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CENTRAL LIMIT THEOREMS FOR INFINITE SERIES OF
QUEUES AND APPLICATIONS TO SIMPLE EXCLUSION

By CLAUDE KIPNIS

Ecole Polytechnique

We prove that a tagged particle in asymmetric simple exclusion satisfies a
central limit theorem when properly rescaled. To obtain this result we derive
several results of positive (or negative) correlation for occupation times of a
server in a series of queues which imply various central limit theorems.

0. Introduction. Recently several papers have appeared on the movement
of a tagged particle in infinite particle systems, partially stimulated by the
importance of the problem for physics [13]. Let me briefly review what is known
for the simple exclusion process. Intuitively this system consists of infinitely
many particles moving on Z¢, each particle attempting a jump of size z with
probability p(z) after an exponential mean one waiting time. If the site where
the particle has chosen to jump is already occupied, the transition is suppressed,
hence the interaction merely consists of exclusion.

Distinguish now among these particles one, which we call the tagged particle,
and denote by x, its displacement at time ¢, from its initial position, which we
may assume to be the origin.

Of course if there were no other particles present we would be looking at a
(continuous time) random walk and we would then have:

x
lim = = Y zp(z) = v,
t—oo L

and also provided p has a second moment

X, — vyt
vVt

Now if we have other particles present we want to see what is the effect of the
interaction on the movement of the tagged particle. Since Bernoulli distribution
of particles has been proved to be extremal invariant distribution for the simple
exclusion process, we consider stationary situations by placing initially the
particles according to a Bernoulli distribution with density p at all sites different
from the origin.

In dimension d > 2 nothing spectacular is expected and indeed it has been
proved [9] that for symmetric p’s [ie, if p(z) =p(—2z) for all z’s] that
x,/Vt > N(0, 5%) where &2 is strictly positive although its exact dependence on
the density is unknown but conjectured to be a decreasing function of the

- ,N(0,0%) witho? =) 22p(2) — vl.
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density. For nonsymmetric laws, a behaviour similar to that of an isolated
particle is expected.

On the contrary for d = 1 the situation is more intricate. If p is symmetric
and has a support of at least 4 points, then, x,/ V¢ converges to a nondegenerate
Gaussian distribution [9]. On the other hand if p(x,x + 1) =1 — p(x,x — 1) =
p, Arratia [2] showed that for p = 1 (and all densities 1> p > 0!) x,/¢/*
converges to a normal distribution. Contrasting with this result Kesten made the
following remark: if p = 1 (total asymmetry), then x, itself is a Markov process
with exponential holding time [12]; therefore if p < 1:

x,— t(1-p)
vt

(as we will see later this property of x, is a direct consequence of Burke’s theorem
on series of queues).

What is then the behaviour of x, for { < p < 1?

In this paper I prove (Theorem 4) that if ;< p <1 and p < 1 then:

% - (1-p)2p-1)=0(p,p) as.

Xy 2
~ > (1-p) and - N(0,(1 - p)?)

and
xt_ tU(p, p)

ﬁ _>,7N(0’62)’

where

6>01-p)y2p —1)>0.

Arratia’s result implies that ex, . — 0 for all ¢’s, and this shows how rigid our
system is. Something remains in the case p # ; of this rigidity. Since if y; is
another tagged particle such that ¢y = u > 0 then

31:1(1) e(x,/2 — ¥52) = u (in probability).

Therefore, on this scale, all particles move parallel. This is in sharp contrast
with the result for p symmetric and not nearest-neighbour where two tagged
particles move according to independent Brownian motions in the limit ¢ — 0 [9].

At this point some words are in order on the techniques I use to prove
Theorem 4. The first fact is a relation between one-dimensional nearest-neighbour
simple exclusion process and an infinite series of queues, called in the jargon of
infinite particle systems the zero-range process with constant rate: Because of
nearest-neighbour jumps and exclusion, notice that in dimension one the order
of the particles does not change. Label them initially x_;, <x,<x, < --- and
look at their positions at time ¢, -+ <x_,(¢) < x(¢) <x,(¢t) < --- . Consider
the random variables 7,(¢) equal to the number of empty sites between x,(¢) and
x,,,(2). Notice at this point that when the ith particle jumps (one unit) forward,
n,(i) is changed into 7,(i) — 1 and 7,(i + 1) is changed into 1,(i + 1) + 1. We see
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that this process is a zero-range process with jump law (1 — p, p), or equivalently
that customer in line i is served at exponential rate (mean one) and joins the line
i — 1 with probability p, and line i + 1 with probability 1 — p [also (i) =0
corresponds to x;(¢) and x,, ,(¢) being nearest-neighbours]. Hence the invariance
of the Bernoulli distribution corresponds to Jackson’s theorem for product of
geometric distributions of customers. Also note that x, equals the total (alge-
braic) increase of customers in all the negative lines. Hence, if p = 1, the fact
that the number of customers that have crossed the bond between 0 and —1 is a
Poisson process (Burke’s theorem) is equivalent to Kesten’s remark.

Last, the central limit theorems are proved using a very nice invariance
principle for associated random variables due to Newman and Wright [11].

The paper is organized as follows: In Section 1, we briefly recall some results of
the zero-range process. After having proved correlation inequalities in Section 2,
we prove central limit theorems for certain functions of the zero-range process.
Section 3 is devoted to the proofs of the results on the tagged particle for p # 1.

1. Some results on the zero-range process. The zero-range process (see
[12]) has state space X = NZ and formal pregenerator L defined on cylindrical
functions by the formula

Lf(n) = Z 1(n<x>21>[pf(nx‘x7') + (1 —P)f(n""‘“) - f(TI)]y

xez
where
n(u) for u + x or y,
7 N(u)={n(x) -1 foru=ux,
n(y)+1 foru=y.

This pregenerator defines a unique Markov process [10] and the product
measures p., with marginals equal for all x’s to:

poin(x) = k} = p*(1 - p)

are extremal invariant measures [1]. This in particular implies that if we denote
Q=DR,, X), then (2, 1,, P, ) is stationary and ergodic.

With respect to any p,, the process can be reversed since for all f and g
cylindrical we have:

Ju(dn)i(n)Lg(n) = [u,(dn)Lf(n)g(n),

where L is the same as L except that p is replaced by (1 — p), from which it
follows, denoting by E the expectation with respect to the Markov process of
generator L, that for all f, g, and ¢

JrdnE,(f(n)e(no)) = [u,(dn)E,(f(no)g(n,))-
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The above identity between L and Lis easy to check from the following identity

/l‘p( dn)f(n)g(nx’x“)l(m)zu = f"”p(dn)f(T’x+l‘x)g(n)l('q(x+1)2])'

The zero-range process has also the property of being attractive as can be seen
from the definition, but also from the following coupling of two copies of the
process

Zf(nr é) = Zl(ﬂ(x)zl;§(x)2l)[pf(7’x‘x_l, éx,x—l)

+(1 _p)f(,nx,x+l’ gx,x+1) _ f(”l’ §)]
+ Zl(n(x)zl:€(x)=0)[pf(77x'xil’g) + (1 —P)f(n"”‘“, ﬁ) - f(m, 5)]

+Zl(n(x)=(),£(x)zl)[pf(n)gx’xvl) + (1 _p)f(nr éx‘erl) - f(nyg)]

This coupling shows clearly that if £{(x) > n(x) for all x, then this remains
true for all times.

For those who are not familiar with reading the properties of Markov process
from its generator, we point out that this coupling has to be understood as
follows: two types of particles sit on the point of Z, named n and £. When the
bell rings at site x a particle of n and a particle of ¢ are moved to the same point
except of course if 9(x) = 0 or {(x) = 0, and in this case only the configuration
that satisfies n(x) > 1 or £(x) > 1 changes.

We establish the

LEMMA 1. If £0) =1(0) + 1 and &(x) = n(x) for all x # 0, and m has
initial distribution p, then for all z:

(1) _{)xl_)(gs(z) = 1;n,(2) = 0) ds = G,(0, 2)
and forp >
1
5p 1 forz =0,
G,0,z2) = ) .
b
(——) forz < 0.
2p—1\1—-p

PROOF. We prove this by constructing a realization of our coupled process by
the following recipe: Let ((T});.,,(X,),>0> n,) be all independent and 7;’s are
ii.d. exponential mean one random variables, X, is a discrete random walk
(1 — p, p) starting at the origin, and 7, a zero-range process with initial distribu-
tion p,,.
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Define inductively:

. u
T = lnf{u; j(; Lo =0 98 = Tl>

1 forx =X,

$(x) = {0 forx # X, forevery 0 < ¢t < 7

u
Ty, = mf{u: f Lin.(x,)=0) @8 = T2}
T

1 forx =X,
g"(x)_{O forx + X,

andform, <t <,

and so on.
Note that in this definition nothing excludes the possibility for one 7, to be
infinite. But because we have for all x € Z, and almost surely

[ee]
fo Loyx)=n @8 = +00

we have of course that all 7,’s are a.s. finite.
Then indeed (7,, n, + §,) is a realization of our coupled process and

0 [e o]
fO Lin,(2)=0, £u2)=1) O = Zoﬂl(z}(xj)'
-

Integrating both sides with respect to P, we obtain that (1) equals
L¥P(X, = z). Now this last quantity is the potential of the random walk which
can be explicitly computed [7] and equals G,(0, z). O

2. Central limit theorems for infinite networks of queues. Let
X,..., X,,... be a sequence of real random variables and consider the sums

Sn = EXk’
1

We will say that S, is weakly positively associated iff for every k> n and
increasing functions f and g:

E( f(sn)g(sk - Sn)) = E( f(Sn))E(g(Sk - Sn))
(resp. weakly negatively associated if the sense of the inequality is reversed).
The proof of Theorem 12 of [11] proves the following theorem.
THEOREM 1. Let X, be a strictly stationary, finite variance sequence, weakly
positively (or negatively) associated such that

. V(S,)
lim

n— o0 n

=02 < +o0.
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Then

LS E(X N(0, 0
(8, ~ nE(X))) = N(0,0%).

REMARK. The extension to continuous time is clear. Also notice that when
we deal with negative association lim V(S,)/n is always finite.

In view of the previous theorem, it is useful to be able to establish that for any
increasing functions f and g, two variables U and V satisfy:

E(f(U)g(V)) = E({(U))E(g(V))
(or the reverse inequality). The following is often useful:

LEmMma ([5], [8). Let X,..., X, be independent real-valued random vari-
ables and suppose that ¢ and  are two functions from R" to R such that for all
coordinates ¢ and { are monotone (up or down) in the same direction. Then

E(o(Xy,..., X)¥(X,,..., X,)) 2 E(o(X,,..., X)) E(Y(X,,..., X,)).

If in all coordinates ¢ and ¢ are monotone in opposite directions the inequality
is reversed.

In order to apply these results to our problem we first prove:

THEOREM 2. Let {n,},. , be a zero-range process with initial distribution p.,.
Then let

t
v(t) = f(;l(n.,w)zl)d“

and N*(t) (resp. N™(t)) denote the number of particles that jumped from site 0
to site 1 (resp. from site 1 to site 0) during the time interval [0, t]. These three
processes are weakly positively associated, whereas the process defined by
N*(t) — N™(t) is weakly negatively associated.

PRrOOF.
First case: v(t). We only need to prove that for f and g increasing

E,(f(r(£)g(»(t+s) —»(¢) = E,(f(¢(t)))E,(8(»(s))).
As was already noticed in Section 1, the process 1, can be reversed with respect

to u, into another zero-range process #,, with jump law (1 — p, p). Therefore the
left-hand side of equals

[(dn)E,(8(x() B £(2(2)))

(by, reversing time at ¢).

But this expression is of the form fu (dn)(n)¢(n) and since p,, is a product
measure, by Lemma 3 of Section 2 we only need to notice that both ¢ and ¢ are
increasing in each coordinate n(x), which is clear by coupling.
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Second case: N*(t) (resp. N~(¢)). The same conditioning as in the case of
v(t) shows that

E,(f(N*(£)g(N*(t+s) = N*(2))) = [u,(dn)E,(g(N*(s)E,(f(N(2)))

(notice that N* has been replaced by N~!) but each function of 5 appearing in
this expression is increasing in each coordinate n(x). This is obvious since adding
one particle at site x, i.e., increasing n(x), can only increase the number of jumps
from 0 to 1 (or from 1 to 0).

Third case: &(t) = N*(¢) — N™(t). As previously we have

E,((5(6)e(é(t +5) — £(0) = [u,(cdn)E,(g(&(s)E,(f(~£(0))).

Now let us analyse the monotonicity properties of
¢(n) = E,[g(¢(s))].
If we add one particle at site x, for x < 0, then it contributes to £(s) by

{ +1 if its position at time s is > 0
0 otherwise.

Similarly adding a particle at x > 0 can only contribute by —1 or 0. So our
function is increasing in the occupation numbers of the negative sites and
decreasing in the occupation numbers of the positive sites.

Similarly the function E,(f(—§(¢))) varies in the opposite sense (notice the
minus sign). Therefore by Lemma 3 the total integral is less than

[ro(dn)E,(g(£(5))) [ (dm)E,(f(~£(2)).0

We are now ready to prove:

THEOREM 3. For a zero-range process (p,1 — p) with initial distribution p,,
the following sequences of random variables ( for any t > 0)

v = E(Vt/52 - pt/£2),
vs = &( N2 — ppt/e?),

converge in distribution as & goes to zero to a normal random variable with finite
variance o; (i = 1,2,3).
Moreover

o2 =2p t

2p—-1
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2
% < Vpot +p\f gote,

2
o3 < Jo(1 —p)t + (1 -p) ap 1

and

PROOF. As a consequence of Theorem 2 above and the Newman-Wright
theorem we only need to prove that the variance of »{ remains bounded as ¢ goes
to zero (for ¢ = 1,2, 3).

Case i = 1: Since E(r{) = 0, we compute

2] _ t/e t/e
E[(”l) ] = SZ[E(fO Lo=1 d"fo Lo.@=1 d”)

_ j(;t/EZE(l(nu(O)Zl)) du-/(;t/ezE(l(nu(O)zl)) dD]-

Since all these expectations are with respect to a process with initial invariant
distribution this is equal to

26 [ du [P [(10) = 1)(1,00) 2 1)] - (P[no0) > 1])" .
Hence it reduces to proving that

[ PL(n(0) = 1)(n,0) = D] = (B[nc(0) > 1])* do < + 0.

Note now that

P[(n0(0) = 1)(n,(0) = 1)] /P[ne(0) > 1]
is also the probability of the set (7,(0) > 1) when the initial distribution is not u o
but p,(+|n(0) > 1). This new probability (denoted fi) is easily seen to have
independent occupation numbers at all sites and geometric distribution at all
sites different from the origin while

i(n(0) = k) = (1 —p)p*~" (fork=>1).
This measure can be realized by “adding a particle at the origin” to a
configuration £ chosen according to . Therefore it we couple in this way u and i
and call Y, the position of the “extra”-particle we have

Pi(n,(0) > 1) = P,(n,(0) > 1) = P(Y, = 0 and 7,(0) = 0).

Integrating this equality we obtain by Lemma 1, the finiteness of the variance
and the expression of a,.
Case i =2 or 3: As before we only need to check that Var(yf) remains

bounded as ¢ goes to zero.
We start from the fact that

13
M, = N - pfo L =) AU
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is a martingale (compensated sum of jumps of size one) and also
13
- pjé L, =1 du

(this last fact is true because we deal with a compensated sum of jumps of size
one, see [3], [6]). Hence

E(M?) = ppt.
On the other hand

R t t/e?
vy = 3[( e —pf /1 L= dU ) +p(f/€ L, @21 dt — Pt/ez)}~

Hence by the Schwarz inequality

E((»)") < €| ppt/e* + p* [(Vl)] \/p (Ij) pt/e

€

< (vert + p/E[0)] )

which, combined with the result for the case i = 1, concludes the proof. O
3. Position of a tagged particle in the simple exclusion process.

THEOREM 4. Let x, be the position of a tagged particle in the simple
exclusion process (1 — p, p) with initial state a Bernoulli distribution with
parameter B. Then &(x,,, — x,) converges almost surely to (1 — 2p)(1 — B)t and
&x,,2— (1 —2p)1 - ,B)t/e2) converges in law to a nondegenerate normal
random variable for allp # § and t > 0.

PRrROOF. As was explained in the introduction we transform our problem by
using the correspondence between simple exclusion and zero-range. In this trans-
formation the initial distribution of the zero-range becomes u, _ 4, which we know
to be extremal invariant. Also we have the formula

x,= -N}/ + N,
t/e t/e
&Xtye = (ths pfo 1<nu<0)zl)du) - fp.{) L@z du

t/e t/e
+e ( e — (1 —p)f Ly-n=1) du) + &(1 —p)/ Ly—1y=1) du.
_Since M, = N," — pf¢1(, @ >ndu is a martingale and M, = 0 and
E#u—ﬂ(Mt2) =p(1 - B)t’

we have that eM, ,, goes to zero. Because of the ergodicity of P,  we also have
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that

t/e
8_/0 loo=n ™ tm_p(n(0) > 1) = (1 - B)t.

Hence
EXyye (1-8)t(1 - 2p).

In order to prove the convergence to a nondegenerate normal distribution write:

Ze=e(x,,2— (1 - B)A - 2p)t/e)
= —e(N;/'ez —pj(;t/ezl(nu(o)zl) du)
—pe‘/(;t/sz(l("u(o)zl) - (1 - ,B)) du
+£( e (1 ‘P)/t/z 1(1,,,(1)>1)d )
+(1 —p)efot/‘ Lgman — (1= 8))du
=(1)+(2) + (3) + (4).

We already established in Theorem 3 that each of these four sequences of
random variables is centered and has a bounded second moment. Hence Z¢ has a
bounded variance as ¢ goes to zero.

By negative weak association of Theorem 2, we conclude that Z¢ converges in
distribution to a normal random variable.

We are therefore left with proving that the variance of Z¢ does not go to zero
as ¢ = 0. Now (1) + (3) comes from the martingale

_ t t
(Nt - (1 _p)_/(;l(n,,(l)zl) du) - (Nz+ _P/Ol(n,,«))zl) du),

which is the sum of two martingales which are orthogonal since they have no
common jumps. Therefore the variance of (1) + (3) is the sum of their individual
variances, i.e., equals (1 — B8)¢. On the other hand the limiting variances of (2)
and (4) were already computed.

Now to obtain their covariance we compute

lim %E[j:(l(nu(mzl) -(- .3)) dufot(l(nva)zn - (- '3)) d”]

= lim [*['[P(n,(0) = 1;n,(1) 2 1) = P(n,(0)= DP(n,(0) = 1)] dudo.

_Computing along the same lines as in Theorem 3 we obtain for p > ; that this
quantlty equals (1 — B)[G(0,1) + G(1,0)]. Hence the total variance of 2+ @
equals: #(1 — B)2p. Therefore by Cauchy-Schwarz the variance of our random
variable is larger than ¢(1 — B)(2p — 1)%. O
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REMARK. The only point that remains is the rigidity of the system. Note

that this is easily deduced from the analysis of the asymptotic behaviour for
a > 0 of

[a/e] [a/e]
( S (k) - 3 m/sz(k)) _D.
k=0 k=0

But in equilibrium we have that almost surely

(a/e] _
e( k‘éﬂn(k)) - afn(O)ul_B(dn) = az1 3 B.

Hence it converges to this constant in probability. Also 7,,.. has the same
distribution as n,, therefore eX¢/%n, ,e2(k) converges in probability to a(1 — 8)/8.
This implies that D, — 0 in probability. At this point we conjecture, by analogy
with Arratia’s result, that in fact the correct order is '/, i.e., that

[a/e]

€ E ("lo(k) - "h/s“(k))
k=0
converges in distribution to a normal random variable.

Concluding remarks. We list here several problems that arise naturally in
view of the preceding results:

(1) What is the behaviour of one tagged particle in simple exclusion when the
dimension is larger than one? Of course the natural conjecture is that the
behaviour is exactly the same as in Theorem 4.

(2) What are the exact values of the diffusion coefficients? Notice that we
obtain the bound:

o*(p,B) = (1 - B)(y2p - 1).
This is exact for p = ; and p = 1. This gives a lower estimate for the critical
behaviour at p = ;. What is the exact critical exponent? It has been shown by
De Masi and Ferrari that the exact value of ¢%(p, B)is (1 — B)2p — 1| [4].

(3) We proved the convergence to a normal distribution of the one-time
distribution. We conjecture that in fact the following stronger statement holds:
the process e(x,, — (1 — B)1 — 2 Pp)t/€?) converges in law to Brownian motion.
Using the results of Newman and Wright it should be easy to obtain tightness,
but we failed to prove convergence of the finite-dimensional distributions.

(4) In Theorem 3 all variances blow up when p = ;. What is the correct

renormalization for these processes?

Acknowledgment. I wish to thank M. Roussignol for reading with great
care an early version of this paper. ’
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