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CENTRAL LIMIT THEOREMS FOR GAUSSIAN POLYTOPES

BY IMRE BÁRÁNY1 AND VAN VU2

Rényi Institute of Mathematics and University College London
and Rutgers University

Choose n random, independent points in Rd according to the standard
normal distribution. Their convex hull Kn is the Gaussian random polytope.
We prove that the volume and the number of faces of Kn satisfy the central
limit theorem, settling a well-known conjecture in the field.

1. The main result. Let �d = � denote the standard normal distribution
on Rd , its density function is

ψd = ψ = 1

(2π)d/2 exp
{
−x2

2

}
,

where x2 = |x|2 is the square of the Euclidean norm of x ∈ Rd . We will use this
notation only for d ≥ 2, for d = 1 the standard normal has density function

φ = 1

(2π)1/2 exp
{
−x2

2

}

with distribution �.
Fix d ≥ 2 and choose a set Xn = {x1, . . . , xn} of random independent points

from Rd according to the normal distribution � . The convex hull of these points,
Kn = Conv(x1, . . . , xn), is the Gaussian random polytope or Gaussian polytope
for short. This is one of the central models in the theory of random polytopes,
initiated by Rényi and Sulanke in the 1960s. The main goal of this theory is to
investigate the distributions of the key functionals (such as the volume) of random
polytopes.

A cornerstone in probability theory is the central limit theorem. A sequence Xn

of random variables satisfies the central limit theorem if for every t

lim
n→∞ P

(
Xn − EXn√

VarXn

≤ t

)
− �(t) = 0.
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1594 I. BÁRÁNY AND V. VU

It is a natural and important conjecture in the theory of random polytopes that the
key functionals of Kn satisfy the central limit theorem, as n tends to infinity. This
conjecture has been open for several decades, and very few partial results have
been proved (see the next section).

In this paper, we develop a general frame work which enables us to confirm this
conjecture for many functionals. Due to the length of the proofs, we will focus on
the volume and the number of faces, perhaps the two most interesting parameters.
Some other functionals (such as the intrinsic volumes of the probability content)
will be discussed in Section 14.

For a convex polytope K , we use Vol(K) and fs(K) to denote its volume and
number of faces of dimension s, respectively. Here are our main results.

THEOREM 1.1. Let d be a fixed integer at least 2. There is a function ε(n)

tending to 0 as n tends to infinity such that the following holds. For any value of t ,∣∣∣∣P
(

Vol(Kn) − E Vol(Kn)√
Var Vol(Kn)

≤ t

)
− �(t)

∣∣∣∣ ≤ ε(n).(1)

THEOREM 1.2. Let d be a fixed integer at least 2 and s be a nonnegative
integer at most d − 1. There is a function ε(n) tending to 0 as n tends to infinity
such that the following holds. For any value of t ,

∣∣∣∣P
(

fs(Kn) − Efs(Kn)√
Varfs(Kn)

≤ t

)
− �(t)

∣∣∣∣ ≤ ε(n).(2)

REMARK 1.3. In both theorems, we can take ε(n) = (logn)−(d−1)/4+o(1).
(See Remarks 4.2, 3.3 and 8.3.)

In the next section, we give a brief survey about the study of Gaussian polytopes
and random polytopes in general.

NOTATION. In the whole paper, we assume that n is large, whenever needed.
The asymptotic notation are used under the assumption that n → ∞. Given non-
negative functions f (n) and g(n), we write f (n) = O(g(n)) (f (n) = �(g(n)))
if there is a positive constant C, independent of n, such that f (n) ≤ Cg(n)

(f (n) ≥ Cg(n)) for all sufficiently large value of n. We write f (n) = �(g(n))

if f (n) = O(g(n)) and f (n) = �(g(n)). In this case, we say that f (n) and g(n)

have the same order of magnitude. Finally f (n) = o(g(n)) if f (n)/g(n) tends to
zero as n tends to infinity.

Consider a (measurable) subset S of Rd . The probability content of S is

�(S) =
∫
S
ψ(x)dx.
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P, E, Var denote probability, expectation, variance, respectively. Let ti , i =
1, . . . , n, be independent random variables and Y = Y(t1, . . . , tn) be a random vari-
able depending on t1, . . . , tn. E(Y |t1, . . . , ti) is the conditional expectation of Y

conditioned on the first i variables. IE is the indicator of the event E: IE = 1 if E

holds and 0 otherwise.

2. History. Gaussian random polytopes were first considered by Rényi and
Sulanke in their classical paper [16]. Naturally, the existence of central limit the-
orems should be one of the very first questions to ask. However, early results are
very far from a possible answer of this question, due to the lack of tools. These
results mostly focused on expectations. In particular, Rényi and Sulanke deter-
mined the expectation of f1(Kn) for a Gaussian polytope in R2. (Here and later fi

denotes the number of faces of dimension i.) In 1970, Raynaud [14] computed
Efd−1(Kn) in all dimensions. The general formula is

Efs(Kn) = 2d

√
d

(
d

s + 1

)
βs,d−1(π logn)(d−1)/2(

1 + o(1)
)
,(3)

where s ∈ {0,1, . . . , d − 1} and d ≥ 1, as n → ∞. Here βs,d−1 is the internal
angle of the regular (d −1)-simplex at one of its s-dimensional faces. The formula
was proved by Affentranger and Schneider [2] and by Baryshnikov and Vitale [6];
simpler proofs can be found in [12]. Recently Hug and Reitzner [13] obtained an
estimate for the variance

Varfs(Kn) = O
(
(logn)(d−1)/2)

.(4)

In [10, 11], Hueter stated a central limit theorem for f0(Kn), but the proof had a
gap, namely, the claimed estimate on the variance was not correct.

As far as the volume is concerned, Affentranger [1] determined the expectation
of Vol(Kn):

E Vol(Kn) = κd(2 logn)d/2(
1 + o(1)

)
.(5)

Here κd denotes the volume of Bd , the d-dimensional unit ball. An upper bound
for the variance of Vol(Kn) is given by Hug and Reitzner [13]:

Var Vol(Kn) = O
(
(logn)(d−3)/2)

.(6)

We are not aware of a central limit theorem for the volume, prior to this paper.
Another popular model of random polytopes is the so-called uniform model,

defined as follows. Let K be a convex set in Rd of volume one. Select n random
points in K with respect to the uniform distribution and define the random polytope
as the convex hull of these points. Similar to the situation with the Gaussian model,
there is a vast amount of literature focusing on the expectations of the key functions
(see [21] for a survey). As far as central limit theorems are concerned, the case d =
2 has been studied by Groeneboom [8], Groeneboom and Cabo [7], and Hsing [9].
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They proved central limit theorems for random polyogon in the square and the unit
disk. But their methods do not extend to higher dimensions.

In 2004 and 2005 there were several notable developments on the uniform
model, especially in the case when the mother body K has smooth boundary: Vu
[19] proved that several key functionals have distributions with exponential tails.
Next, Reitzner [15] established a central limit theorem for a Poisson variant of the
model. Further, Vu [20], using the results of the above two papers and a coupling
argument, proved several central limit theorems for the uniform model. The central
limit theorem when K is a polytope was established by Bárány and Reitzner [5].

The framework we develop in this paper makes use of ideas from [15, 19, 20]
and also from [5]. Moreover, due to the obvious differences between the uniform
measure and the Gaussian one, we also need to introduce several new ideas to
handle technical obstacles.

Let us conclude this section with a few basic facts about the normal distribution.
Let r be a positive number at least one. Let B(r) denote the ball of radius r centered
at the origin and B(r) be its complement. The probability content of B(r) is

�(B(r)) = �
(
e−r2/2rd−2)

.(7)

Let H(r) be a half space at distance r from the origin [H(r) is not unique, but it
does not matter]. The probability content of H(r) is

�(H(r)) = �
(
e−r2/2r−1)

.(8)

3. Two more models. It is hard to prove the CLT for Kn directly. We are
going to take a detour and prove the CLT for some more convenient models,
namely K ′

n and �n, and next prove that the distributions of Vol(Kn) and Vol(K ′
n)

and Vol(�n) are approximately the same.
We define K ′

n first. Let c0 be a large constant compared to the dimension d

(c0 = 100d will satisfy all purposes). Define R > 0 via

R2 = 2 logn + log(logn)c0 .(9)

We will use this definition later as well, for the time being we only need the fol-
lowing consequence.

e−R2/2Rd−2 = �

(
(logn)(d−2)/2

n(logn)c0/2

)
= �

(
1

n(logn)C0

)
,(10)

where C0 = c0
2 − d−2

2 . Notice that the left-hand side is (up to a constant factor) the
probability content of the complement of B(R), the ball of radius R centered at
the origin, see (7). The probability that one of n random points falls outside B(R)

is at most

O

(
n × 1

n(logn)C0

)
= O

(
1

(logn)C0

)
.
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By setting c0 (and so C0) sufficiently large, this probability will be negligible. This
allows us to replace the normal distribution � by the truncated distribution � ′,
restricted to B(R). � ′ is defined so that for any region S in B(R), the measure
of S is � ′(S) = �(S)

�(B(R)
. To be precise, the density function ψ ′ of � ′ is defined as

ψ ′(x) = ψ(x)
Ix∈B(R)

�(B(R))
,

where I is the indicator variable.
Let K ′

n be the convex hull of a set of n random points chosen independently
in B(R) with respect to � ′. The central limit theorem for the K ′

n model says the
following.

THEOREM 3.1. Let d be a fixed integer at least 2. There is a function ε(n)

tending to zero as n tends to infinity such that∣∣∣∣P
(

Vol(K ′
n) − E(Vol(K ′

n))√
Var Vol(K ′

n)
≤ t

)
− �(t)

∣∣∣∣ ≤ ε(n)

holds for all t .

Again, it is hard to prove this theorem directly. That is why we need the second
model, the Poisson polytope.

We consider a Poisson point process, X(n), of intensity n and underlying dis-
tribution � ′ where � ′ is the truncated Gaussian, that is, the Gaussian restricted
to B(R). Let S be a measurable subset of Rd . The intersection of X(n) with S con-
sists of random points {x1, . . . , xk} = X(n) ∩ S where the number, k, of random
points is Poisson distributed with expectation n� ′(S) and for fixed k, the points
are distributed independently. The property that we need most is that if S1 and S2
are disjoint measurable sets, then the two point sets {x1, . . . , xk1} = X(n) ∩ S1 and
{y1, . . . , yk2} = X(n) ∩ S2 are independent, k1 and k2 are independently Poisson
distributed. The Poisson polytope is, by definition, the convex hull of X(n).

Another, equivalent and useful, way to look at �n is the following. First choose
a random number n′ with respect to the Poisson distribution with mean n. Next,
generate n′ random, independent points x1, . . . , xn′ with respect to � ′, the trun-
cated normal distribution on Rd . Then �n is the convex hull, Conv{x1, . . . , xn′ },
of the chosen points. It is well known that n′ is very close to n with high probabil-
ity:

P
(|n′ − n| ≥ A

√
n logn

) ≤ n−A/4,

for every constant A ≥ 10 (the constants 4 and 10 are just convenient choices and
play no important role). So a good approximation of the Poisson polytope �n

is Kn′ with n′ Poisson distributed. Clearly, n′ is concentrated on the interval I =
[n − A

√
n logn,n + A

√
n logn] and negligible outside this interval. The central

limit theorem for the Poisson model is as follows.
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THEOREM 3.2. Let d be a fixed integer at least 2. There is a function ε(n)

tending to 0 as n tends to infinity such that the following holds. For any value of t ,∣∣∣∣P
( |Vol(�n) − E Vol(�n)|√

Var Vol(�n)
≤ t

)
− �(t)

∣∣∣∣ ≤ ε(n).

REMARK 3.3. In both theorems above one can take ε(n) =
(logn)−(d−1)/4+o(1). This error term will be the dominating one when we apply
Lemma 4.1 from the next section.

4. The plan of the proof. From now on we focus on the volume, the proof
for the number of faces is basically the same and will be discussed in Section 13.

The proof is long and consists of many steps. To help the reader grasp the main
ideas quickly, we first lay out the plan of the proof. The leading idea is coupling.
In fact, our proof will involve two different couplings. Both of them are based on
a simple lemma.

LEMMA 4.1. Let Yn and Y ′
n be two sequences of random variables with

means µn and µ′
n, variances σ 2

n and σ ′2
n, respectively. Assume that there are func-

tions ε1(n), ε2(n), ε3(n), ε4(n), all tending to zero as n tends to infinity such that:

• |µ′
n − µn| ≤ ε1(n)σ ′

n,
• |σ ′

n − σn| ≤ ε2(n)σ ′
n,

• for any t , |P(Y ′
n ≥ t) − P(Yn ≥ t)| ≤ ε3(n),

• for any t , ∣∣∣∣P
(

Y ′
n − µ′

n

σ ′
n

≤ t

)
− �(t)

∣∣∣∣ ≤ ε4(n).

Then there is a positive constant C such that for any t ,∣∣∣∣P
(

Yn − µn

σn

≤ t

)
− �(t)

∣∣∣∣ ≤ C

4∑
i=1

εi(n).

Basically, this lemma asserts that if Y ′
n satisfies the CLT (the fourth condition)

and Yn is sufficiently close to Y ′
n in distribution (the first three conditions), then Yn

also satisfies the CLT. We defer the routine proof to the end of this section. The
lemma has been used in an implicit form in [20] and in [15].

REMARK 4.2. We can rewrite the error term C
∑4

i=1 εi(n) as C max4
i=1 εi(n)

(the two C’s can have different values). In applications of Lemma 4.1, ε4(n) will
be the dominating term.

We now present the plan for the proof of Theorem 1.1, which consists of the
following steps.



GAUSSIAN POLYTOPES 1599

• Step 1 (Variance). In this step, we show that the exact order of magnitude of
Var Vol(Kn) is (logn)(d−3)/2. The upper bound was obtained in [13]. We will
prove the matching lower bound. Section 6 is devoted to this step. The necessary
geometric tools are developed in Section 5. The variance plays a significant role
and we will use the estimate obtained in this step several times later on.

• Step 2 (The first coupling). In this step, we couple Kn and K ′
n in order to show

that they satisfy the first three conditions of Lemma 4.1. This will be done
in Section 7. Thus, it remains to verify the fourth, and critical, condition that
Vol(K ′

n) satisfies the CLT. This task will take time and effort. We mention that
the second condition of Lemma 4.1, together with Step 1, imply that the order
of magnitude of Var Vol(K ′

n) is (logn)(d−3)/2.
• Step 3 (The second coupling). In this step which is in Section 8, we couple �n

with K ′
n. Technically speaking, we are going to verify the first three conditions

of Lemma 4.1 with respect to Vol(�n) and Vol(K ′
n). After this, both Theo-

rem 1.1 and Theorem 3.1 follow from Theorem 3.2, the CLT for the Pois-
son model. This step is close to the coupling argument used for the uniform
model [20]. However, the analysis for the current case is simpler, as strong con-
centration results are not needed. Again, the results imply that the order of mag-
nitude of Var Vol(�n) is (logn)(d−3)/2).

• Step 4 (Sandwiching). In this step, we define a radius r < R but very close to R,
and prove that K ′

n contains the ball B(r) with high probability, namely, with
probability 1 − (logn)−C . (For this end r has to be chosen carefully, see Re-
mark 9.4) By definition, K ′

n is contained in B(R). So with high probability, K ′
n

is sandwiched between two very close balls. We will also prove that the Poisson
polytope has the same property, that is, B(r) ⊂ �n ⊂ B(R) with high probabil-
ity. This is the content of Section 9.

The main idea behind the proof of Theorem 3.2, following Reitzner [15], is as
follows. It is well known that if ξ1, . . . , ξn are independent variables with bounded
means and variances, then the distribution of the normalized version of the sum∑n

i=1 ξi is approximately Gaussian. We are going to use a strengthening of this
result, originally due to Stein [18], which asserts that it suffices to assume that
the ξi are weakly dependent. The quantitative and technical statement below is
from Rinott [17], which is slightly stronger than an earlier one due to Baldi and
Rinott [3].

THEOREM 4.3. Assume G is a graph with vertex set V (G) and edge set E(G),
|V (G)| = m, and maximal degree D. Assume ξv is a random variable satisfying
|ξv| ≤ M almost surely for each v ∈ V (G). Assume further that if there is no edge
between a vertex in V1 ⊂ V (G) and a vertex of V2 ⊂ V (G) where V1 and V2 are
disjoint, then the random variables {ξv :v ∈ V1} and {ξv :v ∈ V2} are independent.
Then, writing ξ = ∑

v∈V (G) ξv , we have∣∣∣∣P
(

ξ − Eξ√
Var ξ

− �(t)

)∣∣∣∣ ≤ DM√
Var ξ

(
1√
2π

+ 16

√
mDM√
Var ξ

+ 10
mDM2

Var ξ

)
.
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In order to apply this result we have to make some geometric preparations and
define the dependency graph.

• Step 5 (The dependency graph). We subdivide the annulus A(R, r) = B(R) \
B(r) into pairwise internally disjoint cells W1, . . . ,Wm. The cells are nice and
wellbehaving, and they define the dependency graph G with vertex set V (G) =
{1, . . . ,m} and the pair (i, j) forming an edge of G if Wi and Wj are far apart.
(The actual definition is different, but this is the essence of it.) Note that the
dependency graph is defined by geometric conditions. We will give an upper
bound on the maximal degree of G, and on the volume of the cells. The details
appear in Section 10. Note that randomness does not come up here but is present
in the background.

• Step 6 (CLT for the Poisson model). In this step, we work with the Poisson
model �n under condition B which says that B(r) ⊂ �n. The Baldi–Rinott
theorem can be applied with ξi = Vol(�n ∩ Wi) and dependency graph G. This
is a technical step which is carried out in Section 11. It proves Theorem 3.2, the
CLT for the Poisson model, but only under condition B . The role of the Poisson
model is critical here, as it guarantees that ξi and ξj are independent whenever i

and j are not adjacent in G.
• Step 7 (Removing condition B). This is a technical step which is another (this

time simple), application of Lemma 4.1. It proves, finally, that Vol(�n) satisfies
the CLT (Theorem 3.2) and so it finishes the proof of the main theorem.

The proof for Theorem 1.2 concerning the number of faces is similar and will be
presented in Section 13. In the last Section 14, we discuss few other results which
can be proved using the same method.

Let us now conclude this section with the proof of Lemma 4.1.

PROOF OF LEMMA 4.1. We have to show that for any x

P
(

Yn − µn

σn

≤ x

)
= �(x) + O

( 4∑
i=1

εi(n)

)
.

By the third condition of the lemma

P
(

Yn − µn

σn

≤ x

)
= P(Yn ≤ µn + xσn) = P(Y ′

n ≤ µn + xσn) + O(ε3(n)).

On the other hand,

P(Y ′
n ≤ µn + xσn) = P(Y ′

n ≤ µ′
n + x′σ ′

n),

where x′ = µn−µ′
n

σ ′
n

+ xσn

σ ′
n

. The first two conditions of the lemma guarantee that x′
is between the maximum and minimum of the four values x(1 ± ε2(n)) ± ε1(n).

Moreover, the fourth condition of the lemma yields

P(Y ′
n ≤ µ′

n + x′σ ′
n) = �(x′) + O(ε4(n)).
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Further,

�(x′) = �(x) + (x′ − x)�′(x0)

for some x0 between x and x′. The difference |x − x′| is at most |x|ε2(n) + ε1(n).
As �′(x) decays exponentially, it is easy to see that |x|�′(x0) = O(1) and thus

�(x′) = �(x) + O
(
ε1(n) + ε2(n)

)
.

Putting everything together completes the proof:

P
(

Yn − µn

σn

≤ x

)
= �(x) + O

(
ε1(n) + ε2(n) + ε3(n) + ε4(n)

)
. �

5. A geometric construction. Here we give a geometric construction, á la
Reitzner [15] and Bárány and Reitzner [5]. We use it in the next section for esti-
mating Var Vol(Kn) and Varfs(Kn). A similar, if more subtle, construction will be
needed for the dependency graph as well.

In the construction b1, b2, . . . are positive constants that depend on dimension
only. Let S(r) denote the sphere of radius r centered at the origin. We define

r2 = 2 logn − log logn.

The choice of r is not arbitrary here: it ensures that �(
i ) = �(1/n) (see later).
Next we choose a system of points y1, . . . , ym from the sphere S(r) which is max-
imal with respect to the property that for distinct i and j

|yi − yj | ≥ 2b1.

Such a system can be found by an obvious greedy algorithm. The spherical caps
on S(r) with center at yi and radius b1 are pairwise disjoint, and the same spherical
caps with radius 2b1 cover S(r). This implies by volume comparison

CLAIM 5.1. We have

m = �
(
(logn)(d−1)/2)

.

Next, for each i = 1, . . . ,m set

y0
i =

(
1 + 1

r2

)
yi.

Thus |y0
i | = r + 1

r
and we have, for all x ∈ Rd with r ≤ |x| ≤ r + 1

r
that

ψ(x) = �

(√
logn

n

)
(11)

Next we let Hi denote the hyperplane with equation z · yi = r2. For each i =
1, . . . ,m we fix a regular (d − 1)-dimensional simplex in Hi whose vertices
y1
i , . . . , yd

i lie in the (d − 2)-dimensional sphere

Hi ∩ S
(
yi,

√
2

)
.



1602 I. BÁRÁNY AND V. VU

The center of this simplex is clearly yi . The simplex 
i is now defined as the convex
hull of the y

j
i , j = 0,1, . . . , d .

CLAIM 5.2. For all i

�(
i) = �

(
1

n

)
.

PROOF. It is clear that for j = 1, . . . , d

|yj
i | =

√
r2 + 2 < r + 1

r
= |y0

i |.

Then every x ∈ 
i satisfies r ≤ |x| ≤ r + 1
r
, and the claim follows from (11) as

Vol 
i = �( 1√
logn

). �

As the final step of the construction, for i = 1, . . . ,m, j = 0,1, . . . , d , let 
j
i

be a homothetic copy of 
i where the center of homothety is y
j
i and the factor of

homothety is a small number b2 > 0.
This is our geometric construction. Now we establish several properties of this

construction.

CLAIM 5.3. We have

�(
j
i ) = �

(
1

n

)
.

PROOF. The density ψ(x) satisfies (11) for all x ∈ 
j
i . The claim follows as

the volume of 
j
i is just bd

2 times that of 
i . �

Assume now that zj is an arbitrary point in 
j
i , j = 0,1, . . . , d . We define the

cone Ci via

Ci = z0 + pos{zj − z0 : j = 1, . . . , d}.
The following lemma is crucial since it implies the independence structure

of Kn needed when estimating the variance.

LEMMA 5.4. For b1 large enough and b2 small enough the cone Ci contains
all simplices 
k with k �= i.

PROOF. We have to check that the segment [z0, y
k
j ] intersects Conv{z1, . . . ,

zd} whenever j �= i and k ∈ {0,1, . . . , d}. This is the same as checking that the
segment [z0, y

k
j ] intersects Conv{z′

1, . . . , z
′
d} where z′

j = aff{z0, zj } ∩ Hi . If b2 is
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small enough then the (d − 1)-dimensional ball Bi = Hi ∩ B(yi,
√

2
2d

) is contained
in Conv{z′

1, . . . , z
′
d}. It is not hard to see that, for large enough b1, the segment

[y0
i , yk

j ] intersects Hi ∩ B(yi,
√

2
3d

) which is a smaller shrunken copy of Bi . (Here

again j �= i and k ∈ {0,1, . . . , d}.) But z0 is very close to y0
i if the factor of homo-

thety, b2 is very small, and then the segment [z0, y
k
j ] intersects Bi . �

We need one more lemma for estimating the variance. Let H
j
i be the half space

containing 
k
i for all k = 1, . . . , d except k = j , not containing 
0

i and 
j
i , and

whose bounding hyperplane touches all 
k
i except k = j .

CLAIM 5.5. If b2 is small enough, then

�(H
j
i ) = O(n−1).

PROOF. Let H denote the hyperplane through the points yk
i (k = 0,1, . . . , d ,

k �= j ) for this proof. It is not hard to check that the distance of H from the origin
is at least r − d2

r
. The bounding hyperplane of H

j
i tends to H as b2 tends to zero.

So for small enough b2, the distance of H
j
i from the origin is at least r − 2d2

r
. An

application of (8) finishes the proof. �

6. The variance.

THEOREM 6.1. We have Var Vol(Kn) = �((logn)(d−3)/2).

PROOF. The upper bound (6) has been proved by Hug and Reitzner [13]. So
we need to give a lower bound on Var Vol(Kn).

Let Xn = {x1, . . . , xn} denote our random sample of n points. Denote by Ai

the event that exactly one random point (out of the sample Xn) is contained in
each simplex 
j

i , j = 0,1, . . . , d , and no further point of Xn is contained in H+
i ∪⋃d

j=1 H
j
i . Here H+

i is the half space not containing the origin whose bounding

hyperplane is Hi . Since H+
i is farther from the origin than H

j
i (j > 0), Claim 5.5

implies �(H+
i ) = O(1/n).

LEMMA 6.2. There is a positive constant b3 such that, for every i = 1, . . . ,m

P(Ai) ≥ b3.

PROOF. Assuming that Ai has occurred, let xj ∈ Xn denote the unique point

of Xn in 
j
i , j = 0,1, . . . , d , and set X = Xn \ {x0, . . . , xd}. As �(
j

i ) = �(1/n)
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and �(H
j
i ) = O(1/n) we have

P(Ai) =
(

n

d + 1

)
P(xj ∈ 
j

i , j = 0, . . . , d)P

(
X ∩

(
H+

i ∪
d⋃

k=1

Hk
i

)
= ∅

)

=
(

n

d + 1

) d∏
0

�(
j
i )

(
1 − �

(
H+

i ∪
d⋃

k=1

Hk
i

))n−d−1

≥ c1n
d+1 · 1

nd+1

(
1 − c

n

)n−d−1

≥ b3 > 0.

Here c is (d +1) times the implicit constant in Claim 5.5, and c1 is another constant
that depends on d only. �

So we can bound the expected number of Ai from below:

E

(
m∑
1

IAi

)
=

m∑
1

P(Ai) = �(m).

We start bounding Var Vol(Kn) from below. Let F denote the position of all ran-
dom points from Xn except those in 
0

i with IAi
= 1, i = 1, . . . ,m. We decompose

the variance under condition F :

Var Vol(Kn) = E Var(Vol(Kn)|F ) + Var E(Vol(Kn)|F )
(12)

≥ E Var(Vol(Kn)|F ).

Suppose condition F holds and IAi
= IAj

= 1. Clearly, the unique xi ∈ 
0
i and

xj ∈ 
0
j (xi, xj ∈ Xn) are vertices of Kn, and, because of Lemma 5.4, there is no

edge between xi and xj . Then the change in Kn when xi is moved is independent
of the change when xj is moved. This implies that the change in Vol(Kn) when xi

is moved is independent of the change when xj is moved, showing that

Var(Vol(Kn)|F ) = ∑
i:IAi

=1

Varxi
Vol(Kn)

where the variance in the sum is taken when xi is changing within 
0
i .

We now evaluate this variance. Let zj ∈ Xn be the unique random point in


j
i (j = 1, . . . , d). Denote the simplex Conv{xi, z1, . . . , zd} by 
. The change

in Vol(Kn) when xi changes within 
0
i equals the change in Vol(
) and

Varxi
Vol(
) = E

(
Vol(
) − Exi

Vol(
)
)2

.

The base of 
, Conv{z1, . . . , zd}, is a fixed (d − 1)-dimensional simplex, of con-
stant (d − 1)-dimensional volume. Its height varies nearly between 1

r
(1 − b2) and

1
r
, so the expectation Exi

Vol(
) is about �(1/r). Moreover, the height of 
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changes on a small interval of length about b2/r , so the volume is a linear (but
not constant) function on a positive fraction of this interval. Consequently,

(
Vol(
) − Exi

Vol(
)
)2 = �

(
1

(
√

logn)2

)
= �

(
1

logn

)

holds on a positive fraction of 
0
i . This implies that

Varxi
Vol(
) = �

(
1

logn

)
.

Putting this into formula (12) and using (6) completes the proof. �

The same method, with the same notation, works for Varfs(Kn), so we present
it here.

THEOREM 6.3. We have Varfs(Kn) = �((logn)(d−3)/2).

PROOF. The upper bound is again due to Hug and Reitzner [13].
The method for the lower bound is similar to the one in [15]. We assume s ∈

{0,1, . . . , d −1}. Condition Ai is the same as in Lemma 6.2 except that we require
exactly two points from Xn to be in 
0

i . Also, we let F denote the position of all
random points from Xn except those two in 
0

i with IAi
= 1, i = 1, . . . ,m. Then

Lemma 6.2 remains valid for the new Ai . We can decompose the variance under
condition F the same way and we still get (12). An identical analysis applies and
gives

Var(fs(Kn)|F ) ≥ ∑
i IAi

=1

Varxi ,yi
fs(Kn)

where the variance in the sum is taken when xi, yi are changing within 
0
i . Here xi

and yi are the two points from Xn contained in 
0
i . The proof of the following

claim is simple and left as an exercise.

CLAIM 6.4. We have

Varxi ,yi
fs(Kn) = �(1).

This finishes the proof of Theorem 6.3. �

7. The first coupling. Here we show that the random variables Vol(Kn) and
Vol(K ′

n) satisfy the first three conditions of Lemma 4.1.

LEMMA 7.1. We have

|E Vol(K ′
n) − E Vol(Kn)| ≤ √

Var Vol(Kn)(logn)−C0/2,

|Var Vol(K ′
n) − Var Vol(Kn)| ≤ Var Vol(Kn)(logn)−C0/2.
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Furthermore, for all t ,∣∣P(
Vol(K ′

n) ≥ t
) − P

(
Vol(Kn) ≥ t

)∣∣ ≤ (logn)−C0/2.

PROOF. Choose n points t1, . . . , tn in Rd with respect to the normal distribu-
tion � . Let A denote the event that all n points fall inside B(R). [Recall that R is
defined in (9).] For every nonnegative integer i, let Bi be the event that all n points
fall inside B(4i+1R) but there is at least one point outside B(4iR). Trivially

A =
∞⋃
i=0

Bi.

Let Y = Y(t1, . . . , tn) be a nonnegative random variable depending on t1, . . . , tn.
Now choose n points t ′1, . . . , t ′n in Rd with respect to the truncated distribution � ′
and define Y ′ accordingly. It is clear that

E(Y |A) = E(Y ′).

Let c be a nonnegative constant. We say that Y is c-bounded if E(Y |A) ≤
Vol(B(R))c and E(Y |Bi) ≤ Vol(B(4i+1R))c for all i ≥ 0.

LEMMA 7.2. If Y is c-bounded then

|E(Y ) − E(Y ′)| = O(E(Y )(logn)−C0+cd/2).

PROOF. We start with the identity

E(Y ) = E(Y |A)P(A) + E(Y |A)P(A).

Since E(Y |A) = E(Y ′), the triangle inequality implies that

|E(Y ) − E(Y ′)| ≤ E(Y ′)P(A) + E(Y |A)P(A).(13)

To estimate E(Y |A), observe that

E(Y |A) =
∞∑
i=0

E(Y |BiA)P(Bi |A).(14)

The (c-boundedness) assumption of the lemma implies

E(Y |BiA) = E(Y |Bi) ≤ Vol(B(4i+1R))c

= O
(
4cd(i+1)Rcd) = O

(
4cd(i+1)(logn)cd/2)

.

Furthermore, as Bi implies A,

P(Bi |A) = P(Bi)

P(A)
= O((logn)C0P(Bi)).
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On the other hand, P(Bi) is at most the probability that there is a point outside
B(4iR). By the union bound and (7), this probability is

O(n�(B(4iR))) = O(n exp(−42iR2/2)(4iR)d−2).(15)

For i = 0, the right-hand side of (15) is �((logn)C0) by the definition of R. For
i ≥ 1, the right-hand side of (15) is at most n−2i , as

exp(−42iR2/2) = n(−1+o(1))42i ≤ n−2i−1.

This shows that
∞∑
i=0

E(Y |BiA)P(Bi |A) = O

( ∞∑
i=0

4cd(i+1)(logn)cd/2n−2i

)
= O((logn)cd/2).

Therefore the right-hand side of (13) is at most

O((logn)cd/2)P(A) = O((logn)−C0+cd/2),

proving the lemma. �

Let Y be the volume. It is clear that Y is 1-bounded. Applying Lemma 7.2, we
have

|E Vol(K ′
n) − E Vol(Kn)| = O(E Vol(Kn)(logn)−C0+d/2) = O((logn)−C0+d),

since E Vol(Kn) = �((logn)d/2). Moreover Var Vol(Kn) = �((logn)(d−3)/2). By
setting c0 sufficiently large, it thus follows that

|E Vol(K ′
n) − E Vol(Kn)| = O

(√
Var Vol(Kn)(logn)−C0/2)

.

We will use this estimate for proving the statement about the difference between
the two variances. But first, let Y be the square of the volume. It is clear that Y is
2-bounded. Thus, Lemma 7.2 yields

|E Vol(K ′
n)

2 − E Vol(Kn)
2|

= O(E(Vol(Kn))
2(logn)−C0+d) = O((logn)−C0+3d),

since Vol(Kn)
2 = O((logn)2d), which (by the definition of variance) implies,

|Var Vol(K ′
n) − Var Vol(Kn)|

= O((logn)−C0+3d) + |(E Vol(K ′
n))

2 − (E Vol(Kn))
2|.

On the other hand,

|(E Vol(K ′
n))

2 − (E Vol(Kn))
2|

= |E Vol(K ′
n) + E Vol(Kn)||E Vol(K ′

n) − E Vol(Kn)|,
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where |E Vol(K ′
n)−E Vol(Kn)| is O((logn)−C0+d) by the previous argument. Fur-

thermore

|E Vol(K ′
n) + E Vol(Kn)| = O(E Vol(Kn)) = O((logn)d/2).

Putting everything together, we obtain

|Var Vol(K ′
n) − Var Vol(Kn)| = O((logn)−C0+3d) + O((logn)−C0+d(logn)d/2)

= O((logn)−C0+3d).

Again, by setting c0 large, we have

|Var Vol(K ′
n) − Var Vol(Kn)| = O(Var Vol(Kn)(logn)−C0/2),

as claimed.
To bound the difference between the two probabilities, define

Y = IVol(Kn)≥t .

In this case, Y is bounded from above by 1, thus it is 0-bounded. Since E(Y ) =
P(Vol(Kn) ≥ t), the claim follows instantly. �

We have the following:

COROLLARY 7.3. We have Var Vol(K ′
n) = �((logn)(d−3)/2).

8. The second coupling. In this section we will show that the first three con-
ditions of Lemma 4.1 are satisfied for the random variables Vol(�n) and Vol(K ′

n).
The fourth condition is just Theorem 3.2, whose proof will come later. The first
three conditions of Lemma 4.1 are stated next.

LEMMA 8.1. For all sufficiently large n we have

|E Vol(�n) − E Vol(K ′
n)| ≤ n−1/2+o(1)

√
Var Vol(K ′

n),

|Var Vol(�n) − Var Vol(K ′
n)| ≤ n−1/2+o(1)Var Vol(K ′

n);
moreover, the following holds for all t :∣∣P(

Vol(�n) ≤ t
) − P

(
Vol(K ′

n) ≤ t
)∣∣ ≤ n−1/2+o(1).

This lemma plus Theorem 3.2 imply Theorem 3.1, that is, the central limit the-
orem for Vol(K ′

n), which, in turn, implies Theorem 1.1. So we will still have to
prove Theorem 3.2, a major task which is the content of the next four sections. We
mention further that Lemma 8.1 implies the following.

COROLLARY 8.2. We have Var Vol(�n) = �((logn)(d−3)/2).



GAUSSIAN POLYTOPES 1609

REMARK 8.3. Let us notice that when applying Lemma 4.1, the dominating
error term comes from Theorem 3.2. Indeed, the error terms come from the first
coupling are at most (logn)−C , where C can be arbitrarily large. The error terms
from Lemma 8.1 is even smaller, n−1/2+o(1). This implies the estimate on the error
term in Remark 1.3.

Lemma 8.1 is a consequence of the following lemma.

LEMMA 8.4. Let A be a constant at least 10. For any integer n′ between n

and, n + A
√

n logn

|E Vol(K ′
n′) − E Vol(K ′

n)| ≤ n−1/2+o(1),

|Var Vol(K ′
n′) − Var Vol(K ′

n)| ≤ n−1/2+o(1).

Moreover, for all t ,∣∣P(
Vol(K ′

n′) ≤ t
) − P

(
Vol(K ′

n) ≤ t
)∣∣ ≤ n−1/2+o(1).

PROOF OF LEMMA 8.1 VIA LEMMA 8.4. Let A be a constant at least 10.
We will use the fact that the probability that a Poisson variable with mean n falls
outside the interval I = [n − A

√
n logn,n + A

√
n logn] is less than n−A/4. As

Vol(�n) is bounded from above by Vol(B(R)), we have

E Vol(�n) = ∑
n′∈I

E(Vol(K ′
n′))P(n = n′) + O(n−A/4 Vol(B(R))).

As Vol(B(R)) = O((lognd/2)), the last term on the right-hand side is
O(n−A/4+o(1)) = O(n−1) as A ≥ 10. So the first statement of Lemma 8.4 implies

|E Vol(�n) − E Vol(K ′
n)| ≤ ∑

n′∈I

|E(Vol(K ′
n′)) − E(Vol(K ′

n))|P(n = n′) + O(n−1)

≤ n−1/2+o(1).

Taking into account the fact that E(Vol(K ′
n)) = �((logn)d/2) and

Var(Vol(Kn)) = �((logn)(d−3)/2), one can deduce the first statement of
Lemma 8.1. The third statement of the same lemma can be proved the same way.

Now we turn to the second statement. For every number n′ in the interval I ,
let En′ denote the event that n′ is sampled (according to the Poisson distribution
with mean n) and E0 denote the event that the sampled number does not belong to
the interval. The events En′ (with n′ ∈ I or n′ = 0) form a partition of the space.
Thus,

Var Vol(�n) = En′(Var(Vol(�n)|En′)) + Var E(Vol(�n|En′)),

where n′ ∈ I or n′ = 0. Notice that Vol(�n)|En′ = Vol(K ′
n′). The rest of the proof

is a calculation similar to the one above and is left as an exercise. �
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Let H(r) be a half space at distance r > 0 from the origin. Define r so that the
probability content of H(r) ∩ B(R) is γ logn/n for some large constant γ . As
� ′(H(r)) = �(e−r2/2r−1), r = �(

√
logn ). For the proof of Lemma 8.4 we need

the following claim.

CLAIM 8.5. The constant γ can be chosen so that K ′
n contains B(r) with

probability at least 1 − 1
n

.

We explain the proof of this claim after the proof of Lemma 9.1 in the next
section.

PROOF OF LEMMA 8.4. Let us consider a number n′ as in the lemma.
Let � denote the product space B(R)n, equipped with the n-fold product of � ′.
A point P in � is an ordered set (x1, . . . , xn) of n random points (we generate the
points one by one). The xi are the coordinates of P . We use Y(P ) to denote the
volume of the convex hull of P and µ to denote the expectation of Y(P ).

REMARK 8.6. Of course Y(P ) is just another way to express Vol(K ′
n). It is

however more convenient to use this notation in the proof below as it emphasizes
the fact that Y is a function from � to R.

Define �′,P ′,µ′ similarly (with respect to n′). Let us first consider the expec-
tations. Consider a point P ′ = (x1, . . . , xn′) in �′ and the canonical decomposition

P ′ = P ∪ Q,

where P = (x1, . . . , xn) and Q = (xn+1, . . . , xn′). In order to compare µ and µ′,
we rewrite µ as

µ =
∫
�′

Y(P )dP ′.

We have

µ′ − µ =
∫
�′

(
Y(P ′) − Y(P )

)
dP ′.

Now we are going to decompose �′ into three parts �′
1,�

′
2,�

′
3 as follows:

• �′
1 = {P ′|Conv(P ) does not contain the ball B(r)};

• �′
2 = {P ′|Conv(P ) contains the ball B(r) and B(r) does not contain Q};

• �′
3 = �′\(�′

1 ∪ �′
2).

The measure of �′
1 is the probability that the convex hull of a set of n random

points does not contain B(r), which is O(1/n), according to Claim 8.5. The mea-
sure of �′

2 is bounded from above by the probability that B(r) does not contain Q.
This probability, by the union bound, is at most

|Q| × � ′(B(r)) = O
(√

n logn
) × (logn)O(1)

n
= n−1/2+o(1).
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Since Y(P ′) and Y(P ) are at most the volume of B(R), which is O((logn)d/2),
Y(P ′) − Y(P ) is O((logn)d). Thus∫

�′
1∪�′

2

(
Y(P ′) − Y(P )

)
dP ′ = O

(
(logn)dn−1/2+o(1)) = n−1/2+o(1).(16)

To estimate the integral over �′
3, recall that in this region, Conv(P ) = Conv(P ′)

since

P ′\P = Q ⊂ B(r) ⊂ Conv(P ).

It follows that ∫
�′

3

(
Y(P ′) − Y(P )

)
dP ′ = 0.(17)

Equations (16) and (17) together imply that

µ′ − µ = n−1/2+o(1),

proving the first part of the lemma.
The third part of the lemma follows now directly: the measure of �′

1 ∪ �′
2

is at most n−1/2+o(1), and on the rest of �′ the polytopes ConvP = K ′
n and

ConvP ′ = K ′
n′ coincide.

The proof for the variance is similar. Notice that the variance of Vol(Kn) is

s =
∫
�′

|Y(P ) − µ|2 dP ′

and the variance of Vol(Kn′) is

s′ =
∫
�′

|Y(P ′) − µ′|2 dP ′.

We have

|s′ − s| =
∣∣∣∣
∫
�′

((
Y(P ′) − µ′)2 − (

Y(P ) − µ
)2)

dP ′
∣∣∣∣ ≤

∫
�′

|D(P ′)|dP ′,(18)

where

D(P ′) = (
Y(P ′) − µ′)2 − (

Y(P ) − µ
)2

.

It is obvious that

D(P ′) = ((
Y(P ′) − µ′) + (

Y(P ) − µ
))((

Y(P ′) − µ′) − (
Y(P ) − µ

))
.

By the triangle inequality,

|D(P ′)| ≤ (
Y(P ) + Y(P ′) + µ + µ′)(|Y(P ′) − Y(P )| + |µ′ − µ|).

Since Y(P ′) and Y(P ) are at most the volume of B(R), which is O((logn)d/2),
|D| is O((logn)d). Thus, by arguing as before,∫

�′
1∪�′

2

|D(P ′)|dP ′ = O
(
(logn)dn−1/2+o(1)) = n−1/2+o(1).(19)
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To estimate the integral over �′
3, notice that in this region, Conv(P ) = Conv(P ′).

Therefore,∫
�′

3

|D(P ′)|dP ′ ≤
∫
�′

3

(
Y(P ) + Y(P ′) + µ + µ′)|µ′ − µ|dP ′.

But we just proved that |µ′−µ| ≤ n−1/2+o(1). Furthermore, all Y(P ′), Y (P ),µ′,µ
are bounded from above by the volume of B(R), which is O((logn)d/2). So∫

�′
3

((
Y(P ′) − µ′) + (

Y(P ) − µ
))|µ − µ′|dP ′ ≤ n−1/2+o(1).(20)

Equations (19) and (20) together imply that

|s′ − s| ≤ n−1/2+o(1),(21)

concluding the proof. �

9. Sandwiching K ′
n. By definition, K ′

n is contained in B(R). In this section
we will show that K ′

n contains the ball B(r) with high probability where the ra-
dius r is very close to R. Recall that R is defined in (9) via

R2 = 2 logn + log(logn)c0 .

The definition of r comes a little later, we set first ρ > 0 via

ρ2 = 2 logn − log logn + log(c log logn)−2(22)

where c is a constant to be specified soon. Choose a system of points y1, . . . , ym

from the sphere S(ρ) maximal with respect to the property that, for i �= j ,

|yi − yj | ≥ 2c1.

As ρ = √
2 logn(1 + o(1)) as n goes to infinity, we have, just as in Claim 5.1

m = �
(
(logn)(d−1)/2)

.

Define the half space H+
i = {x ∈ Rd :yi · x ≥ ρ2} and the cap Ci as

Ci = H+
i ∩ B

(√
ρ2 + c2

1

)
.

These caps are pairwise disjoint, and for x ∈ Ci

ψ(x) = �

(
c
√

logn log logn

n

)
.

As VolCi = �((logn)−1/2), we have

�(Ci) = �

(
c log logn

n

)
and � ′(Ci) = �

(
c log logn

n

)
,(23)

since Ci ⊂ B(R). Set now r = ρ − 5c2
1/ρ; it is clear then that this r satisfies

5c2
1 < ρ2 − r2 < 10c2

1.(24)
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LEMMA 9.1. For every C > 0 the constants c, c1 can be chosen so that the
following holds. K ′

n contains B(r) with probability at least 1 − (logn)−C .

REMARK 9.2. This lemma is an analog of a result from [4] for the uniform
model (see Section 2 for the definition). It is also a similar to Lemma 4.2 from [19],
which was proved using VC-dimension techniques. While in those results the
probability that Kn does not contain B(r) is at most n−C , here we have the weaker
bound (logn)−C . The same bound was required in the uniform model when K is
a polytope; see [5].

PROOF OF LEMMA 9.1. We claim first that every half space H(r) at dis-
tance r from the origin contains a Ci for some i = 1, . . . ,m. Assume y is the
nearest point of H(r) to the origin. Then |y| = r and y∗ = ρy/r lies on S(ρ).
As the system y1, . . . , ym is maximal, there is a yi with |y∗ − yi | < 2c1. Define
α ∈ (0, π/2) by sinα = c1/ρ; it follows that the angle between y and any vector
from Ci is at most 3α. Consequently, Ci is contained in the half space with nor-
mal y and at distance ρ cos 3α from the origin. A simple computation shows now
that for large enough n

ρ cos 3α > ρ − 5c2
1

ρ
= r.

CLAIM 9.3. There is a constant b > 0 depending only on d such that for all
large enough n

P
(
B(r) \ K ′

n �= ∅
) = O

(
(logn)(d−1)/2

(logn)bc

)
.

PROOF. If B(r) is not part of K ′
n, then there is a half space H(r) at distance r

from the origin which is disjoint from the random sample Xn. Then there is a cap
Ci ⊂ H(r). Then Ci ∩ Xn = ∅. Consequently

P(Ci ∩ Xn = ∅ for some i) ≤
m∑

i=1

P(Ci ∩ Xn = ∅)

≤
m∑

i=1

(
1 − � ′(Ci)

)n ≤ m

(
1 − b

c log logn

n

)n

≤ m exp{−bc log logn}

= m

(logn)bc
= O

(
(logn)(d−1)/2

(logn)bc

)
.

Here b is the constant coming from (23). �

Choosing the constants c and c1 suitably completes the proof. �
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REMARK 9.4. It is the choice of r from (22) and (24) that produces the bound
(logn)−C . Also this choice of r gives the estimates in the next section. For the CLT
for the volume, we could have taken ρ2 = 2 logn− log(c logn)3 and r = ρ−5c2

1/ρ

as well. This would have given

� ′(Ci) = �

(
c′ logn

n

)
,(25)

and 1/n−c′
for the probability that K ′

n does not contain B(r). But this choice does
not work for fs(Kn) (see Remark 13.7). That is why we used (22) and (24) for the
definition of r .

The proof of Claim 8.5 goes along very similar lines. One can take ρ2 =
2 logn − log(γ ′ logn)3, for instance, and use the same argument. We omit the
details.

One can prove similarly that �n contains B(r) with high probability. Here is
the quantitative statement, the routine proof is left to the interested reader.

LEMMA 9.5. For every C > 0 the constants c, c1 can be chosen so that the
following holds. �n contains B(r) with probability at least 1 − (logn)−C .

REMARK 9.6. Note that Kn is sandwiched between B(R) and R(r) with high
probability, and both r,R = √

2 logn(1 + o(1)). This almost implies (5) for the
expectation of Vol(Kn), the only trouble being that Kn can have arbitrarily large
volume when it is not contained in B(R).

10. The dependency graph. With the notation of the previous section we
define the annulus A(R, r) = B(R) \ B(r), and let Vi denote the Voronoi region
of yi (i = 1, . . . ,m). This means that x ∈ Vi if and only if |x − yi | ≤ |x − yj | for
all j . The sets Wi = Vi ∩ A(R, r) will be called cells and will play an important
role in the central limit theorems. The following estimate will be needed.

CLAIM 10.1. For each i,

� ′(Wi) = �

(
log logn

n

)
.

PROOF. This is quite simple and similar to (23) and is therefore omitted. �

The dependency graph G(V,E) has, by definition, vertex set V (G) = {1, . . . ,

m} and edge set E(G) with (i, j) ∈ E(G) if and only if there are ai ∈ Wi and
aj ∈ Wj and b ∈ A(R, r) such that the segments [ai, b] and [b, aj ] lie completely
in A(R, r). In other words, if and only if [ai, b]∩B(r) = ∅ and [aj , b]∩B(r) = ∅

for some ai ∈ Wi , aj ∈ Wj and b ∈ A(R, r). Let D denote the maximal degree in
the dependency graph.



GAUSSIAN POLYTOPES 1615

THEOREM 10.2. We have D = O((log logn)(d−1)/2).

PROOF. This is a simple matter using elementary geometry. Observe first that
if the segment [a, b] ⊂ A(R, r) and 2γ is the angle between vectors a and b, then
cosγ ≥ r/R. We can estimate sinγ using the definitions of R and r :

sinγ ≤
√

1 −
(

r

R

)2

= 1

R

√
R2 − r2 = 1

R

√√√√
R2 −

(
ρ − 5c2

1

ρ

)2

≤ 2

R

√
log(logn)2c0 = O

(√
log logn

logn

)
.

Suppose next that ai ∈ Wi and let 2αi be the angle between ai and yi . Set a∗
i =

ρai/|ai | ∈ S(ρ). The maximality of the system y1, . . . , ym implies that |a∗
i − yi | ≤

2c1, which, in turn, shows that sinαi ≤ c1/ρ. Consequently α = O((logn)−1/2).
Assume (i, j) ∈ E(G) and let ai ∈ Wi , aj ∈ Wj and b ∈ A(R, r) be the vectors

such that the segments [ai, b] and [aj , b] are disjoint from B(r). Let 2β be the
angle between vectors yi, yj . Then

β ≤ αi + γ + αj = O

(√
log logn

logn

)
.

This, of course, implies that for (i, j) ∈ E(G)

|yj − yi | ≤ 2R sinβ = O
(√

log logn
)
.

This means that all yj with (i, j) ∈ E(G) are contained in a ball, centered at yi

and of radius O(
√

log logn ). Since all yj ∈ S(ρ) and since they are at distance
2c1 apart, the usual volume estimate gives the statement of the theorem. �

We establish one more inequality here.

CLAIM 10.3. For each i,

Vol(Wi) = �

(
log logn√

logn

)
.

PROOF. For each t ∈ [r,R], Wi ∩ S(t) has constant, that is, �(1) (d − 1)-di-
mensional volume, so Vol(Wi) = O(R − r), and

R − r = 1

R + r
(R2 − r2) = 1

R
�(log logn)

as we have seen in the previous proof. �
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11. Central limit theorem for the Poisson model. We are going to apply the
Baldi–Rinott theorem for �n conditioned on B(r) ⊂ �n. This condition will be
denoted by B . Recall from Lemma 9.5 that

P
(
B(r) ⊂ �n

) ≥ 1 − (logn)−C.

Assume condition B holds and define the random variable ξi = Vol(Wi ∩ �n).
Clearly, ξ := ∑m

1 ξi = Vol(�n) − Vol(B(r)). This shows that, under condition B ,
the CLT for ξ holds if and only if it holds for Vol(�n).

CLAIM 11.1. Assume condition B holds. Given disjoint subsets V1,V2 of the
vertex set of the dependency graph with no edge between them, the random vari-
ables {ξi : i ∈ V1} are independent of the random variables {ξj : j ∈ V2}.

PROOF. The intersection Wi ∩ �n is determined by the facets of �n inter-
secting Wi . These facets are determined by their vertices. If there are no common
vertices for the facets intersecting the Wi with i ∈ V1 and the Wj with j ∈ V2, then
the corresponding ξi are independent. This is exactly how the dependency graph
has been defined. �

Write P∗, E∗, Var∗ for P, E, Var under condition B . In the next section we will
prove the following estimates.

LEMMA 11.2. We have

|E∗ Vol(�n) − E Vol(�n)| ≤ (logn)−C0/4
√

Var Vol(�n),

|Var∗ Vol(�n) − Var Vol(�n)| ≤ (logn)−C0/4Var Vol(�n),∣∣P∗(
Vol(�n) ≤ t

) − P
(
Vol(�n) ≤ t

)∣∣ ≤ (logn)C0/4.

The inequality for the variances shows that

Var∗ Vol(�n) = �(Var Vol(�n)) = �
(
(logn)(d−3)/2)

.

We have seen that the maximal degree in G is O((log logn)(d−1)/2) (Theo-
rem 10.2), and ξi = Vol(Wi) = O(log logn/

√
logn ). So the Baldi–Rinott theorem

applies and gives the following CLT.

THEOREM 11.3. Let d be a fixed integer at least 2. For any value of t ,∣∣∣∣P∗
( |Vol(�n) − E∗ Vol(�n)|√

Var∗ Vol(�n)
≤ t

)
− �(t)

∣∣∣∣ = O

(
(log logn)(d+4)/2

(logn)(d−1)/4

)
.

This theorem and Lemma 11.2 show that Vol(�n) and Vol(�n)|B satisfy con-
ditions of Lemma 4.1. So our main central limit theorem, Theorem 1.1, follows as
soon as we prove Lemma 11.2. This is our next (and final) task.
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12. Proof of Lemma 11.2. This is similar to, and much simpler than, the
proof in Section 7. The first step is a copy of Lemma 7.1.

LEMMA 12.1. Let B denote the condition that B(r) ⊂ K ′
n. Then we have, for

large enough n,

|E(Vol(K ′
n)|B) − E Vol(K ′

n)| ≤ (logn)−C0/2,

|Var(Vol(K ′
n)|B) − Var Vol(K ′

n)| ≤ (logn)−C0/2.

Furthermore, for all t ,∣∣P(
Vol(K ′

n) ≤ t |B) − P
(
Vol(K ′

n) ≤ t
)∣∣ ≤ (logn)−C0/2.

PROOF. We use the first few lines of the proof of Lemma 7.2 with condition A

replaced by B , events Bi do not appear yet. Then (13) says that∣∣E(Y |B) − E(Y )
∣∣ ≤ (

E(Y |B) + E(Y |B)
)
P(B),(26)

where Y = Y(t1, . . . , tn) is a c-bounded, nonnegative random variable.
When Y is just the volume, Y is bounded by O((logn)d/2) so its expecta-

tion, under any condition, is bounded the same way. Since P(B) ≤ (logn)−C0 by
Lemma 9.1, we are finished with the first inequality.

The third is proved by setting Y = IVol(K ′
n)≤t . The second inequality follows the

same way as the corresponding inequality for variances in Lemma 7.1. �

We show finally how this lemma implies Lemma 11.2.

PROOF OF LEMMA 11.2. We give the proof for E first. As before, write E′
n

for the event that |X(n)| = n′.

|E∗ Vol(�n) − E Vol(�n)| =
∣∣∣∣∣

∞∑
0

(
E(Vol(K ′

n′)|B) − E Vol(K ′
n′)

)
P(n = n′)

∣∣∣∣∣
≤ ∑

n′∈I

(logn′)−C0/2P(n = n′) + O((logn)d/2nA/4)

= O((logn)−C0/2).

This suffices for the expectations as Var Vol(�n) = �((logn)(d−3)/2) by Corol-
lary 8.2. Of course, we chose C0 large enough.

The proof for Var∗ and P∗ is similar and is left to the reader. �

We want to emphasize here that the proofs of Theorems 3.2, 3.1 and 1.1 have
finally been completed at this point.
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13. Proof of Theorem 1.2. The proof of Theorem 1.2 follows the plan in
Section 4 closely. In fact, most of the arguments are the same as in the proof of
Theorem 1.1, except for a few technical modifications, and a single extra difficulty:
finding the right bound M on the number of s-faces intersecting cell Wi . Thus,
instead of working out all details, we only state the main steps and point out what
modifications are needed, plus explain how the bound M can be found.

We have seen in Theorem 6.3 that the variance satisfies

Var(fs(Kn)) = �
(
(logn)(d−1)/2)

.

13.1. The first coupling. Lemma 7.1 still holds if one replaces Vol by fs . No-
tice that the proof of this lemma only requires the c-bounded property. The number
of faces has this property (for some sufficiently large constant c). Indeed, one can
show that with very high probability (say 1 − n−100d ) the number of vertices is
at most (logn)d . This, together with a simple geometric argument shows that the
number of faces is c-bounded for some constant c. The same proof goes for the
square of the number of faces.

After the first coupling, it is left to prove the following variant of Theorem 3.1.

THEOREM 13.1. Let s be an integer between 0 and d − 1. There is a func-
tion ε(n) tending to zero as n tends to infinity such that for all t∣∣∣∣P

(
fs(K

′
n) − Efs(K

′
n)√

Varfs(K ′
n)

≤ t

)
− �(t)

∣∣∣∣ ≤ ε(n).

13.2. The second coupling. The proof for the second coupling is almost the
same as before. A small technical modification one needs to make here is to intro-
duce a new part �′

0 in the partition which contains those P ′ where Conv(P ′) has
more than (say) (logn)d vertices. The probability of �′

0 will be less than n−1/2.
Now define �′

3 = �\(�′
0 ∪ �′

1 ∪ �′
2). The rest of the proof is the same. In fact,

since both the expectation and variance of fs(K
′
n) are also polylogarithmic in n

(similar to those of the volume), the error term n−1/2+o(1) remains unchanged in
all these estimates.

After the second coupling one needs the fs variant of Theorem 3.2.

THEOREM 13.2. Let d be a fixed integer at least 2 and 0 ≤ s ≤ d − 1. There
is a function ε(n) tending to 0 as n tends to infinity such that the following holds.
For any value of t ,∣∣∣∣P

( |fs(�n) − Efs(�n)|√
Varfs(�n)

≤ t

)
− �(t)

∣∣∣∣ ≤ ε(n).(27)

REMARK 13.3. One can take ε(n) = (logn)−(d−1)/4+o(1). This error term
will be the dominating one when we apply, twice, Lemma 4.1.
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13.3. The dependency graph. The dependency graph is the same as before
with

m = �
(
(logn)(d−1)/2)

, D = O
(
(log logn)(d−1)/2)

and

� ′(Wi) = �
(
(log logn)/n

)
.

For proper accounting fs(�n) we have to define the random variable ξi =
f (Wi, s) suitably. For this purpose we use Reitzner’s method from [15]. For an
s-dimensional face, L, of �n, let f (Wi,L) denote the number of vertices of L

contained in Wi , and set

f (Wi, s) = 1

s + 1

∑
L

f (Wi,L).

Since �n is simplicial and has no vertex on the boundary of any Wi with
probability one, fs(�n) = ∑m

i=1 f (Wi, s). The expected number of |X(n) ∩
Wi | = �(log logn), which, in turn, shows that the expectation of f (Wi, s) is
�(log logn). But there is an extra difficulty here: we need a bound M on each
f (Wi, s) when applying the Baldi–Rinott theorem. The condition B(r) ⊂ �n is
not enough and we have to introduce a new condition, to be denoted by Bi :

|X(n) ∩ Wi | ≤ c2 log logn for each i,

where c2 is a large constant. It is straightforward to check that for any C > 0,
c2 can be chosen so large that

P(Bi holds) ≥ 1 − (logn)−C.

Then the union bound shows that

P(Bi fails for some i) = O
(
(logn)−C+(d−1)/2)

.

It is clear that if L is an s-face of �n contributing to F(Wi, s), then all vertices
of L belong to a cell Wj with i, j connected in G or to Wi . There are at most D

such cells. So under condition Bi , there are at most c2D log logn vertices in the
union of these cells. This shows that M = (log logn)d

2
works and the application

of the Baldi–Rinott theorem goes through.
Again we have to remove the conditions B,B1, . . . ,Bm. This is done in the

same way as in Section 12.

REMARK 13.4. This is where the careful choice of r (in fact, ρ) pays off.
With the more generous selection ρ2 = 2 logn− log(c logn)3, we would only have
f (Wi, s) = O((logn)d/2), and the right-hand side in the estimate of the Baldi–
Rinott theorem does not tend to zero.
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14. Concluding remarks. Our plan can be used for many other parameters.
In certain cases, one merely has to repeat the proof. In others, however, there are
substantial technical difficulties. Let us present two representative examples.

The surface area of Kn. The proof is more or less the same as the proof for
the volume. The reader is invited to work out the details. In fact, the result holds
for all intrinsic volumes, but the estimate for variance is not straightforward.

The probability content of Kn. The probability content of Kn is �(Kn). For
this parameter, the general plan still works, but there is a nonnegligible difficulty. In
the proof of the second coupling, we used the fact that the expectation and variance
of the random variable under study (such as the volume, number of faces, or even
the surface area) are both polylogarithmic in n. Thus, the error term n−1/2+o(1)

is dominating and one can finish the proof easily. For the case of the probability
content, it is no longer true, as the variance is n−2+o(1). To overcome this obsta-
cle, we can follow [20] and start by proving a sharp concentration result, which
gives a tight control on the tail Y(P ) − µ and Y(P ′) − µ′. Such a concentration
result is available thanks to the method developed in [19]. The details will appear
elsewhere.
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