQ2, (X*V)v>o = BESQ0 

Note that (Xv)v>o is recurrent and has 0 as an entrance boundary, while 
(X* )v>O is transient and has 0 as an absorbing boundary (see RY, Section XI. 1). 
Denote by Ph and P* the distributions of the respective -processes conditioned 
on starting at h > 0. Denote the corresponding expectations by Eh, respectively 
E*. Furthermore, define the following additive functional of BESQ2 and its 
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time change: 
u 

(1.8) A(u)= jX,dv, 
u > O, 

A-1(t) = inf{u > 0: A(u) > t}, t > 0. 

Note that both u - A(u) and t ~-+ A-1(t) are continuous and strictly increas- 
ing towards infinity Ph-a.s. So A and A-1 are in fact inverse functions of each 
other. We also need the analogous functional for BESQ?: 

u 
(1.9) A*(u) = J X* dv, u E [0, 00], 

A*-1(t) = inf{u > 0: A*(u) > t}, t > 0. 

Note that, P*-a.s., u + A*(u) is strictly increasing on the time interval [0, 60], 
where f0 = inf{v > 0: X* = 0} < oo denotes the absorption time of BESQO. 
Define Lebesgue densities FPh and 'h1, t by 

(Ph(t) dt = P* (A*(0o) E dt), 
(1. 10)h 

qfhl, t(u, h2)dudh2 = Ph,h(A-(t) E du, Xu E dh2) 

for a.e. h, t, hl, u, h2 > 0. (The function q'h is explicitly identified in Lemma 7 
in Section 4.2.) Put the quantities defined in (1.8)-(1.10) equal to zero if any 
of the variables are negative. Now the joint distribution of the three processes 
in (1.5) can be described as follows. 

LEMMA 1. Fix T > 0. For all nonnegative Borel functions Il, (F2 and 'F3 
on C(RO) and for any interval I C [0, oo), 

E (11((L(T, BT + x))x>o).I2((L(T, -x))x>o) 

x (F3((L(T, BT - X))xE[O,BT]) 1BTEI) 

= du 00) dt, dhl dt2 dh2 

2 

x Ehi ("Di((X*V)>o)| A*(oo) = ti) (Phl(ti) 
i=l 

x Eh1("D3((XV)VE[o,U]) A 1(T - t1 - t2) = u, X. = h2) 

X qfhl, T-tl-t2 (u u, h2 ) 

PROOF. Essentially, Lemma 1 is a formal rewrite using (1.8), (1.10) and 
the RK theorems, which say that under Ph h respectively P* 

(1.12) (XV)=V U (L(rh, u -V))V[o,U] 

(XV)>o =, (L(Th, U + v))V>o. 

However, the details are far from trivial. 
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We proceed in four steps, the first of which makes (1.6) precise and is the 
most technical. 

STEP 1. 
P(Tu 

E dT) du dh = P(BT E du, L(T, BT) E dh) dT for a.e. 
u, h, T > O. 

PROOF. From the occupation time formula (0.2) we have for every t > 0, 

(1.13) 1B8edu ds = L(t, u) du. 

Hence, we obtain for all bounded and measurable functions f: (R+)2 RIR and 
g: R+ IR with compact support: 

00 00 
du dh f(u, h) E(g(,r)) 

= j du E( dt(L(t, u)) f(u, L(t, u))g(t)) 

( ) = j du E( dt(L(t, u)) g(t)E[f(u, L(t, u)) I Bt = u]) 
(1.14)?o 

= du X dt d t g(t)E[f(u, L(t, u)) Bt = u] 
o o ~~dt 

= f du f dt P(B t du) g(t)E[f(u, L(t, u)) IBt u] 
o o ~~du 

00 
= f dt g(t)E[f(Bt, L(t, Bt))]. 

The first equality uses (1.2). The second equality follows from Fitzsimmons, 
Pitman and Yor (1993), Proposition 3. The fourth equality uses (1.13). 0 

Next, abbreviate for u, h > 0, 

(1.15) , = T L(Th' U + V) dv, L(,r O, 0 L(T,r-v)dv) 

Then the distribution of Oh is identified as in the following. 

STEP 2. For every u, h > 0 and a.e. T, tl, h2, t2, 

(1.16) hE d(T, t, h2, t2)) 
= (Ph(t1)fh, T tlt2 (u, h2)(ph2 (t2) dT dt.1 dh2 dt2. 

PROOF. According to the RK-theorems, (L(,r, -x))x>o is BESQO starting 
at L(,r, 0). Moreover, L(ru, 0) itself has distribution Ph(Xu)-l. Furthermore, 
from (0.2) we have 

00 u 00 
(1.17) th=t L(,r,u + v) dv +t L(r', u- v) dv +t L(h,r - v) dv. 
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Combining these statements with the RK theorems and (1.12), we obtain 

P(Ph E d(T, tl, h2 t2)) =X*(j X dv E dti) P*2(jo XV dv E dt2) 

X Ph( XV dv E d(T-ti-t2), Xu E dh2). 

But the r.h.s. of (1.18) equals the r.h.s. of (1.16), because of (1.10) and the 
identity {A(u) < T - tl- t2} = {A-1(T - t- t2) > u} implied by (1.8). D- 

STEP 3. P(,r T= T) = 1. 

PROOF. Simply note that TT BT) - T is distributed as the time change 
TO for the process (BT+t - BT)t>O [recall (1.2)]. But P(ro = 0) = 1 (see RY, 
Remark 1? following Proposition VI.2.5). D- 

STEP 4. Proof of Lemma 1. 

PROOF. First condition and integrate the l.h.s. of (1.11) w.r.t. the distribu- 
tion of (BT, L(T, BT)), which is identified in Step 1. According to Step 3, we 
may then replace T by r' on {BT = u, L(T, BT) = hl}. Next, condition and 
integrate w.r.t. the conditional distribution of 2 given {fr = T}. Then the 
l.h.s. of (1.11) becomes 

f dufX d hi P(T' E dT) PX ( E d(T, tl, h2, t2)) 
dT [0, oo)3 P(Tr E dT) 

(1.19) xE i((r,u ?_)~o'2((~ x)>) ( 1 .19) ~~x E (t) 1 (( L ( Th U + X ))X>0) D2 ((L ( h,-X )> 

X (D3((L(Thr U - X))XE[o, ]) x? = (T, t 2, 12, t2)). 

Now use Step 2, apply the description of the local time processes provided 
by the RK theorems in combination with (1.12) and (1.15), and again use 
the elementary relation between A and A-1 stated at the end of the proof of 
Step 2. Then we obtain that (1.19) is equal to the r.h.s. of (1.11). D2 

In Lemma 1, note that A*(oo) = tl, respectively t2, corresponds to the 
Brownian motion spending t1, respectively t2, time units in the boundary areas 
[BT, oo), respectively (-oo, 0], while A-1(T - t1 - t2) corresponds to the size 
of the middle area [0, BT] when the Brownian motion spends T - t1 - t2 time 
units there. 

1.3. Application to the Edwards model. We are now ready to formulate 
,the key representation of the expectation appearing in the l.h.s. of (1.1). This 
representation will be the starting point for the proof of Proposition 1 in Sec- 
tions 2-4. Abbreviate 

(1.20) CT = b*T + CV . 
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LEMMA 2. For all T > 0, 

E (exp (-l L(T, X)2 dx) 1o<BT<CT) 

CT 
= JCT du /0)4 dt, dhl dt2 dh2 

(1.21) x E (exp( 
j 

X*;2dv) A*(oo) = ti>hi(ti) hi 
d 

x Eh1 (exp (- X2 dv) A-1(T-t1 -t2) = u,Xu = h2) 

X qhl, T-tl-t2 (U, h2 )- 

The proof follows from Lemma 1. 
Thus, we have expressed the expectation in the l.h.s. of (1.1) in terms of in- 

tegrals over BESQO and BESQ2 and their additive functionals. Henceforth we 
can forget about the underlying Brownian motion and focus on these processes 
using their generators given in (1.3) and (1.4). 

The importance of Lemma 2 is the decomposition into a product of three 
expectations. The main reason to introduce the densities fph and hl, t is the 
fact that the last factor in (1.21) depends on t1 and t2. This dependence will 
vanish in the limit as T -- oo, as we shall see in the sequel. After that the 
densities 'Ph and hl, t can again be absorbed into the expectations [recall 
(1.10)]. 

2. A transformed Markov process. All we have done so far is to rewrite 
the key object of Proposition 1 in terms of expectations involving squared 
Bessel processes. We are now ready for our main attack. 

In Section 2.1 we use Girsanov's formula to transform BESQ2 into a new 
Markov process. The purpose of this transformation is to absorb the exponen- 
tial factor appearing under the expectation in the fourth line of (1.21) into 
the transition probabilities of the new process. In Section 2.2 we list some 
properties of the transformed process. These are used in Section 2.3 to ob- 
tain a final reformulation of (1.21) on which the proof of Proposition 1 will 
be based. In Section 2.4 we formulate three main propositions, the proofs of 
which are deferred to Sections 3 and 4. In Se9tion 2.5 the proof of Proposition 1 
is completed subject to these propositions. 

2. 1. Construction of the transformed process. Fix a E IR (later we shall pick 
a = a*). Recall from Section 0.2 that p(a) E R is the largest eigenvalue of the 
operator Xa defined in (0.5). We denote the corresponding strictly positive 
and L2-normalized eigenvector by xa. From HH, Lemmas 20 and 22, we know 
that xa: lR'+ R? is real-analytic with lim,x u-3/2 log xa(u) E (-3,20), and 
that a l-+ Xa E L2(R+) is real-analytic. Define 

(2.1) Fa(u) = u2 - au + p(a), u E R+. 
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The following lemma defines the Girsanov transformation of BESQ2 that we 
shall need later. 

LEMMA 3. For t, hl, h2 > 0, let Pt(hl, dh2) denote the transitionprobability 
function of BESQ2. Then 

(2.2) Pt(h,dh2)= a(h Ehl(exP (- Fa(Xv)dV) Xt=h2)Pt(hl,dh2) 
Xa(hi) 

defines the transition probability function of a diffusion (Xv),>o on R' 

PROOF. Recall the definition of the generator G of BESQ2 given in (1.4). 
According to RY, Section VIII.3, if f E C2(R+) satisfies the equation 

(2.3) G(f) + 2G(f2) - f G(f) = Fa, 

then 

(2.4) (Dt )0 = (exp(f(Xt) - f(X0) - Fa(Xs) ds)) 

is a local martingale under Ph for any h > 0. Substitute f = log x in the l.h.s. 
of (2.3). Then an elementary calculation yields that for all u > 0, 

(G(f) + 2G(f2) - f G(f))(u) = 2uf"(u) + 2f'(u) + 2uf'(u)2 

(2.5) 2ux"(u) + 2x'(u) 

x(u) 

We now easily derive from the eigenvalue relation XaXa = p(a)xa [recall 
(0.5)] that (2.3) is satisfied for f = fa = logx1. Hence, (D[9aa)t>o is a local 
martingale under Ph* Since Fa is bounded from below and Xa is bounded from 
above, each D[fa'a is bounded IPh-a.s. Hence (D[fa a) &0 is a martingale under 
Ph. The lemma now follows from RY, Proposition VIII.3.1. D- 

We shall denote the distribution of the transformed process, conditioned on 
starting at h > 0, by Ph and the corresponding expectation by Eh. Note that 
we have 

(2.6) E (g(Xt)) = Eh(D t > 0, g: R0+ R2+ measurable. 

2.2. Properties of the transformed process. We are going to list some prop- 
erties of the process constructed in the preceding section. 
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1. The process introduced in Lemma 3 is a Feller process. According to RY, 
Proposition VIII.3.4, its generator is given by (recall fa-log xa) 

(Gaf)(u) - (Gf)(u) + (G(faf) - faG(f) - fG(fa))(u) 

(2.7) = (Gf)(u) + 4uf'(u)f'(u) 

= 2uf"(u) + 2f'(u) (1 + 2u a (u) f E C2 (R+). 

2. According to KS, Chapter 5, Equation (5.42), the scale function for the 
process is given (up to an affine transformation) by 

~u dv 
(2.8) Sa() = 2() c> 0 arbitrary. 

Since xa does not vanish at zero and has a subexponential tail at infinity 
(see the remarks at the beginning of Section 2.1), the scale function satisfies 

(2.9) limsa(u) = -oo and lim Sa(U) = 00. 
u4O u-+oo 

3. The probability measure on IR+ given by 

(2.10) /.La(du) = Xa(U)2 du 

is the normalized speed measure for the process [see KS, Chapter 5, Equa- 
tion (5.51)]. Since it has finite mass, and because (2.9) holds, the process 
converges weakly towards Aa from any starting point h > 0 (see KS, Chap- 
ter 5, Example 5.40), that is, 

(2.11) lim Eh(f(Xt)) f f(u)Aa(du) for all bounded f e C(IR). 

Using this convergence and the Feller property, one derives in a standard 
way that Aa is the invariant distribution for the process. We write 

(2.12) Ji PhAa (d h) 

to denote the distribution of the process starting in the invariant distribu- 
tion and write E for the corresponding expectation. 

4. According to Ethier and Kurtz (1986), Theorem 6.1.4, the process (Yt)t>o 
given by 

(2.13) Yt =XA-1(t), t > 0 

is a diffusion under 1 with generator 

(2.14) (Ga f)(u) = -(Gaf)(u), u > 0, f E C_(R+) 
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[see (2.7)]. This process has the same scale function Sa as (Xt)t,o [see (2.8)], 
and its normalized speed measure is given by 

(2.15) va(du)= - )xa(u) du. 
p'(a) 

[In order to see that va(RI) = 1, differentiate the relation p(a) = 
(Xa XaX Xa) L2 w.r.t. a. Use (0.5) and the relation (d/da) (Xa , Xa) L2 = 0.] 
Similarly as in (2.11), for any starting point h > 0, 

(2.16) limEn (f(Yt))=j f(u)va(du) for all bounded f E C(IR) 

and hence va is the invariant distribution of the process (Yt)t>o. We write 

(2.17) ED = J h Va(dh) 

to denote the distribution of the process (Xt)t>o starting in the invariant 
distribution va of the process (Yt)t>o and we write E for the corresponding 
expectation. 

2.3. Final reformulation. Using the representation in Lemma 2, we shall 
rewrite the l.h.s. of (1.1) in terms of the transformed process introduced in 
Lemma 3. This will be the final reformulation in terms of which the proof of 
Proposition 1 will be finished in Sections 2.4-2.5. 

For h, t > 0 and a E R, introduce the abbreviation [recall (1.9) and (1.10)] 

F*(u) = -u2 + au, u ER+, 

(2.18) Wa(h, t) = E4 exp(- j F(X*) dv) A*(oo) = t)5Dh(t) 

= exp(at)w0(h, t). 

Recall that E denotes the expectation for the transformed process (Xt)t>o, 
starting in the invariant starting distribution Aa given by (2.10). 

LEMMA 4. For every T > 0, 

exp(a*T)E (exp - L(T, x)2 dx) 1o<BT<CT) 

00 00 

(2.19) -j dt1 j dt2 

*E (a* (Xo7 ti) 1A1(Ttlt2)< Wa*C(XA-1 
V a* (X0) A-(-lt)C a*(XA-1(T_tj_t2))J 

PROOF. First, from (1.8), (2.1) and p(a*) = Oit follows that on {A-1(t) - 9 

(2.20) a*t-Ij X2vdv jFa*(Xv) dv, t, u > 0. 
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By an absolute continuous transformation from Ph to Ph, we therefore obtain 
via (2.2) the identity [recall (1.10)] 

exp(a*t) Eh xp( X2 dv) A1(t) = u, Xu = h2) qhl, t(u, h2) du dh2 

=P>hi (A-lt E du, Xu E dh2 ) xa Xa*(h2) 

for a.e. u, hl, h2, t > 0. Similarly to (2.20), we have on {fo" Xv dv =t 
00 00 

(2.22) a*t-] (X)2 dv = Fa*(X)dv t > 0 

and hence 

(2.23) exp(a*ti)E* (exp - (X*)2 dv) A*(oo) = ti)Ph.(ti) 

= Wa*(hi, ti), i = 1,2. 

Next, note that the l.h.s. of (2.19) is equal to the l.h.s. of (1.21) times the 
factor ea*T. We divide this factor into three parts, according to the identity 
T = t1 + (T - t1 - t2) + t2, and assign them to each of the three expectations in 
the r.h.s. of (1.21). Substitute (2.21) with t = T - t1 - t2 and (2.23) into (1.21). 
Then we obtain that the l.h.s. of (2.19) is equal to 

(2.24) |o, 00)4 dhl dh2 dt, dt2 Wa*(hli tl)Wa*(h2, t2) xa*(hi) 

x Ph; ( 1(T-t t2) CT, XA-1(T _tl_t2) Ed2) 

Now formally carry out the integration over h1, h2, recalling (2.10) and (2.12), 
to arrive at the r.h.s. of (2.19). D- 

Roughly speaking, the function Wa* in the r.h.s. of (2.19) describes the contri- 
bution to the random variable exp[- fa L(T, X)2 dx] coming from the boundary 
pieces [i.e., the parts of the path in (-oo, 0] U [BT, oo)], while A1 gives the 
size of the area over which the middle piece (i.e., the parts of the path in 
[0, BT]) spreads out. 

2.4. Key steps in the proof of Proposition 1. The proof of Proposition 1 now 
basically requires the following three ingredients. 

1. A CLT for (A-1(t))&>o under IP-" 
2. An extension of the weak convergence of (Yt)t>o = (XA-1(t))t>0 stated in 

(2.16). 
3. Some integrability properties of wa*. 

The precise statements that we shall need are formulated in Propositions 2-4. 
The proof of these propositions is deferred to Sections 3 and 4. 
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We need some more notation. Let (-, )L2 denote the standard inner product 
on L2(RIF) Let (', *)2 denote the weighted inner product 

(2.25) (f g)L2 = J dh hf(h)g(h) 

on L2' (IRt7) = {f: RI -- R measurable I fo dhhf2(h) < oo}. We write 11 IIL2, 
respectively, 11 1L2 for the corresponding norms. 

For bounded and measurable f, g: R- R T > 0 and a E R, abbreviate 
[recall Lemma 3, (2.10) and (2.12)] 

T,' a -E( (YO) x (Y T (2.26) Na ((0 a~(Y 

=jdh f (h)ERh (exp(- 1-()Fa(Xs) ds) g(XA-1(T))) 

Furthermore, define 

(2.27) o (a) = p"(a) 

and note that o.2(a*) = c*2 as defined in (0.6). Denote by p-1: R -- R the 
inverse function of p: R -* R. 

PROPOSITION 2. For all bounded and measurable f, g: R+ -- R, all a, A E R 
and all T, T' > 09 

(2.28) Ea (f (YO) exp Q(A-(T')- )) (YTI)) 

= exp( 2 ( T))Nfjg exp((T - T')(aA, T - a)), 

where 

(2.29) a, T = P1(P(a))- 

and (T E [a, ak, T] U [ak, T, a]. 

PROPOSITION 3. Let f, g: R+ -- R be measurable such that f/id, g E L2' o? 
Then for every a E R and aT -- a, 

(2.30) T-oo T,aT - I(p (faX))L2(g, Xa)'L2 

Next, recall (2.18> For a E R, define Ya JR [0 00 ] by 

(2.31) Ya(h) = j wa(h, t) d t = E 4exp (- F(X)dv)) . 
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Furthermore, for p E (1, 2), q E (2, oo) and t > 0 define 

W2(t) = ( hl-PXa* (h)2 Wa*(hg t)P dh 
(2.32) / 

W(2(t) = (I hxa*(h)2-q w(h, t)q dh). 

PROPOSITION 4. 

(i) Ya* is measurable and bounded. 
(ii) (Ph(t) = (h/2 21Tt3)exp(-h2/8t) for all h > 0 and t > 0. 
(iii) For any p E (1, 2), W(') is integrable on R+. 
(iv) For any q E (2, oc) sufficiently close to 2, W(2) is integrable on R+. 

2.5. Proof of Proposition 1. In this subsection we complete the proof of 
Proposition 1, subject to Propositions 2-4. We shall show that (1.1) follows 
from (2.19), with S identified as 

(2.33) S = b* (Ya* Xa*)L2(Ya*, Xa*)L2. 

STEP 1. For all tl, t2 > 0, as T -x oc, the integrand on the rh.s. of (2.19) 
tends to 

b* (Wa*( tl) , Xa*) L2 (Wa*( t2),9 Xa*)L2 VC*2 ((-oo C]) 

PROOF. By Proposition 4(ii) and (2.18), the functions f = wa*( , tl) and 
g = Wa*(., t2) satisfy the assumptions of Proposition 3 for all t1, t2 > 0, since 
they are bounded by a factor times (p.(tl), respectively, (p.(t2). Define a (non- 
Markovian) path measure Pf'g by 

dT~, g 

(2.34) La (Y) (YT) 

T,a a X 

Write Ef'g for the corresponding expectation. Apply Proposition 2 for a = a* 
and T' = T - t1 - t2 to obtain that for every A E R and T > tl + t2, 

T-tl-t2, a* (exp(j;[A1( -t1-t2) - b*T])) 

(2.35) 2N' 
2ex3 (A 2(1* ') t2,T exp((tl + t2)(aA, - a*)), 

T-tl-t2, a* 

where p(a*) = 0, b* = l/p'(a*) [recall (0.6)], a*AT = p1-((-A/v) and E 
[a*, aA T] U [aAT, a*]. Since p', p" and p1 are continuous, we have aA T a* 
and o-2(5*) c*2 as T -* oo. Therefore, by Proposition 3, the r.h.s. of (2.35) 
tends to exp((A2/2)c*2) as T -- oo. Thus, the distribution of (1/V'IT)[A-'(T - 
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t -t2) - b*T] under PfIT-tl-t2, a* converges weakly towards / *2.Via (2.34), this 
in turn implies that [recall (1.20)] 

,-a* Wa* (Xo 9 tl ) Wa* (XA-1(T-tj-t2) 9 t2 ) lim E t X)1A 1(T-tj-t2)<CT X*X-(-1t) 
T+-oo xa*(XO) Xa* (XA-1(Ttjt2)) 

(2.36) = lim Nf ta*Igta*(A1(T-t-t2) -b*T < CV,) 
T-+ tl 12, *-1t2, *(- T-t 

= b*(f, xa*)L2(g, Xa*) 2 14,*2((-oo, C]), 

again according to Proposition 3. 0 

STEP 2. For all tl, t2 > 0, and any p, q > 1 satisfying l/p + l/q = 1, 
the integrand on the rh.s. of (2.19) is bounded uniformly in T > 0 by 

WP1(t1)W(2)(t2) defined in (2.32). 

PROOF. Recall (3) and (4) in Section 2.2. Make a change of measure from 
,a* ..a*-a E to E , use the Holder inequality and the stationarity of (Yt)t>o under PD 
[recall (2.15) and (2.17)], to obtain 

"_a* Wa* (Xo 9 tl ) Wa* (XA-1(T-tj -t2), t2 ) 

E a X(XO) Xa* (XA-1(T tj-t2)) J 

</ (a *a* (Wa*(YO9 tl) Wa*(YT-t1-t29 t2)) 

(2.37) YOXa*( Y0) Xa*(Y Ttl 2) 
a* WF (YOY t1 P) l/p - a* Wa*(YTt t2) 1 qt )t/q < pI(a*) (Ea1 YoXa*(Yo) E \ ( 

Xa*(YT-tl-t2)J2 

- W()(tl) W(2(t2). 

STEP 3. Conclusion of the proof. 

PROOF. Let T -- oo in (2.19) and note that, for some p, q > 1 satisfying 
l/p + l/q = 1, the bound in Step 2 is integrable in (tl, t2) E (R+)2 by Proposi- 
tion 4(iii) and 4(iv). Therefore, by Steps 1 and 2 and the dominated convergence 
theorem we may interchange T -- oo and f? dt, f0 dt2, to obtain 

lim l.h.s. of (2.19) 
T-?oo 

(2.38) 00 00 
b*j dti dt2(Wa*(Q, t1)9 Xa*)L2(Wa*('g t2), Xa*)'2-1'C*2((-oo, C]). 

Now use (2.31), Fubini's theorem and Proposition 4(i) to identify the r.h.s. of 
(2.38) as S.4V*2((-oo, C]), with S given in (2.33). 0 

3. CLT for the middle piece. This section contains the proofs of Propo- 
sitions 2 and 3. 
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3.1. Proof of Proposition 2. Recall Lemma 3 and (2.26) to see that the l.h.s. 
of (2.28) is equal to 

(31) ex( p'(a) ) dh f(h) 

X Eh (exp (- 1 (Fa(Xs) - j) ds) g(XA-1(T))). 

According to (2.29), p(aA T) = p(a) - (A/VA-). Since T' A 
fA(T ) XS ds [see 

(1.8)] and Fa(u) = u2- au + p(a) [see (2.1)], we may write the exponents in 
(3.1) as 

A-1(T') A-1(T') A'1qi 
-f FaA T(Xs)ds + (a-aA, T) XS ds- p 

(3.2) _ - F ax (Xs) ds + T(a-aA,T - p'(a)) 

+ (T-T')(aA, T-a). 

Substitute this into (3.1) and use (2.26) to get that 

l.h.s. of (2.28) 

=exp(T(a- ax, T p,( )))T x,aATexp((T - T')(aA,T - a)). 

Next, expand the inverse function p-1 of p as a Taylor series around p(a) up 
to second order. It follows that there is an rT between p(a) and p(a) - (A/T3) 
such that 

axk T P p(a) - p 1(p(a)) - A_(1p- )'(p(a)) + A2 (P1)"(rT) 

A A2 p" A A22 
p-(a) 2T (p)3 (P (rT)) = a - p(a 2T (CT) 

[see (2.27)] with {T = p-l(rT). Observe that (T is between a and ax, T by the 
monotonicity of p. Now substitute (3.4) into (3.3) to arrive at (2.28). D2 

3.2. Proof of Proposition 3. We shall use an expansion in terms of the 
eigenfunctions of the operator /#a: L2' (QR') n C2(IR') -- C(RO) defined by 

(3.5) (.<ax)(u) = (yax)(u) - p(a)x(u) 

[recall (0.5)]. Obviously, /a is symmetric w.r.t. (., )02 because Xa is sym- 
metric w.r.t. (, )L2 . Also /wa is a Sturm-Liouville operator. We are going to 
identify its eigenvalues and eigenvectors in terms of those of Xa. 

For I E N0, let p(l)(a) denote the Ith largest eigenvalue of Xa and xal E 
L2(R+) the corresponding eigenfunction, normalized such that ll(1) 11L2 
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(all eigenspaces are one-dimensional by HH, Lemma 20). Then p(O) = p, 
and each p(l) is continuous and strictly increasing [differentiate the formula 
p(')(a) = (x) XaX))L2 to obtain d/dap()(a) I) I 2 via (0.5)]. Moreover, 
lima ?i p(1)(a) = ?oc. Since x2l) has a subexponentially small tail at infinity 
(see HH, Lemma 20), it is also an element of L2' O(JR). 

Next, define a(l)(a) E ER and y1l) E L2' O(R?+) by 

(I) 

(3.6) p(')(a - a(t)(a)) = p(a) and y( ) - a-a (a) I E No. 
a-a( L 2 

Note that a(?)(a) = 0, y12) = Xa /p'(a), and a(U+?)(a) < ao()(a) for all 1 E N0 
since p(l)(a) is strictly decreasing in 1 and strictly increasing in a. 

STEP 1. For each a E J, the sequence (ya) is an orthonormal basis in 
L 2, ( i(R o) 

PROOF. Since ,y/a is a symmetric Sturm-Liouville operator, all its eigen- 
spaces are orthogonal to each other and one-dimensional, and they span the 
space L2 o(JR+). Thus, it suffices to show that the functions ya() Ya1) .. are 
saclte YigeYanctins of 

are 
all the eigenfunctions Of .1,ia. Now, from (0.5) and (3.5) we easily derive the 
equivalence 

(3.7) 1aX = ax Xa-,X = p(a)x, 

which is valid for every a, a E R and x E C2(R+). From (3.6) and (3.7) we see 
that (a(1)(a))l,N0 is the sequence of all the eigenvalues of 11a with correspond- 
ing eigenfunctions (y12)la,N0, since (3.7) implies that for every eigenvalue a of 
.4'a there is an I E N0 such that p(U)(a - a) = p(a). a 

STEP 2. For every h, T > 0, I E N0 and a E R, 

(3.8) Eh ( X (Ya = exp(a(')(a)T) Ya (h). 

PROOF. Use (2.7) and (2.14) to compute, for f E C'(R+)g 

(3.9) (aa(Lf ))(u) - UX(U) (2uf"(u) + 2f'(u) 2ux"(u) + 2x'(u) 

Apply this for f = yl), use (0.5) and the eigenvalue relation Xa'Xa,f) - 

p(lY(a/)xal) for (a', I) = (a, 0) and for (a', 1) = (a - a()(a), 1), to obtain 

(3.10) Ga Ya a(')(a)Ya 
~JXa2a )Xa 
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Thus, Ga being the generator of the process (Yt)t,o, the function f(T) 
Eh((Ya /Xa)(YT)) satisfies the differential equation f' = a(')(a)f. Therefore 
f (T) = exp(a(l)(a)T)f (O), which is our assertion. O 

STEP 3. Conclusion of the proof. 

PROOF. According to Step 1, we may expand g E L2' O(JR') as 

g aT (g aT L2 

(3.11) 1=0 

- p(raT) (g, XaT)d2 + E yalp(g, YaT)L2 (T > 0). 
PI(aT) 

L 
~1=1T 

TL 

Substitute this into (2.26) to obtain [recall (2.10) and (2.12)] 

T, aT p() (f Xa) L2 (g xa) OL2 

1 
(3.12) < | (f, Xad)L2 (g, Xad)O - 1 ) (f Xa)L2 (g, Xa)?L2 P'(aT) L2p'(a) 

+ | (7 dh f (h)XaT (h)Eh (YT)) (gY) L2 

With the help of Step 2, the second term on the r.h.s. of (3.12) equals 
e( (TT | h()a()/00 ( g) 

<exp(a(1)(aT)T) |dh f(h)XaTi(h) h) Y (g, L 

(3. 13) _=f i 1L Ya)L2 

< exp(a(1)(aT)T) 4I -(id' yaT g a)|2 

= id L2 

This t ends to zero as T x1 since limTO, a(1)(aT) = a(1)(a) < 0. The first 
term on the r.h.s. of (3.12) vanishes as T x-+ o because of the continuity of 
a x+ xa E L2(R+) and a ~-+ p'(a) (see HH, Lemma 22). 0 

4. Integrability for the boundary pieces. This section contains the 
proof of Proposition 4. It turns out that the functions wa [in (2.18)] and Ya 
[in (2.31)] have a nice representation in terms of standard one-dimensional 
Brownian motion and that Ya is a transformation of the Airy function. This 
will be explored in Section 4.2. Section 4.1 contains some preparations. 
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4.1. Preparations. Let Ai: R -+ R denote the Airy function, that is, the 
unique (modulo a constant multiple) solution of the Airy equation 

(4.1) x"(u) - ux(u) = 0, u E R 

that is bounded on R' . Let ui1 = sup{iU E RI Ai(u) = 0} be its largest zero. 
From Abramowitz and Stegun (1970), Table 10.13 and page 450, it is known 
that u1 = -2.3381.... For a < -21/3u1, define za b 

(4.2) za(u) = Ai(-2-1/3a) ) u > 0. 

In Lemma 8 in Section 4.2, Za will turn out to be equal to Ya' Some of its 
properties are given in the following lemma. 

LEMMA 5. For all a < -2"3u1, the function Za is real-analytic, strictly 

positive on R+ with Za(0) = 1, and satisfies 

(4.3) 2z"(u) + (a - u) Za(i) -0, u > 0. 

Moreover, 

(4.4) lim u-3/2 log Za(U) E (-x, 0). 
u-+oo 

PROOF. It is well known that Ai is analytic. From (4,2) and the definition 
of u1, it is clear that Za(0) 1 and that Za(U) > 0 for u > 0. Equation (4.3) 
follows easily from (4.1). The asymptotics in (4A4) follows from Abramowitz 
and Stegun (1970), 10.4.59. 0 

The following lemma shows in particular that Lemma 5 can be used for 
a=a. 

LEMMA 6. a* < 3g1r1/3 <'-U. 

PROOF. The first inequality is proved via the variational representation 

(4.5) a* = inf f1[02x2(u)+2ix'(u)2]di 
xEL2(IR )nC2(R1): x#O f Ux2(u) du 

This representation stems from the relation (see HH, Section 5.1) 

(4.6) 0 = p(a*) = max (X, Xa* X)L22 
XEL2(1Ro+)nC2(Ro+): IIXIIL2=1 

in which, by (0.5), 

(4.7) (x, Xa*X)L2 [(a*u - U2)x(u)2 - 2ux'(u)2] du. 

In (4.5), we choose the test function 

(4.8) x(u) = exp(-u2 8 ) 
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Elementary computations give that fj?Ux2(u) du = 2-i1/3 and f u2x2(u) du = 
and f7 UX'(U)2 du = 2 Substituting this into (4.5), we obtain the bound 

a* < 3 ,1/3 = 2.1968... X ? 

4.2. Proof of Proposition 4. Let Ph be the distribution of standard one- 
dimensional Brownian motion (Bt)t,o conditioned on starting at h and let Eh 
be the corresponding expectation. Define 

(4.9) Tu = inf{t > 0: Bt = u}, u E R. 

Note that the following lemma in particular implies Proposition 4(ii). 

LEMMA 7. For every a E R and h, t > 0, 

w(1(h, t) = exp(at)Eh/2 exp - 2Bsds) To = t) sh(t0, 

(4h(0)=Ph2(To E dt) h h 2 

(Ph(t) ==t exp -8t dt 2- ~2,T~t3 '8tJ 
Consequently, 

(4.11) Ya(h) = Eh/2 (exp (f - 2B)ds)) . 

PROOF. Recall (1.9). According to Ethier and Kurtz (1986), Theorem 6.1.4, 
the process (Y*)t>o = (X**-l(t))t>o is a diffusion with generator [see (1.4)] 

1 C (4.12) (G*f)(u) = -(G*f)(u) = 2f "(u), f E C (R+). 
U 

In other words, the distribution of (Y*)t>o under P* is equal to that of 
(B4tATO)t>o under Ph, which in turn is equal to that of (2BtATO)t>o under 

PhI2. Thus, noting that (d/dt)A* (t) = 1/X*l(t) and hence fA(t) X7*2 dv = 

fot X (S) ds, we have 

E*4exp(-j X*;2 dv) A*(oo) t 

= E4 exp -1 X*;2 dv) K*( ) = t) 

(4.13) Eep-A*-1(t) Xd)A1t=o 
= E* (exp (-| X *2 d v) A* ( t) = (o 

= Eh/2(exp- 2Bs ds) To = t 

which proves the first formula in (4.10) [see (2.18)]. In the same way, we see 
that Ph defined in (1.10) equals the Lebesgue density of To under Ph/2, and 
its explicit shape is given in RY, page 102. Finally, the representation (4.11) 
is a direct consequence of (2.31). 0 
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PROOF OF PROPOSITION 4(i). In view of Lemmas 5 and 6, the following 
lemma implies Proposition 4(i). 

LEMMA 8. Za = Ya for all a < -2/3u1. 

PROOF. Since Ya(O) = Za(O) = 1 and since Za is bounded on DRo it suffices 
to show that Ya satisfies the same differential equation as Za [see (4.3)]. But 
this easily follows from the argument in the proof of KS, Theorem 4.6.4.3, 
picking (in the notation used there) a = a < -21/3u1, k(u) = u, yi = 0, b = 0 
and c = oo. O 

PROOF OF PROPOSITION 4(iii) AND (iv). Fix p E (1, 2) and q E (2, oo). Recall 
(2.32). In the following, c denotes a generic positive constant, possibly varying 
from line to line. 

STEP 1. W() is integrable at zero. 

PROOF. Use (4.10) to estimate wa*(h, t) < ct-3/2he-h2/8t for any h > 0 and 
t E (0, 1]. Use the boundedness of x *- on Rl+ to get 

W(l)j(t) < c h-PhPt-3p2exp(- ph2 1dh 

(4.14) (10 p t ) p2 
- ctU3/2 hI exp 8)dh) 

= Ct(llp)-312 

which is integrable at zero. D 

STEP 2. W (2) is integrable at zero. 

PROOF. As in Step 1, use (4.10) to estimate Wa*(h, t) < ct-3/2he-h2/8t, and 
furthermore use hl+qe-qh2/l6t < Ct(l+q)/2 for any h > 0 and t E (0, 1]. This gives 

W(q )(t) <- c( hxa* (h) -hqt3 exp (- h dh) 

(4.15) < ct-3/2( xa (h)2-tl?q/2 exp( q 6t) dh) 

=Ct(12q)-l xa (h)2-q exp -16 )dh 

The integral is finite since limh,0 h-3/2 log Xa* (h) is finite (see the beginning 
of Section 2.1). Thus, the r.h.s. of (4.15) is integrable at zero. a 

STEP 3. W() is integrable at infinity. 
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PROOF. Since t 2 1t-3/2 is a probability density on [1, oc), Jensen's in- 
2~~~~ equality and the boundedness of x2* on R+ give 

(.6 W )(t)dt < cJ t-3/2 dt(] hl-Pt3p2Wa(h, t)Pdh) 

<c( dtJ dh hl-P t(3/2)(p- 1)Wa*(h, tyP 

Use (4.10), Jensen's inequality and the Brownian scaling property to estimate 

Wa*(h, t)P < Ph(t)Ph oh(t)Eh/2(exp(a*pt - p 2B8ds) To = t) 

< chP1 1t-(3/2)(p-1) 9hp1 l/(tp213) 
(4.17) x E(hpl/3)2 (exp(a*pl/3tp2/3 - 1tp 2B8 ds) TO = tp2/3) 

= chPt-(3W2)(p-)W a*p1/3 (hp"3, tp2/8). 

Substitute this into (4.16), recall (2.31) and use Lemmas 6 and 8, to get 

(4.18) (J Wpl (t)dt) _ c f Za*p13(hP3 )dh. 

The r.h.s. is finite by (4.4). 0 

STEP 4. (2) is integrable at infinity if q E (2, oc) is sufficiently close to 2. 

PROOF. Estimate in the same way as in (4.16) and (4.17), but do not esti- 
mate x 2* (h). The result is 

(4.19) (j W(2)(t) dt) < cf hqxq* (h)2-q z 3 (hq/3) dh. 

For q sufficiently close to 2 we have a*ql/3 < -21/3U, (see Lemma 6), and so we 
may apply (4.4). Combine the latter with the fact that limh,o h-3/2 log Xa*(h) 
is finite to deduce that the r.h.s. of (4.19) is finite for q sufficiently close to 2. 0 
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