
Introduction

The central limit theorem is the most fundamental theory in 
modern statistics. Without this theorem, parametric tests based 
on the assumption that sample data come from a population 
with fixed parameters determining its probability distribution 
would not exist. With the central limit theorem, parametric tests 
have higher statistical power than non-parametric tests, which 
do not require probability distribution assumptions. Currently, 

multiple parametric tests are used to assess the statistical validity 
of clinical studies performed by medical researchers; however, 
most researchers are unaware of the value of the central limit 
theorem, despite their routine use of parametric tests. Thus, 
clinical researchers would benefit from knowing what the cen-
tral limit theorem is and how it has become the basis for para-
metric tests. This review aims to address these topics. The proof 
of the central limit theorem is described in the appendix, with 
the necessary mathematical concepts (e.g., moment-generating 
function and Taylor’s formula) required for understanding the 
proof. However, some mathematical techniques (e.g., differential 
and integral calculus) were omitted due to space limitations. 

Basic Concepts of Central Limit Theorem

In statistics, a population is the set of all items, people, or 
events of interest. In reality, however, collecting all such ele-
ments of the population requires considerable effort and is often 
not possible. For example, it is not possible to investigate the 
proficiency of every anesthesiologist, worldwide, in performing 
awake nasotracheal intubations. To make inferences regarding 
the population, however, a subset of the population (sample) 

Statistical Round

According to the central limit theorem, the means of a random sample of size, n, from a population with mean, μ, and 
variance, σ2, distribute normally with mean, μ, and variance,  σ2

n . Using the central limit theorem, a variety of parametric 
tests have been developed under assumptions about the parameters that determine the population probability distribu-
tion. Compared to non-parametric tests, which do not require any assumptions about the population probability dis-
tribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many 
medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit 
theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and 
its role in binomial distributions and the Student’s t-test, and provides an example of the sampling distributions of small 
populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-
complete understanding.
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can be used. A sample of sufficient size that is randomly selected 
can be used to estimate the parameters of the population using 
inferential statistics. A finite number of samples are attainable 
from the population depending on the size of the sample and 
the population itself. For example, all samples with a size of 1 
obtained at random, with replacement, from the population 
{3,6,9,30} would be {3},{6},{9}, and {30}. If the sample size is 2, a 
total of 4 × 4 = 42 = 16 samples, which are {3,3},{3,6},{3,9},{3,30}, 
{6,3},{6,6}…{9,30},{30,3},{30,6},{30,9}, and {30,30}, would be 
possible. In this way, 4n samples with a size of n would be ob-
tained from the population. Here, we consider the distribution 
of the sample means.

For example, here is the asymmetric population with a size of 
4 as presented above:

{3, 6, 9, 30} 

  The population mean, μ, and variance, σ2, are:

𝜇𝜇 = 3 + 6 + 9 + 30
4 = 12 

𝜎𝜎2 = (3 − 12)2 + (6 − 12)2 + (9 − 12)2 + (30 − 12)2
4 = 112.5 

  A simple random sampling with replacement from the popu-
lation produces 4 × 4 × 4 = 43 = 64 samples with a size of 3 (Table 
1). The mean and variance of the 64 sample means are 12 (the 

population mean) and 37.5 =  σ2

n  = 112.5
3 , respectively; however, 

the distribution of the means of samples is skewed (Fig. 1A). 
When a simple random sampling with replacement is per-

formed for samples with a size of 6, 4 × 4 × 4 × 4 × 4 × 4 = 46 = 
4,096 samples are possible (Table 2). The mean and variance of 
the 4,096 sample means are 12 (the population mean) and 18.75 
=  σ2

n  = 112.5
6 , respectively. Compared to the distribution of the 

means of samples with a size of 3, that of the means of samples 
with a size of 6 is less skewed. Importantly, the sample means 
also gather around the population mean. (Fig. 1B). Thus, the 
larger the sample size (n), the more closely the sample means 
gather symmetrically around the population mean (μ) and have 
a corresponding reduction in the variance (  σ2

n ) (Figs. 1C and 
1D). If Figs. 1A to 1D are converted to the probability density 
function by replacing the variable “frequency” with another 
variable “probability” on the vertical axis, their shapes remain 
unchanged.

In general, as the sample size from the population increases, 
its mean gathers more closely around the population mean with 
a decrease in variance. Thus, as the sample size approaches in-
finity, the sample means approximate the normal distribution 
with a mean, μ, and a variance,  σ2

n . As shown above, the skewed 
distribution of the population does not affect the distribution 
of the sample means as the sample size increases. Therefore, 
the central limit theorem indicates that if the sample size is suf-
ficiently large, the means of samples obtained using a random 
sampling with replacement are distributed normally with the 

Table 1. Samples with a Size of 3 and Their Means

Number Sample Sample mean

1 3 3 3 3
2 3 3 6 4
3 3 3 9 5
4 3 3 30 12
5 3 6 3 4
6 3 6 6 5
7 3 6 9 6
8 3 6 30 13
9 3 9 3 5

10 3 9 6 6
Truncated

54 30 6 6 14
55 30 6 9 15
56 30 6 30 22
57 30 9 3 14
58 30 9 6 15
59 30 9 9 16
60 30 9 30 23
61 30 30 3 21
62 30 30 6 22
63 30 30 9 23
64 30 30 30 30

Table 2. Samples with a Size of 6 and Their Means

Number Sample Sample mean 

1 3 3 3 3 3 3 3
2 3 3 3 3 3 6 3.5
3 3 3 3 3 3 9 4
4 3 3 3 3 3 30 7.5
5 3 3 3 3 6 3 3.5
6 3 3 3 3 6 6 4
7 3 3 3 3 6 9 4.5
8 3 3 3 3 6 30 8
9 3 3 3 3 9 3 4

10 3 3 3 3 9 6 4.5
Truncated

4087 30 30 30 30 6 9 22.5
4088 30 30 30 30 6 30 26
4089 30 30 30 30 9 3 22
4090 30 30 30 30 9 6 22.5
4091 30 30 30 30 9 9 23
4092 30 30 30 30 9 30 26.5
4093 30 30 30 30 30 3 25.5
4094 30 30 30 30 30 6 26
4095 30 30 30 30 30 9 26.5
4096 30 30 30 30 30 30 30
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mean, μ, and the variance,  σ2

n , regardless of the population dis-
tribution. Refer to the appendix for a near-complete proof of the 
central limit theorem, as well as the basic mathematical concepts 
required for its proof.

Central Limit Theorem in the Real World

An unbiased, symmetric, 6-sided dice is rolled at random n 
times. The probability of rolling the number 3 x times in n suc-
cessive independent trials has the following probability density 
distribution, which is called the binomial distribution: 

𝑓𝑓(𝑥𝑥) = (𝑛𝑛𝑥𝑥) (
1
6)

𝑥𝑥
(1 − 1

6)
𝑛𝑛−𝑥𝑥

 

  n: number of independent trials (rolling a dice), x: number of 
times the number 3 is rolled in each trial, 1

6 : the probability of 

rolling the number 3 in each trial, 1 − 1
6 : the probability of roll-

ing a number other than 3 in each trial.

The mathematical expectation of the random variable, X, (i.e., 
the number of times that the number 3 is rolled in each trial), 
which is also referred to as the mean of the distribution, is:

𝐸𝐸(𝑋𝑋) = 𝑛𝑛 × 1
6 

  
And the variance is:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝑛𝑛 ×  1
6  × (1 − 1

6) 

  When n = 10, the probability has a skewed distribution (Fig. 
2A); however, as n increases, the distribution becomes sym-
metric with respect to its mean (Figs. 2B–2D). As n approaches 
infinity, the binomial distribution approximates the normal dis-
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Fig. 1. Histogram representing the means for samples of sizes of 3 (A), 6 (B), 9 (C), and 12 (D).
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Fig. 2. The probability density function of 
a binomial distribution with a probability 
parameter of 1

6  (i.e., the probability of 
rolling the number 3 in each trial), based 
on to the number of trials.
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tribution with a mean, np, and a variance, np(1 − p), where p is 
the probability constant for the occurrence of the specific event 
during each trial.

Central Limit Theorem in the Student’s t-test

Since the central limit theorem determines the sampling dis-
tribution of the means with a sufficient size, a specific mean (X−) 

can be standardized (𝑍𝑍 =
(�̅�𝑋 − 𝜇𝜇)

𝜎𝜎
√𝑛𝑛

) 

  

 and subsequently identified 

against the normal distribution with mean of 0 and variance of 
12. In reality, however, the lack of a known population variance 
(σ2) prevents a determination of the probability density distribu-
tion.

𝜎𝜎2 =
(𝑋𝑋1 − 𝜇𝜇)2 + (𝑋𝑋2 − 𝜇𝜇)2 + ⋯+ (𝑋𝑋𝑁𝑁 − 𝜇𝜇)2

𝑁𝑁  

  
Xi  (i = 1, 2, …, n): a sample from the population, N: the size 

of the population, μ: the mean of the population.

Notably, the Student’s t-distribution was developed to use a 
sample variance (S) instead of a population variance (σ2). 

𝑆𝑆2 =
(𝑥𝑥1 − �̅�𝑋)2 + (𝑥𝑥2 − �̅�𝑋)2 + ⋯+ (𝑥𝑥𝑛𝑛 − �̅�𝑋)2

𝑛𝑛 − 1  

  
xi (i = 1, 2, …, n): a random sample from the population,  

n: sample size, XX−: the mean of the samples.

The specific mean (X−) is studentized (𝑡𝑡 =
(�̅�𝑋 − 𝜇𝜇)

𝑆𝑆
√𝑛𝑛

) 

 

 and its loca-

tion is evaluated on the Student’s t-distribution, based on the de-
gree of freedom (n − 1). The shape of the Student’s t-distribu-
tion is dependent on the degree of freedom. A low degree of 
freedom renders the peak of the Student’s t-distribution lower 
than that of a normal distribution, although at some points, the 
tails have higher values than those of the normal distribution. 

As the degree of freedom increases, the Student’s t-distribution 
approaches the normal distribution. At a degree of freedom of 
30, the Student’s t-distribution is regarded as equaling the nor-
mal distribution [1]. The underlying assumption for the Stu-
dent’s t-test is that samples should be obtained from a normally 
distributed population. However, since the distribution of popu-
lation is not known, it should be determined whether the sample 
is normally distributed. This is particularly true for small sample 
sizes. If small sample sizes are normally distributed, the studen-
tized distribution of the sample means is equal to the Student’s t-
distribution with a degree of freedom corresponding to the sam-
ple size. If the small samples are not normally distributed, non-
parametric tests should be performed instead of the Student’s t-
test since they do not require assumptions about the distribution 
of population. If the sample size is 30, the studentized sampling 
distribution approximates the standard normal distribution and 
assumptions about the population distribution are meaningless 
since the sampling distribution is considered normal, according 
to the central limit theorem. Therefore, even if the mean of a 
sample of size > 30 is studentized using the variance, a normal 
distribution can be used for the probability distribution.

Conclusions

A comprehensive understanding of the central limit theorem 
will assist medical investigators when performing parametric 
tests to analyze their data with high statistical powers. The use 
of this theorem will also aid in the design of study protocols that 
are based on best-fit statistics. 
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Appendix

Moment-generating function

Since the central limit theorem is proven using a moment-generating function for a random variable, regardless of its distribution, 
it is necessary to understand the moment-generating function. Prior to that, however, it is necessary to understand the probability 
density function and mathematical expectation. When a fair coin is tossed at random on two independent and successive trials, the 
following probability distribution describes the expected number of head(s) (Table 1).

Here, we derive a function, f(x), detailing the probability according to the number of the head(s).

𝑓𝑓(𝑥𝑥) = (2𝑥𝑥) (
1
2)

𝑥𝑥
(1 − 1

2)
2−𝑥𝑥

 

  
2: number of independent trials (coin tosses), x: number of head(s),  

1
2 : the probability of having a head on each trial, 1 − 1

2 : the probability of having a tail on each trial.

The f(x) is called the probability density function.
Based on Table 1, the mathematical expectation (or expected value) of the random variable, X, E(X) is:

𝐸𝐸(𝑋𝑋) = 0 × 1
4 + 1 × 1

2 + 2 × 1
4 = 1 

  Table 1. Probability Distribution

x 0 1 2

P (X = x) 1
4

1
2

1
4

x : number of head(s), P (X = x): probability to have x head(s).

Generally, it is expressed as:

𝐸𝐸(𝑋𝑋) = ∑ 𝑥𝑥𝑥𝑥(𝑥𝑥)
𝑛𝑛

𝑥𝑥=1
 for a discrete variable, 

𝐸𝐸(𝑋𝑋) =  ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 for a continuous variable (1) 

  Therefore, E(X) is equivalent to the mean, μ, of a random variable. E(X) = μ.
The moment-generating function for a random continuous variable, X, is defined as the mathematical expectation of etX, E(etX), and 

denoted as MX(t). Thus, 

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑋𝑋) = ∫ 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
, −ℎ < 𝑡𝑡 < ℎ (ℎ > 0) 

  
Since the moment-generating function is a unique determinant for the distribution of a random sample, it is always true that two 

variables with a common moment-generating function have the same distribution. To get its first order derivative, tx is replaced by u. 
Then, du

dt  is obtained by:

𝑢𝑢 = 𝑡𝑡𝑡𝑡,   𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡 = 𝑡𝑡 

𝑀𝑀𝑋𝑋
′(𝑡𝑡) = 𝑑𝑑𝑀𝑀(𝑡𝑡)

𝑑𝑑𝑡𝑡 =
∫ 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡∞

−∞
𝑑𝑑𝑡𝑡 =

∫ 𝑒𝑒𝑢𝑢𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡∞
−∞

𝑑𝑑𝑡𝑡 =
∫ 𝑒𝑒𝑢𝑢𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡∞

−∞
𝑑𝑑𝑡𝑡 × 𝑑𝑑𝑢𝑢

𝑑𝑑𝑢𝑢 =
∫ 𝑒𝑒𝑢𝑢𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡∞

−∞
𝑑𝑑𝑢𝑢 × 𝑑𝑑𝑢𝑢

𝑑𝑑𝑡𝑡  
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Since eu

du  = eu, du
dt  = x, and u = tx,

𝑀𝑀𝑋𝑋
′(𝑡𝑡) = ∫ 𝑒𝑒𝑢𝑢𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
× 𝑥𝑥 = ∫ 𝑥𝑥𝑒𝑒𝑢𝑢𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= ∫ 𝑥𝑥𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
 (2) 

  When t = 0,

𝑀𝑀𝑋𝑋
′(0) = ∫ 𝑥𝑥𝑒𝑒0𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= ∫ 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= 𝐸𝐸(𝑋𝑋) = 𝜇𝜇 (∵ please, refer to equation (1). ) (3) 

  
The second order derivative of MX (t) is,

𝑀𝑀𝑋𝑋
′′(𝑡𝑡) = 𝑀𝑀′(𝑡𝑡)

𝑑𝑑𝑡𝑡 =
∫ 𝑥𝑥𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞

𝑑𝑑𝑡𝑡 =
∫ 𝑥𝑥 × 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞

𝑑𝑑𝑡𝑡  

  According to the equation (2),

                                                             

∫ 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞

𝑑𝑑𝑑𝑑 = ∫ 𝑥𝑥𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 

  Therefore,

𝑀𝑀𝑋𝑋
′′(𝑡𝑡) =

∫ 𝑥𝑥 × 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞

𝑑𝑑𝑡𝑡 = ∫ 𝑥𝑥 × 𝑥𝑥𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
= ∫ 𝑥𝑥2𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
 

∴ 𝑀𝑀𝑋𝑋
′′(0) = ∫ 𝑥𝑥2𝑒𝑒0𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= ∫ 𝑥𝑥2𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= 𝐸𝐸(𝑋𝑋2) (4) 

 

  
Moment-generating function of a normal distribution

The derivation of the probability density function for a normal distribution is beyond the scope of this review. However, the prob-
ability density function for a normal distribution with mean, μ, and variance, σ2, is:

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

exp [−
(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 ] , −∞ < 𝑥𝑥 < ∞ 

  The sum of the probabilities under the normal distribution should be 1.

∫ 1
𝜎𝜎√2𝜋𝜋

exp [−
(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞
= 1 
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As a reference, exp(x) = ex. According to the definition of the moment-generating function, 𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑋𝑋) = ∫ 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞ , −ℎ < 𝑡𝑡 < ℎ (ℎ > 0),  

  

,  

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑋𝑋) = ∫ 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞ , −ℎ < 𝑡𝑡 < ℎ (ℎ > 0),  

  

, the moment-generating function for a normal distribution with mean, μ, and variance, σ2, is: 

𝑀𝑀𝑋𝑋(𝑡𝑡) = ∫ 𝑒𝑒𝑡𝑡𝑡𝑡 1
𝜎𝜎√2𝜋𝜋

exp [−
(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞
= ∫ exp(𝑡𝑡𝑥𝑥) 1

𝜎𝜎√2𝜋𝜋
exp [−

(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞

= ∫ 1
𝜎𝜎√2𝜋𝜋

exp(𝑡𝑡𝑥𝑥) exp [−
(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞
= ∫ 1

𝜎𝜎√2𝜋𝜋
exp [𝑡𝑡𝑥𝑥 −

(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞

= ∫ 1
𝜎𝜎√2𝜋𝜋

exp [2𝜎𝜎
2𝑡𝑡𝑥𝑥

2𝜎𝜎2

∞

−∞

−
(𝑥𝑥 − 𝜇𝜇)2 + (𝜎𝜎2𝑡𝑡)2 − (𝜎𝜎2𝑡𝑡)2 − 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡 + 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡

2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

= ∫ 1
𝜎𝜎√2𝜋𝜋

exp [2𝜎𝜎
2𝑡𝑡𝑥𝑥

2𝜎𝜎2 −
(𝑥𝑥 − 𝜇𝜇)2 − 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡 + (𝜎𝜎2𝑡𝑡)2

2𝜎𝜎2

∞

−∞

− −(𝜎𝜎2𝑡𝑡)2 + 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

= ∫ 1
𝜎𝜎√2𝜋𝜋

exp [−−2𝜎𝜎2𝑡𝑡𝑥𝑥 − (𝜎𝜎2𝑡𝑡)2 + 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡
2𝜎𝜎2

∞

−∞

−
(𝑥𝑥 − 𝜇𝜇)2 − 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡 + (𝜎𝜎2𝑡𝑡)2

2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

= ∫ 1
𝜎𝜎√2𝜋𝜋

exp [−−2𝜎𝜎2𝑡𝑡𝑥𝑥 − (𝜎𝜎2𝑡𝑡)2 + 2𝜎𝜎2𝑡𝑡𝑥𝑥 − 2𝜇𝜇𝜎𝜎2𝑡𝑡
2𝜎𝜎2

∞

−∞

−
(𝑥𝑥 − 𝜇𝜇)2 − 2(𝑥𝑥 − 𝜇𝜇)𝜎𝜎2𝑡𝑡 + (𝜎𝜎2𝑡𝑡)2

2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

= ∫ 1
𝜎𝜎√2𝜋𝜋

exp [−−(𝜎𝜎2𝑡𝑡)2 − 2𝜇𝜇𝜎𝜎2𝑡𝑡
2𝜎𝜎2 −

(𝑥𝑥 − 𝜇𝜇 − 𝜎𝜎2𝑡𝑡)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞

= exp [−−(𝜎𝜎2𝑡𝑡)2 − 2𝜇𝜇𝜎𝜎2𝑡𝑡
2𝜎𝜎2 ]∫ 1

𝜎𝜎√2𝜋𝜋
exp [−

(𝑥𝑥 − 𝜇𝜇 − 𝜎𝜎2𝑡𝑡)2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞

= exp [2𝜇𝜇𝜎𝜎
2𝑡𝑡 + (𝜎𝜎2𝑡𝑡)2
2𝜎𝜎2 ]∫ 1

𝜎𝜎√2𝜋𝜋
exp [− [𝑥𝑥 − (𝜇𝜇 − 𝜎𝜎2𝑡𝑡)]2

2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥
∞

−∞
 

  

The last integral, ∫ 1
𝜎𝜎√2𝜋𝜋 exp [−

[𝑥𝑥−(𝜇𝜇−𝜎𝜎2𝑡𝑡)]2
2𝜎𝜎2 ] 𝑑𝑑𝑑𝑑∞

−∞ ,  

  

, is the probability density function for the normal distribution with mean, μ − σ2t, 

and variance, σ2. Since the sum of the probabilities under the normal distribution should be 1,

∫ 1
𝜎𝜎√2𝜋𝜋

exp [− [𝑥𝑥 − (𝜇𝜇 − 𝜎𝜎2𝑡𝑡)]2
2𝜎𝜎2 ] 𝑑𝑑𝑥𝑥

∞

−∞
= 1 
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Therefore, the moment-generating function for the normal distribution with mean, μ, and variance, σ2, is:

𝑀𝑀𝑋𝑋(𝑡𝑡) = exp [2𝜇𝜇𝜎𝜎2𝑡𝑡 + (𝜎𝜎2𝑡𝑡)2

2𝜎𝜎2 ] = exp [2𝜇𝜇𝜎𝜎2𝑡𝑡
2𝜎𝜎2 +

(𝜎𝜎2𝑡𝑡)2

2𝜎𝜎2 ] = exp [𝜇𝜇𝑡𝑡 + 𝜎𝜎2𝑡𝑡2

2 ]   (5) 

 

  Mathematical expectation of multiplication between stochastically independent random variables

Let the discrete random variables, X and Y, be stochastically independent.

𝑋𝑋 = {𝑋𝑋1, 𝑋𝑋2, ⋯ 𝑋𝑋𝑛𝑛},   𝑌𝑌 = {𝑌𝑌1, 𝑌𝑌2, ⋯ 𝑌𝑌𝑚𝑚} 

𝐸𝐸(𝑋𝑋𝑌𝑌) = 𝑋𝑋1𝑌𝑌1 + 𝑋𝑋1𝑌𝑌2 + ⋯ + 𝑋𝑋1𝑌𝑌𝑚𝑚 + 𝑋𝑋2𝑌𝑌1 + 𝑋𝑋2𝑌𝑌2 + ⋯ + 𝑋𝑋2𝑌𝑌𝑚𝑚 + ⋯ + 𝑋𝑋𝑛𝑛𝑌𝑌1 + 𝑋𝑋𝑛𝑛𝑌𝑌2 + ⋯ 𝑋𝑋𝑛𝑛𝑌𝑌𝑚𝑚
𝑛𝑛𝑛𝑛

= 𝑋𝑋1(𝑌𝑌1 + 𝑌𝑌2 + ⋯ + 𝑌𝑌𝑚𝑚) + 𝑋𝑋2(𝑌𝑌1 + 𝑌𝑌2 + ⋯ + 𝑌𝑌𝑚𝑚) + ⋯ + 𝑋𝑋𝑛𝑛(𝑌𝑌1 + 𝑌𝑌2 + ⋯ + 𝑌𝑌𝑚𝑚)
𝑛𝑛𝑛𝑛

= (𝑋𝑋1 + 𝑋𝑋2 + ⋯ + 𝑋𝑋𝑛𝑛)(1 + 𝑌𝑌1 + 𝑌𝑌2 + ⋯ + 𝑌𝑌𝑚𝑚)
𝑛𝑛𝑛𝑛 = 𝐸𝐸(𝑋𝑋)𝐸𝐸(𝑌𝑌) (6) 

  The above equation also applies to stochastically independent continuous random variables.

Taylor’s formula

Assume that the function, f, is continuous on the closed interval, [a, x], and differentiable on the open interval, (a, x).

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) + [𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎)] = 𝑓𝑓(𝑎𝑎) + ∫ 𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑥𝑥

𝑎𝑎
 

  Let t be replaced by a + u(x − a).

𝑡𝑡 = 𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎) ⟺ 𝑑𝑑𝑡𝑡
𝑑𝑑𝑢𝑢 = 𝑥𝑥 − 𝑎𝑎 

∴ 𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑢𝑢(𝑥𝑥 − 𝑎𝑎) 

𝑎𝑎 < 𝑡𝑡 < 𝑥𝑥 ⟺ 𝑎𝑎 < 𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎) < 𝑥𝑥 ⟺ 𝑎𝑎 − 𝑎𝑎 < 𝑢𝑢(𝑥𝑥 − 𝑎𝑎) < 𝑥𝑥 − 𝑎𝑎 ⟺ 𝑎𝑎 − 𝑎𝑎
𝑥𝑥 − 𝑎𝑎 < 𝑢𝑢 < 𝑥𝑥 − 𝑎𝑎

𝑥𝑥 − 𝑎𝑎 

∴ 0 < 𝑢𝑢 < 1 

  Then,

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) + ∫ 𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑥𝑥

𝑎𝑎
= 𝑓𝑓(𝑎𝑎) + ∫ 𝑓𝑓′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))𝑑𝑑𝑢𝑢(𝑥𝑥 − 𝑎𝑎)

1

0
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As is known,

∫ 𝑓𝑓′(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
= [𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)]𝑎𝑎𝑏𝑏 − ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎
 

  Using the above formula,

               

∫ 𝑓𝑓′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))𝑑𝑑𝑢𝑢
1

0
= ∫ (−(1 − 𝑢𝑢))′𝑓𝑓′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))𝑑𝑑𝑢𝑢

1

0

= [−(1 − 𝑢𝑢)𝑓𝑓′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))]0
1 − ∫ −(1 − 𝑢𝑢) 𝑑𝑑

𝑑𝑑𝑢𝑢 𝑓𝑓′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))𝑑𝑑𝑢𝑢
1

0

= −(1 − 1)𝑓𝑓′(𝑎𝑎 + 1 × (𝑥𝑥 − 𝑎𝑎))  − [−(1 − 0)𝑓𝑓′(𝑎𝑎 + 0 × (𝑥𝑥 − 𝑎𝑎))]

+  ∫ (1 − 𝑢𝑢)𝑓𝑓′′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))𝑑𝑑𝑢𝑢
1

0

= 𝑓𝑓′(𝑎𝑎) + ∫ (1 − 𝑢𝑢)𝑓𝑓′′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))(𝑥𝑥 − 𝑎𝑎)𝑑𝑑𝑢𝑢
1

0
 

  Therefore,

                

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) + ∫ 𝑓𝑓′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))𝑑𝑑𝑢𝑢(𝑥𝑥 − 𝑎𝑎)
1

0

= 𝑓𝑓(𝑎𝑎) + [𝑓𝑓′(𝑎𝑎) + ∫ (1 − 𝑢𝑢)𝑓𝑓′′(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))(𝑥𝑥 − 𝑎𝑎)𝑑𝑑𝑢𝑢
1

0
] (𝑥𝑥 − 𝑎𝑎)

= 𝑓𝑓(0)(𝑎𝑎)  + 𝑓𝑓(1)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎) + ∫ (1 − 𝑢𝑢)𝑓𝑓(2)(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))(𝑥𝑥 − 𝑎𝑎)2𝑑𝑑𝑢𝑢
1

0
 

  When the above process is generalized,

      

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)(𝑎𝑎)  + 𝑓𝑓(1)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)
1! + 𝑓𝑓(2)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)2

2! + ⋯ + 𝑓𝑓(𝑛𝑛)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)𝑛𝑛

𝑛𝑛!

+ ∫
(1 − 𝑢𝑢)𝑛𝑛

𝑛𝑛! 𝑓𝑓(𝑛𝑛+1)(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))(𝑥𝑥 − 𝑎𝑎)𝑛𝑛+1𝑑𝑑𝑢𝑢
1

0
 

  

The last term, ∫ (1−𝑢𝑢)𝑛𝑛
𝑛𝑛! 𝑓𝑓(𝑛𝑛+1)(𝑎𝑎 + 𝑢𝑢(𝑥𝑥 − 𝑎𝑎))(𝑥𝑥 − 𝑎𝑎)𝑛𝑛+1𝑑𝑑𝑢𝑢1

0 ,  

  

, is called the remainder term and can be expressed as 𝑓𝑓
(𝑛𝑛+1)(𝜉𝜉)(𝑥𝑥−𝑎𝑎)𝑛𝑛+1

𝑛𝑛+1! , 𝑎𝑎 < 𝜉𝜉 < 𝑥𝑥.  

  

, 
𝑓𝑓(𝑛𝑛+1)(𝜉𝜉)(𝑥𝑥−𝑎𝑎)𝑛𝑛+1

𝑛𝑛+1! , 𝑎𝑎 < 𝜉𝜉 < 𝑥𝑥.  

  

. Finally, the Taylor formula is:

      

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)(𝑎𝑎)  + 𝑓𝑓(1)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)
1! + 𝑓𝑓(2)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)2

2! + ⋯ + 𝑓𝑓(𝑛𝑛)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)𝑛𝑛

𝑛𝑛!

+ 𝑓𝑓(𝑛𝑛+1)(𝜉𝜉)(𝑥𝑥 − 𝑎𝑎)𝑛𝑛+1

𝑛𝑛 + 1!     (7) 
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Central limit theorem

Let X1, X2, …, Xn be a random sample from a distribution with mean, μ, and variance, σ2. Here, X− is defined as:

�̅�𝑋 = 𝑋𝑋1 +  𝑋𝑋2 + ⋯ + 𝑋𝑋𝑛𝑛
𝑛𝑛  

  Assuming the existence of the moment-generating function, MX(t) = E(etX), −h < t < h, for the distribution, the moment-generating 

function for 
(�̅�𝑋 − 𝜇𝜇)

𝜎𝜎
√𝑛𝑛

  

  

 is:

                

 

𝑀𝑀𝑋𝑋𝑋𝑋(𝑡𝑡) = 𝐸𝐸 [exp (𝑡𝑡
(�̅�𝑋 − 𝜇𝜇)
𝜎𝜎 √𝑛𝑛⁄ ) ] = 𝐸𝐸 [exp (𝑡𝑡

𝑋𝑋1 +  𝑋𝑋2 + ⋯ + 𝑋𝑋𝑋𝑋
𝑛𝑛 − 𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄ )]

= 𝐸𝐸 [exp (𝑡𝑡
(𝑋𝑋1 +  𝑋𝑋2 + ⋯ + 𝑋𝑋𝑋𝑋

𝑛𝑛 − 𝜇𝜇) × 𝑛𝑛
𝜎𝜎 √𝑛𝑛⁄ × 𝑛𝑛

)]

= 𝐸𝐸 [exp (𝑡𝑡 (𝑋𝑋1 +  𝑋𝑋2 + ⋯ + 𝑋𝑋𝑋𝑋) − 𝑛𝑛𝜇𝜇
𝜎𝜎√𝑛𝑛

)] 

  
Xi is independently sampled at random from the population. So,

                                 

= 𝐸𝐸 [exp (𝑡𝑡 (𝑋𝑋1 +  𝑋𝑋2 + ⋯ + 𝑋𝑋𝑛𝑛) − (𝜇𝜇 + 𝜇𝜇 + ⋯ + 𝜇𝜇)
𝜎𝜎√𝑛𝑛

)]

= 𝐸𝐸 [exp (𝑡𝑡 (𝑋𝑋1 − 𝜇𝜇) + ( 𝑋𝑋2 − 𝜇𝜇) + ⋯ + (𝑋𝑋𝑛𝑛 − 𝜇𝜇)
𝜎𝜎√𝑛𝑛

)]

= 𝐸𝐸 [exp (𝑡𝑡 {
(𝑋𝑋1 − 𝜇𝜇)

𝜎𝜎√𝑛𝑛
+

( 𝑋𝑋2 − 𝜇𝜇)
𝜎𝜎√𝑛𝑛

+ ⋯ +
(𝑋𝑋𝑛𝑛 − 𝜇𝜇)

𝜎𝜎√𝑛𝑛
})]

= 𝐸𝐸 [exp (𝑡𝑡
(𝑋𝑋1 − 𝜇𝜇)

𝜎𝜎√𝑛𝑛
+ 𝑡𝑡

( 𝑋𝑋2 − 𝜇𝜇)
𝜎𝜎√𝑛𝑛

+ ⋯ + 𝑡𝑡
(𝑋𝑋𝑛𝑛 − 𝜇𝜇)

𝜎𝜎√𝑛𝑛
)]

= E [exp (𝑡𝑡 𝑋𝑋1 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

) exp (𝑡𝑡  𝑋𝑋2 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

) … exp (𝑡𝑡 𝑋𝑋𝑛𝑛 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)] 

  
Since X1, X2, …, Xn are from the same population with mean, μ, and variance, σ2, they have a common moment-generating function.

                                 

= E [exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

) exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

) … exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)]

= E [exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)] E [exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)] … E [exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)] = {𝐸𝐸 [exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)]}
𝑛𝑛
 

∵ 𝐸𝐸(𝑋𝑋𝑋𝑋) = 𝐸𝐸(𝑋𝑋)𝐸𝐸(𝑋𝑋),   Please refer to the equation (6). 
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When we define the moment-generating function for X − μ,

𝑚𝑚𝑋𝑋(𝑡𝑡) = 𝐸𝐸[𝑒𝑒𝑡𝑡(𝑋𝑋−𝜇𝜇)] = 𝐸𝐸[𝑒𝑒𝑡𝑡𝑋𝑋−𝑡𝑡𝜇𝜇] = 𝐸𝐸[𝑒𝑒𝑋𝑋𝑡𝑡 × 𝑒𝑒−𝜇𝜇𝑡𝑡] = 𝑒𝑒−𝜇𝜇𝑡𝑡𝐸𝐸(𝑒𝑒𝑋𝑋𝑡𝑡) = 𝑒𝑒−𝜇𝜇𝑡𝑡𝑀𝑀𝑋𝑋(𝑡𝑡) ,   − ℎ < 𝑡𝑡 < ℎ 

  Then,

           

{𝐸𝐸 [exp (𝑡𝑡 𝑋𝑋 − 𝜇𝜇
𝜎𝜎√𝑛𝑛

)]}
𝑛𝑛

= {𝐸𝐸 [exp ( 𝑡𝑡
𝜎𝜎√𝑛𝑛

(𝑋𝑋 − 𝜇𝜇))]}
𝑛𝑛

= {𝐸𝐸 [exp (−𝜇𝜇 𝑡𝑡
𝜎𝜎√𝑛𝑛

+ 𝑋𝑋 𝑡𝑡
𝜎𝜎√𝑛𝑛

)]}
𝑛𝑛

= {𝐸𝐸 [exp (−𝜇𝜇 𝑡𝑡
𝜎𝜎√𝑛𝑛

) exp (𝑋𝑋 𝑡𝑡
𝜎𝜎√𝑛𝑛

)]}
𝑛𝑛

= {exp (−𝜇𝜇 𝑡𝑡
𝜎𝜎√𝑛𝑛

) 𝐸𝐸 [exp (𝑋𝑋 𝑡𝑡
𝜎𝜎√𝑛𝑛

)]}
𝑛𝑛

= {exp (−𝜇𝜇 𝑡𝑡
𝜎𝜎√𝑛𝑛

) 𝑀𝑀𝑋𝑋 ( 𝑡𝑡
𝜎𝜎√𝑛𝑛

)}
𝑛𝑛

= [𝑚𝑚𝑋𝑋 ( 𝑡𝑡
𝜎𝜎√𝑛𝑛

)]
𝑛𝑛

,   − ℎ < 𝑡𝑡
𝜎𝜎√𝑛𝑛

< ℎ 

  
Using Taylor’s formula (equation (7)), the moment-generating function for X − μ, mX(t) is:

                𝑚𝑚𝑋𝑋(𝑡𝑡) = 𝑚𝑚𝑋𝑋(0) + 𝑚𝑚𝑋𝑋
′(0)(𝑡𝑡 − 0)1

1! + 𝑚𝑚𝑋𝑋′′(𝜉𝜉)(𝑡𝑡 − 0)2

2!  ,   − ℎ < 𝑡𝑡 < ℎ, 0 < 𝜉𝜉 < 𝑡𝑡 

  
Since mX(0) = E[e0×(X − μ)] = 1 and mX'(0) = E(X − μ) = E(X) − μ = μ − μ = 0, according to equation (3),

𝑚𝑚𝑋𝑋(𝑡𝑡) = 1 +𝑚𝑚𝑋𝑋′′(𝜉𝜉)𝑡𝑡2
2!  

  By adding and subtracting σ2t2/2,

             

𝑚𝑚𝑋𝑋(𝑡𝑡) = 1 + 𝑚𝑚𝑋𝑋′′(𝜉𝜉)𝑡𝑡2

2! + 𝜎𝜎2𝑡𝑡2

2 − 𝜎𝜎2𝑡𝑡2

2 = 1 + 𝜎𝜎2𝑡𝑡2

2 + 𝑚𝑚𝑋𝑋
′′(𝜉𝜉)𝑡𝑡2

2 − 𝜎𝜎
2𝑡𝑡2

2

= 1 + 𝜎𝜎2𝑡𝑡2

2 +
[𝑚𝑚𝑋𝑋

′′(𝜉𝜉) − 𝜎𝜎2]𝑡𝑡2

2  

  When t is replaced by 𝑡𝑡
𝜎𝜎√𝑛𝑛, 

  

,

             

𝑚𝑚𝑋𝑋 ( 𝑡𝑡
𝜎𝜎√𝑛𝑛

) = 1 +
𝜎𝜎2 ( 𝑡𝑡

𝜎𝜎√𝑛𝑛)
2

2 +
[𝑚𝑚𝑋𝑋

′′(𝜉𝜉) − 𝜎𝜎2] ( 𝑡𝑡
𝜎𝜎√𝑛𝑛)

2

2 = 1 +
𝜎𝜎2 × 𝑡𝑡2

𝜎𝜎2𝑛𝑛
2 +

[𝑚𝑚𝑋𝑋
′′(𝜉𝜉) − 𝜎𝜎2] 𝑡𝑡2

𝜎𝜎2𝑛𝑛
2

=  1 + 𝑡𝑡2

2𝑛𝑛 +
[𝑚𝑚𝑋𝑋

′′(𝜉𝜉) − 𝜎𝜎2]𝑡𝑡2

2𝑛𝑛𝜎𝜎2 , −ℎ < 𝑡𝑡
𝜎𝜎√𝑛𝑛

< ℎ,    0 < 𝜉𝜉 < 𝑡𝑡
𝜎𝜎√𝑛𝑛

 

  Therefore,

  
      

𝑀𝑀𝑋𝑋𝑋𝑋(𝑡𝑡) = [𝑚𝑚𝑋𝑋 ( 𝑡𝑡
𝜎𝜎√𝑛𝑛

)]
𝑋𝑋

= [1 + 𝑡𝑡2

2𝑛𝑛 +
[𝑚𝑚𝑋𝑋

′′(𝜉𝜉) − 𝜎𝜎2]𝑡𝑡2

2𝑛𝑛𝜎𝜎2 ]
𝑋𝑋

,   − ℎ𝜎𝜎√𝑛𝑛 < 𝑡𝑡 < ℎ𝜎𝜎√𝑛𝑛,

0 < 𝜉𝜉 < 𝑡𝑡
𝜎𝜎√𝑛𝑛
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In 0 < 𝜉𝜉 < 𝑡𝑡
𝜎𝜎√𝑛𝑛,  , as n → ∞, ξ → 0. Since mX"(0) = E[(X − μ)2] = σ2, based on equation (4) and the definition of the variance of X (the 

mean of the square of the deviation of a random variable, X, from its mean, μ), lim
𝑛𝑛→∞

𝑚𝑚𝑋𝑋
′′(𝜉𝜉) = σ2 ⟺ lim

𝑛𝑛→∞
[𝑚𝑚𝑋𝑋

′′(𝜉𝜉) − 𝜎𝜎2] = 0 

  

  

.

As n becomes infinite, the moment-generating function for (�̅�𝑥−𝜇𝜇)𝜎𝜎
√𝑛𝑛

  

  

 is defined as MXn(t). Therefore,

             
lim

𝑛𝑛→∞
𝑀𝑀𝑋𝑋𝑛𝑛(𝑡𝑡) = lim

𝑛𝑛→∞
[1 + 𝑡𝑡2

2𝑛𝑛 +
[𝑚𝑚𝑋𝑋

′′(𝜉𝜉) − 𝜎𝜎2]𝑡𝑡2

2𝑛𝑛𝜎𝜎2 ]
𝑛𝑛

= lim
𝑛𝑛→∞

[1 + 𝑡𝑡2

2𝑛𝑛]
𝑛𝑛

   ∵ lim
n→∞

[𝑚𝑚𝑋𝑋
′′(𝜉𝜉) − 𝜎𝜎2] = 0 

As is generally known, lim
𝑛𝑛→∞

(1 + 1
𝑛𝑛)

𝑛𝑛
= lim

𝑛𝑛→∞
(1 + 1 × 1

𝑛𝑛)
𝑛𝑛
= 𝑒𝑒1 

 

 

 

  

. Thus, 

lim
𝑛𝑛→∞

𝑀𝑀𝑋𝑋𝑛𝑛(𝑡𝑡) = lim
𝑛𝑛→∞

[1 + 𝑡𝑡2

2𝑛𝑛]
𝑛𝑛

= lim
𝑛𝑛→∞

[1 + 𝑡𝑡2

2 × 1
𝑛𝑛]

𝑛𝑛
= 𝑒𝑒𝑡𝑡2 2⁄ = exp (0 × 𝑡𝑡 + 12 × 𝑡𝑡2

2 ) ,   − ∞ < 𝑡𝑡 < ∞ 

  According to equation (5), the moment-generating function for the normal distribution with mean, μ, and variance, σ2, is:

𝑀𝑀𝑋𝑋(𝑡𝑡) = exp (𝜇𝜇𝑡𝑡 + 𝜎𝜎2𝑡𝑡2

2 ) 

 

  

We conclude that the distribution of  
(�̅�𝑋−𝜇𝜇)

𝜎𝜎
√𝑛𝑛

 , with a fixed natural number, n, approximates the normal distribution with mean 0 and 

variance 1. Thus, if the size (n) of X− (the mean of a random sample from a distribution with mean, μ, and variance, σ2) is sufficiently 

large, the distribution of X− follows the normal distribution with mean, μ, and variance,  σ2

n , regardless of the population distribution.


