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CENTRAL LIMIT THEOREMS FOR ASSOCIATED RANDOM
VARIABLES AND THE PERCOLATION MODEL

By J. THEODORE COX' AND GEOFFREY GRIMMETT

Syracuse University and University of Bristol

We prove a central limit theorem for families {X,(N): n € A(N)} of
associated random variables indexed by subsets A(N) of ¢ as N — o; this
is an extension of the Newman-Wright invariance principle for associated
stationary sequences {X,: n = 1} satisfying Y. cov(Xy, X,) < «, but with the
stationarity property replaced by conditions on the moments of the X’s. The
theorem has applications to the voter model and the percolation model. In
the latter case, it provides an extension of a central limit theorem of the
authors [4], by reducing the severity of the moment conditions.

Also, we prove a central limit theorem for certain non-stationary non-
associated families of random variables which arise in percolation theory.
This includes, for example, a central limit theorem for the number of open
clusters contained within the circuit v(n) of % where {y(n)} is a sequence of
circuits which satisfy a regularity condition and whose interiors {y(n)} satisfy
|¥(n)| = as n — oo, ’

1. Introduction. Many recent papers have been concerned with central
limit theorems for random variables indexed by Z¢, where d = 1. Typically, such
results deal with the partial sums S(N) = Yic1 X of stationary processes over
“regular boxes” A(IN), and impose suitable conditions on the rate at which
cov(Xo, X;) decays when | 1| is large (see [1], [4], [7], [9]-[11] for examples). The
purpose of the present paper is twofold: to present a central limit theorem for
associated random variables (which need not be stationary) subject to certain
conditions on their moments and covariances, and to prove a special central limit
theorem dealing with the number of open clusters of the percolation model which
are contained within a large circuit v(n) of Z>.

If S=(S, S, ---) is a sequence of random variables, then we say that
S satisfies the central limit theorem (CLT) if (S, — ES,)/(var S,)*?is asymptot-
ically normally distributed as n — c. This notation is slightly at odds with
common practice since it involves the elements themselves rather than the partial
sums of S.

A collection {X;: i € I} of random variables is called associated if for every
finite subcollection X;, - - -, X,. and every pair of coordinatewise nondecreasing
functions fi, fo: R™ — R, we have that the random variables fi=f(X, -, X)),
J =1, 2, satisfy

cov(fi, f2) = 0

whenever they are such that E(f?) < « for j = 1, 2. Associated families occur

Received November 1982; revised August 1983.

! Partially supported by the National Science Foundation under Grant MCS 81-02131.

AMS 1980 subject classifications. 60K35, 60F05, 60K99.

Key words and phrases. Central limit theorem, associated random variables, percolation model,
voter model.

514

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability. E

®
www.jstor.org



CENTRAL LIMIT THEOREMS AND PERCOLATION 515

frequently in probabilistic models in statistical mechanics, including the perco-
lation model and models for ferromagnetism (see the discussion in [12]). Newman
and Wright [12] have shown that a nondegenerate, strongly stationary sequence
Xi, Xs, -+, which is associated and has the property that

(1.1) Yia cov(Xy, X)) < o,

satisfies an invariance principle in that, suitably normalized, the partial sums of
the X’s converge to a standard Wiener process. The implicit CLT for these
partial sums may be generalized (see [11] for example) to apply to certain strictly
stationary families {X;: i € Z¢} for d = 2, and these results find applications to
such processes as the percolation model. Two drawbacks of this approach for z*
are that it requires strong stationarity, and that the method may be applied only
to partial sums

S(A) = Tier Xi

where A is a particularly regular subset of Z% such as a cube {x = (x;, -- - , x4):
0 = x; < n}. See [9] and [10] for another approach to theorems of this type.

In our first result we show that the assumption of strict stationarity may be
relaxed and replaced by certain conditions on the moments of the X’s. We are
also able to relax slightly the strict regularity requirements on the index regions
A, but are unable to remove them completely.

Here is some notation. If x € Z, we write x; for the ith coordinate of x. For
X,y € Z° we write X < y (respectively x < y) if x; < y; (respectively x; < y;) for
all i. We define

|x —y|=sup{|lxi—y|:i=1,2,---,d}
and write 1 for a vector with unit entries. If k € Z¢, we denote by A(k) the box
Ak) = {x€2z%1=x=<Kkj

and let | k| = kik, - - - ks represent the number of points in this box.

THEOREM 1.2. Let {k(N): N=1, 2, ---} be a sequence in Z° such that k;(N)
—was N—o>owfori=1,2, ---,d. Suppose that, for each N, {X,(N): n €
A(k(N))} is a family of associated random variables satisfying:

(i) there are strictly positive, finite constants c,, ¢o such that

var(X.(N)) = ¢; and E(| Xa(N) |®) < ¢, for all n and N,
(ii) there is a function u: {0, 1, 2, - - .} — R such that u(r) — 0 asr — «© and
Yiinoji=r COV(X;(N), Xu(N)) < u(r) for all n, N and r = 0.
Then the sequence {S(N) = Ynermvy) XualN): N=1, 2, - ..} satisfies the CLT.

For d =1, k(N) = N and the X’s stationary, this is the CLT of Newman and
Wright [12], but subject to a superfluous third moment condition. For d = 2, the
sets A(k(IV)) are d-dimensional “rectangles”, but their dimensions need not grow
at equal rates.
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We will present two applications of this theorem, deferring the proof of the
theorem to Section 2. Consider the d-dimensional voter model; this is a Markov
process {n,: t = 0} taking values in {0, 1}*. The transitions are

1
7(x) = 1 — n,(x) at rate 2d [{y: |y — x| =1 and n(x) # n(y)}].

Here | A | denotes the cardinality of A. See Liggett [8] for a rigorous account of
the voter model. We suppose the initial distribution of the process is product
measure with density § where 0 < 6 < 1. That is, we assume the family {n,(x): x
€ Z% is a family of independent, identically distributed Bernoulli random
variables with parameter §. We define the occupation time variables

~t

T, = J 7,(0) ds, t=0.
0

A result of Cox and Griffeath [3] is that the family {7}: ¢t = 0} satisfies the
CLT for d = 2. This result, for d = 5, can also be proved by an application of
Theorem 1.2. First, Harris’s correlation inequality [5] implies that the (nonsta-
tionary) family {.(0): t = 0} is associated, and so is the family {X,: n =0, 1, 2,
.-} where X, = [2*! 9,(0) ds. Next, calculations in [3] show that conditions (i)
and (ii) of Theorem 1.2 hold (for d = 5). Consequently, {T}: t = 0} satisfies the
CLT. This approach fails for d < 4 since

J; cov(n,(0), 7.(0)) ds = », t =0,

making condition (ii) of Theorem 1.2 false.

For the second application consider bond percolation on the square lattice &,
with sites Z2 = {(x, y): x, y = 0, £1, £2, ...} and bonds joining all pairs of sites
which are unit distance apart. The distance d(x, y) between two sites x = (x;,
%) and y = (y1, ¥2) is defined to be

dx,y) = |xi =yl + |x -y

A path from X to y is an alternating sequence {Xo, e;, X1, - , €n, Xa} Of sites
and bonds such that x, = X, X, = y, and ¢; is a bond joining x;-, to x; (for i= 1,
2, ---, n). A circuit v is a path {x,, e, - - -, e, X,} such that x,, X1, -+, Xay

are distinct and x, = x,. The interior ¥ of a circuit v is the subgraph of &
induced by the sites contained strictly within vy. A cluster of a graph G is a
connected subgraph of G.

Let 0 <p =1 — g < 1, and declare each bond of .& to be either open or closed
with respective probabilities p or 1 — p, independently of all other bonds. Paths,
circuits and clusters of .« are called open (respectively closed) if all their bonds
are open (respectively closed). Each site x of & belongs to some unique open
cluster of ., and we denote the set of sites of this cluster by Wy, subject to the
convention that W, = ¢ if x is incident to no open bond. Sometimes we may use
W, to denote the cluster itself, being the appropriate set of sites together with all
incident open bonds, but we reserve the quantity | Wx| to denote the number of
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sites (including x) joined to x by open paths, with the convention that | W, | =
0if Wy=¢.

Let {k(n): n =1, 2, - .-} be a sequence in Z? such that k;(n) — ® as n — o
for i = 1, 2. Let v(n) be such that y(n) = A(k(n)). A function f is said to be
increasing (respectively decreasing) on the subsets of Z* if f(W:) < f(W,)
(respectively f(W,) = f(W,)) whenever W, C W,. Let 7 be the set of (finite)
real-valued functions defined on the connected subsets of Z2, which are either
increasing or decreasing and which are constant on infinite sets (in that f(W,) =
f(Wy) if | Wy| = | Wa| = ).

THEOREM 1.3. Assume p # 1/2 and {f.: n =1, 2, ...} is a sequence of
functions satisfying the following:

f.€ < for each n,
Supnmaxxei(n)E( | fn(Wx) |3) =C3 < °°9
inf, min, ey var(f.(Wy)) = ¢ > 0.

I S(n) = Sacsonfa(Wa), then {S(n): n = 1,2, - - -} satisfies the CLT.

This result is a consequence of Theorem 1.2 and some well-known facts from
percolation theory. First, the FKG inequality (see [6]) implies that the families
{f.(Wy): x € y(n)} are associated. Secondly, the method of Lemma 2 of [4]
provides the estimate

1/3
(1.4) cov(fo(Wy), f(Wy)) = c{Pe d(x,y) = r(Wy) < °°>J-

where r(Wy) = sup{d(0, x): x € Wy}, and ¢ is a finite constant depending only
on ¢; and o2 Finally, estimates from [6] show that, for p # 1/2,

11/3

(1.5) Yxez {P(% d(0, x) = r(We) < oo)l < oo,

and so all the conditions of Theorem 1.2 are satisfied.

Theorem 1.3 should be compared with Theorem 2 of [4], which requires finite
moments of the f,,(W,) of all orders, but allows arbitrary {y(n)} such that | y(n) |
— o0, The exponent 1/3 in (1.4) is an artifact of our method; however, we can
only improve it at the cost of assuming that higher moments of the f,,(W,) exist.

As a final remark on this subject, we note that Theorem 1.3 has an obvious
extension to bond percolation on Z°. The only change is that the condition
“p # 1/2” be replaced by the assumption that p is such that

(1 K
(1.6) Yxezt 1P<§ d(0, x) = r(Wy) < 00>J < 0,

Known estimates (see [6]) can be used to verify (1.6) for p sufficiently close to 0
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or 1, and it may be that (1.6) holds for all p # p.(d), where p.(d) = sup{p:P(| Wy |
< ) = 1}. As noted above, a weaker condition than (1.6) is sufficient for the
CLT to hold, if more is assumed about the f,’s. For example, if the f,’s are
uniformly bounded in modulus by a constant, then (1.6) may be replaced by

E(r(Wo)1(] Wo| < ®)) < o,

where 1(A) is the indicator function of the event A. It is not currently known
whether this holds for d = 3 and p # p.(3).

Our second main result deals with some random variables which are neither
stationary nor associated, and which arise in the percolation model. For any
circuit v in < let C, be the number of open clusters of y:

_1
| Wxs |

where W, , = {y € v: x and y are connected by an open path r contained in v}.
We set W, , = ¢ if all the bonds of v incident to x are closed. Theorem 1.8
involves a technical condition on a sequence of circuits {y(n)}, and we call this
condition the cut condition. We defer to Section 3 the lengthy precise statement
of this condition (3.4), but note here that the rectangles of Theorem 1.3, with
v(n) = A(k(n)), satisfy the cut condition provided that

C*/ = zxei 1(] Wx,«,l > 0)

. ki(n) RTI ks (n) _
AT it g )~ T M T G (e
THEOREM 1.8. Assumep # 1/2,and let T ={y(n):n=1,2, ...} be a sequence

of circuits such that v is connected for each vy € T and | y(n) | — ® as n — . If
p > 1/2, assume in addition that T satisfies the cut condition. Then {C,,: n =1,
2, - - -} satisfies the CLT.

We will prove Theorem 1.8, as well as several related results, in Section 3.
The proof of Theorem 1.2 is in Section 2.

2. Proof of Theorem 1.2. We may assume E(X,(N)) =0 for all n and N.
Following Newman and Wright [12], we let # be a positive integer and define

m=(|k(N)/2], |RWN)/2], -, [kaN)/2]),
Yi(N) = ¥5-1an=jeXn(N), forl <j=m,
S(N, 7) = ¥1<j=m Yi(N), Z(N)=S(N) - S(N, 7),
o(N, 7)* = var(S(N, #)), s(N,7)*=3% var(Y;(N)),
a(N)?* = var(S(N)),
Yn(t) = E(exp(itS(N))), ¥nAt) = E(exp(itS(N, #))),
Yn;i(t) = E(exp(itY;(N))).
Note that Y;(N) and Z(N) depend upon the choice of 4 and that m = m(N) —

1<j=m
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o as N — o0, We shall prove the theorem in three steps, dealing with the following
statements.

(2. 1) lim SUP N

t t 2d s
¢N<m> - ¢N,z<m> ’ = |¢t| Zer = ulr),

t t
¢N,/<S(N’ /)> - Hlsjsm ¢N,i <S(N, /)> ‘

‘ Xi- u(r),

/Cl
t 1, _
Hisjem ¥ng <—s(N, /)> - exp<—§ t ) ‘ = 0.

The theorem follows immediately from these three equations, since

lim supy_.

(2.2)

=

(2.3) lim SUPN—

~ iu(r) >0 as / — .

We prove a preliminary lemma.

LEMMA 2.4.

a(N)?

lim supy_.e W =1

od _,
+ e X1 u(r).

Proor. Note first that
(2.5) allk(N) | = o(N)* = el k(N) |
where ¢; = u(0). The left-hand side of (2.5) follows from
a(N)? = Ta var(Xa(N)) + Tix; cov(Xi(N), Xi(N)) = e,]| k(N) |
since the X,(IN) are associated. For the right-hand side,
i cov(Xi(N), X;(N)) = %i u(0) = u(0) [ k(N |,

where the second sum is over i € A(k(V)). Similar arguments show that

(2.6) Im| 7% =< s(N, 7)* = o(N, 7)* = |m| #%;
and
(2.7) o(N, 7)< o(N)%.

Expand S(N) in terms of the Y’s to find that
(2.8) a(N)? = var(Z(N)) + 2 cov(Z(N), S(N, 7)) + var(S(N, 7))
and note that
var(Z(N)) < ¢/(|lm + 1| — [m]),
cov(Z(N), S(N, 7)) = cs/Y(|m + 1| — |m]),

(2.9)
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giving by (2.6) that
(2.10) var(Z(N)) + 2cov(Z(N), S(N, #)) = o(s(N, #)?) as N — o,
Consider the final term in (2.8):
var(S(N, 7)) = s(N, #)* + =Z(N)
where
(2.11) Z(N) = Tisizm Lisismi=i cov(Yi(N), Yi(N))
< Yisizm Jaey; 2ok, COVIXL(N), Xp(N))
where Ai={a € Z% (i — 1)/ <a =i/} But
2.12) Saes, Soens COVX(N), Xo(N)) = 2477 T4y ulr)

since there are at most 2d#° ! points of A; which are within distance r of some
point outside A;. Combine (2.6), (2.8) and (2.10)-(2.12) to find that

2
NP _2d

- 7 £
s(N, 22~ ze, =} u(r)

lim supy_.«

as required.
We return to the proofs of (2.1), (2.2) and (2.3).

PRrOOF OF (2.1). By a standard inequality, we have that

t t
¢N<0'(N)> - ¢N’I<-S(N_, /)> l

_ t|< (S(N)_S(N,/)))l/z
=t s, )

1 1 1 o
= |t| (a(N, /)<s(N, 2~ a(N)> + +(V) (var(Z(N))) />

- oN) . (esUim+ 1] - m])\”
””sz>1+< olm] ))

by (2.6), (2.7) and (2.9); (2.1) follows from Lemma 2.4.
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PROOF OF (2.2). We use Theorem 1 of [12] to find that

t t t2
’ ¢N,z<m> - II; ¢N,j<s(N, /)> ’ = 5N, 7)° Y cov(Yi(N), Yi(N))

t2 2 2
=W(O’(N,/) _S(N’/))
<l of _o(N)? -

-2t<s<N, gk 1)’

now use Lemma 2.4.

PROOF OF (2.3). This follows from Lyapunov’s Theorem (see Theorem 7.1.2
of [2], for example). Just note that

E(| Y5(N) |?) = Zapves, E 1 XAN)Xs(N)X,(N) |
< /*¢, by Hoélder’s inequality,

and so, by (2.6),

1

1y o dmlse
S(N, /)3 1<j=<m

3
E(l Y(N)I ) = (” ”/dC )3/2
—0as N — o,

3. Number of open clusters in the percolation model. Consider bond
percolation on the square lattice ., and let v be a circuit in .&. Recall that the
number of open clusters of v is C,, given by

C~/=zx6'y I(Iva|>0)

IWx~,|

where W, , = {y: x and y are connected by an open path r in ¥}. In place of C,,
we might have studied the random variable

1
S 2 T W

where @ V b = max {a, b}; C/ is the number of open clusters of vy together with
the collection of sites in ¥ which are in open clusters of . but are connected to
sites in ¥ by closed edges only. We choose to study C, rather than C, but note
that similar techniques should apply to C..

We will also consider the random variables

1
| Wx Nyl

1(] Wx| > 0),

I«, = er*‘, 1(' le > 0)
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and

J, = Dxe; 1 10 < | Wy, | = | Wy| < ).
| Wyl
A few remarks about these random variables are in order. The quantity I, is the
number of open clusters of . which intersect v. The quantity J, is the number
of open clusters of ¥ which do not belong to an infinite open cluster of <. In
comparing I, with C/, note that two clusters contributing to C; may be parts of
a single cluster contributing to I, and thus

I, =C].
Note that J, discounts those sites x €  for which | Wy | = =, and thus
J,=C,

and, furthermore, J, = C, a.s. if p < 1/2, since if p < 1/2 then all open clusters
are a.s. finite.
In addition to Theorem 1.8, we will prove the following.

THEOREM 3.1. Assume p # 1/2, and let {y(n)} be a sequence of CL:rcuits such
that | ¥(n) | — ® as n — . Then {1} satisfies the CLT.

THEOREM 3.2. Assume p # 1/2, and let {y(n)} be a sequence of circuits such
that each v(n) is connected, and | y(n) | — % as n — . Then {J.,)} satisfies the
CLT.

The connectedness condition is imposed in order to avoid the following type
of problem: if 4 is the union of isolated sites, then J, = 0 a.s.

Theorems 1.8, 3.1 and 3.2 bear a strong resemblance to Theorem 2 of [4], but
they do not follow from that theorem since the functions involved are either not
monotone or not constant on infinite sets, or both.

We may find estimates for the means and variances of the quantities C,, I,
J, discussed above, in the manner of page 238 of [4]. If p # 1/2, then there exist
positive constants ¢; (p), ¢2(p) such that, for any circuit v of & such that v is
connected,

a(p) vl = E@®,) <cp)lvl, a(p)lv| =<variy,) <c(p)|vl,

where ¢ may represent C, I or J, and ¢ may represent I or J. Furthermore var(C,)
= ¢,(p) | v|; we are not able to show the corresponding upper bound on var(C. ).
We do not prove these remarks here; they are consequences of the arguments of
[4] and the forthcoming proofs.

Before turning to these proofs we must state our cut condition. To do this, we
need the dual lattice < *, constructed from & in the usual way by placing a site
in the centre of each square face of . and joining pairs of these sites whenever
the corresponding faces have a common bond of .. Each bond of .<* is declared
open (respectively closed) if the corresponding bond of & is open (respectively
closed). If G, and G, are site-disjoint clusters of v, a cutset in v between G, and
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G, is a set B of bonds contained strictly within v with the properties that
(i) every path which joins some site in G, to some site in G, and which lies
strictly within v, contains some bond in B, and
(ii) B is minimal with the above property, in that (i) holds for no strict subset
of B.
We shall make use of the following observation, which is a consequence of
Whitney’s Theorem (see [6]): every nonempty cutset in y between G, and G,
corresponds to a path or a circuit in the dual lattice £ *.

DEFINITION 3.3. For ¢, ¢ > 0 and for any circuit v and site x € v, we say that
the cut condition x(v, X; ¢, ¢) holds if, for all distinct triples u, v, w of sites in v
such that

d(x,uw) = |y|°and d(v, w) = | 7",

then, for any site-disjoint pair =, 7, of paths in v joining X to u, and v to w,
respectively, and for any cutset B in vy between 7, and =,, we have that B contains
at least ¢ log | v | bonds. )

We shall be interested in circuits ¥ which contain only few sites x € v for
which «(y, x; ¢, ¢) fails.

DEFINITION 3.4. We say that the sequence {y(n)} of circuits satisfies the cut
condition if, for some ¢ satisfying 0 < ¢ < 1/14 and for every ¢ > 0, we have that

|B(n)|*>=o0(|y(n)|) asn — o
where
B(n) = {x € y(n): k(v(n), x; ¢, ¢) does not holdj.

There are many circuit sequences which satisfy the cut condition by satisfying
the stronger condition “| B(n) | = 0 for all large n”. These include the rectangles
A(k(N)) which satisfy (1.7). Examples of circuit sequences which fail to satisfy
the cut condition include dumb-bell shapes, and other circuits which contain an
isthmus whose removal leaves two or more simply connected regions of Z? whose
contents are large in comparison with the width of the isthmus itself. Long thin
rectangles fall into such a category; CLTs hold for some such circuits with
bottlenecks, but we have been unable to find a unified approach to all such
problems, and so we omit such rather special results.

PROOF OF THEOREM 3.1. We adopt the notation of [4] wherever appropriate.
For any set W of sites of ., define

1

W) = A )|

1O < | W] < o)

and
F*/(n) = zxe*; fn(Wx)

Then F,, is the number of finite open clusters of ¥ which intersect y(n); note
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that
Foo=<IlLuw=Fu,+1 as,

since there is at most one infinite open cluster in &, for any value of p (of
course, F. ., = I, as. if p < 1/2). Hence it suffices to show that {F.,} satisfies
the CLT. Note that {f,} is a sequence of functions which satisfies all the
conditions of Theorem 2 of [4] except the requirement of monotonicity; thus
Theorem 2 may not be applied directly to the family {F,.,}. However, the
monotonicity assumption was important only in that it implied that there exists
a positive constant ¢2 such that

(3.5) var(F,,) = ¢*| y(n)| for all n,

and so the asymptotic normality of {F.,,}, suitably normalized, will follow as
soon as we have shown (3.5). Let D,(x) = {y € Z* d(x, y) = k} and Dy(x) =
{y € Z% d(x, y) < k}. Let V(x) denote the set of all bonds of . which join a
site in D;(x) to a site in D,(x). We call V(x) closed if all its bonds are closed.
Note that

(3.6) x=P(V(x)isclosed) = (1 -p)?>0if p<1.

Let v be any circuit in .&. It is not difficult to check that there exists a subset
G(v) of ¥ such that

(i) Dy(x) NDy(y) =¢if X,y EG(y) and x # y,

(i) |G| =|vl/61.
We will show that var(F.,) is large by considering the contribution to F, from
open clusters in

D(y) = Uxeay) Di(x).

Suppose that G(y) contains N sites. For each A C G(v), let 1{A) be the indicator
function of the event that “for all x € G(v), V(x) is closed if and only if x € A”,
and note that E(1(4)) = »'4!(1 — x)¥~ 4!, For each x € v, define

fO if all bonds incident to x are closed
]1 otherwise;

Ex) =

the variables {£{(x): x € G(v)} are independent and identically distributed with
common variance s > 0. Finally, for A C G(y), define

1
F,(A) = Yxeipnw I AGET] 100 < | Wi| < )

where
D(A) = Uyea Di(x).
Then, if 1(4) = 1, we have that
(3.7) F,=F,(A) + ¥xea £(x),
and
(3.8) var(F,) = Yace E((F, — EF,)’1(4)).
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Expand a typical summand by (3.7), to obtain
E((F, — EF,)*1(A)) = E((F,(A) — EF,(4))*1(A))
+ 2E((F,(A) — EF,(A))(Zxea (§(x) — EE(x)))1(A))
+ E((Zxea (§(x) — E£(x)))*1(A))
2 var(Zyea £(X))E(1(4)) = |A|s’E(1(A)),

since first, if 1{(A) = 1 then F,(A) and Yxea £(X) are independent (they depend
only on bonds separated by the V(x), x € A), and secondly, Y .c4 £(X) and 1(4)
are independent. From (3.8),

var(F,) = s Yacoy |A| 74 (1 — o)V141 = °Nr = 2| v |

where o2 = s27r/61 > 0. This shows (3.5), and the proof is complete.

PrROOF OF THEOREM 3.2. For each site x and subgraph W of . containing
X, define .

f(W, x) = 10 < | W, = | W| < ).

| Wil
The functions {f,} do not fall quite into the context of Theorem 2 of Cox and
Grimmett [4], but all their arguments apply to the random variables

fo(Wx) = fo(Wy, X),

where W, is the open cluster of .~ which contains x, except inasmuch as the f’s
are not monotone functions of the site set of W. This difficulty is circumvented
in exactly the same way as in the previous proof, with the following change. For
each x € y we define

E(x) = [0 if all edges of v, incident to x, are closed
~ |1 otherwise.

By the connectedness of ¥, there exists s> > 0 such that var(£(x)) = s? for all
X Ey.

PROOF OF THEOREM 1.8. We consider the case p > 1/2 only, since if p <
1/2 then C, = J, a.s. and the result follows from Theorem 3.2. C, is defined as
the sum of functions which are neither constant on infinite sets nor monotone,
and so Theorem 2 of [4] may not be applied. However, the method of proof of
that theorem may be adapted to deal with these difficulties. In place of monoton-
icity, we use the argument of the proof of Theorem 3.1 to show that there exists
o? > 0 such that C, = C,,, satisfies

(3.9) var(C,) = o2| y(n)| for all n.

We shall see that the cut condition may be used in place of constantness on
infinite sets. Suppose that {y(n)} satisfies the cut condition and fix ¢ > 0; let
B(n, ¢) be the set of sites x € y(n) such that «(y(n), x; ¢, ¢) does not hold. For
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any cluster G of ., we define the diameter of G as
3(G) = sup{d(x, y): x, y € G},
where the supremum is over all pairs X, y of sites of G. We write
C. = C.(1) + Ca(2) + C,(3)

where

Ca(1) = Exeim 7o 7 I 1() Wyl >0, 6(Wxy) < |7(n) |)

Wxnl

is the number of open clusters of y(n) with diameter not exceeding | y(n) |,
C.(2) is the number of open clusters with diameter exceeding | y(n)|° which
intersect B(n, ¢), and C,(3) is the number of open clusters remaining. We show
that C.(2) + C,(3) is negligible in comparison with | y(n)|'/?, and that {C,(1)}
satisfies the CLT.

LEMMA 3.10. E((C.(2) + C.(3))®) = o(|¥(n)|) as n — .

PRrOOF. First note that
|Ca(2)| = |B(n, ¢)| = o(|¥(n)|"?) for any ¢ > 0,
by the cut condition, and thus
(3.11) E(C,(2)%) = o(|¥(n) |).
Next, consider C,.(3). By the cut condition, we have that
P(C,(3) = 2) = P(3 x,u, v, w € y(n)\B(n, c¢) such that
d(x, u) = |y(n)|*, d(v, w) = |[¥(n) |,
UE Wi, we Wy, Wen N Wy, = 9)
< P(3 closed cluster in dual of y(r) of size exceeding
c log | v(n) | bonds)
< Yeeim P(in dual of &, e is in closed cluster of
size exceeding ¢ log | v(n) | bonds)

where the sum is over all bonds e in y(n). There are at most 4 |y(n) | bonds in
v(n), and so

P(C,(3) 22) =4|v(n) |P(| Y| = clog [v(n)])

where Y is the set of bonds in the closed cluster of * containing e. By results
of [6],

P(| Y| = k) = c1 exp(—cek) for all k
where ¢,(q), c2(g) > 0. Thus
P(C.(3) = 2) = 4c,| y(n) |



CENTRAL LIMIT THEOREMS AND PERCOLATION 527 -

The crude bound
E(C,(3)*) = P(C.(3) = 1) + |7(n) |*P(C.(3) = 2)
yields
(3.12) E(C,(3)) =o(|7(n)|) asn—wx
so long as
(3.13) cco > 2.

An application of Minkowski’s inequality completes the proof of Lemma 3.10.
LEMMA 3.14. {C,(1)} satisfies the CLT.

Proor. Write
Cn(]-) = ZXE';(n) fn(Wx)

where

fon(Wy) = 1(] Wyl >0, 6(Wy,) < [7(n) ).

| Wanl

The random variable f,(W,) is defined in terms of bonds of & within distance
| y(n)|° + 1 of site x, and so f,(W,) and f,(W,) are independent if

dx,y) = 2|v(n)|°+ 2.
The proof of Lemma 1 of [4] now yields
| E(pn(A)pn(B)) — Ep,(A)Ep.(B)| < c31(d(4, B) < 2|y(n)|° + 2)
where
pr(A) = [lxea fn(Wx)

and c; is a positive constant, dependingon | A |, | B| and p. The proof of Theorem
2 of [4] is valid until page 244, line 6, whence it is replaced by the following. The
kth semi-invariant ».(n) of Z, = (C,(1) — EC,(1))(var(C,(1)))"/% satisfies

1
(a® | ¥(n))*?
< B(R) | 7(n) |"**(| v(n) || ¥(n) |**)
for constants A (k), B(k), depending on k alone. Thus

v(n) < B(R) | y(n) |1T#+V*2 5 0as n — o, if k = 3,

n(n) < T2LMI*2 A(R)(2m + 1)%*| y(n) |

since ¢ < 1/14 and the power of | y(n) | satisfies
15 — 5k
14

this completes the proof of Lemma 3.14. (Note that the term (2m + 1)* on page
244, line 7 of [4] should be (2m + 1)?*, there and later.)

1+(2k+1)c—‘%k< <=0if k= 3;
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The theorem follows immediately by way of equation (3.9). By (3.9) and
Lemma 3.10, as n — o,

, _ var(C,(1)

var(C,) !
and
D, = M — 0 in mean square,
Vvar(C,)
giving that

C,— EC, _ (c,,cl) — EC,(1)
War(C,) "\ Vvar(C,(1))

is asymptotically normally distributed.

) + (D, — ED,)
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