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CENTRAL LIMIT THEOREMS FOR ITERATED RANDOM
LIPSCHITZ MAPPINGS
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Université de Rennes 1 and Institut National des Sciences Appliquées de Rennes

Let M be a noncompact metric space in which every closed ball is
compact, and letG be a semigroup of Lipschitz mappings ofM . Denote by
(Yn)n≥1 a sequence of independentG-valued, identically distributed random
variables (r.v.’s), and byZ an M-valued r.v. which is independent of the
r.v. Yn, n ≥ 1. We consider the Markov chain(Zn)n≥0 with state spaceM
which is defined recursively byZ0 = Z and Zn+1 = Yn+1Zn for n ≥ 0.
Let ξ be a real-valued function onG × M . The aim of this paper is to prove
central limit theorems for the sequence of r.v.’s(ξ(Yn,Zn−1))n≥1. The main
hypothesis is a condition of contraction in the mean for the action onM of
the mappingsYn; we use a spectral method based on a quasi-compactness
property of the transition probability of the chain mentioned above, and on a
special perturbation theorem.

1. Introduction. Let M be a noncompact metric space in which every closed
ball is compact, endowed with its Borelσ -field M. We denote byG a semigroup
of Lipschitz mappings ofM and byG a σ -field onG. We assume that the action
of G onM is measurable; that is, the mapj defined byj (g, y) = gy is measurable
from (G × M, G ⊗ M) to (M,M).

Let π be a probability distribution onG, and let(Yn)n≥1 be a sequence of
independentG-valued random variables (r.v.’s) identically distributed according
to π , defined on a probability space(�,F ,P). The iterated random mappingsRn,
n ≥ 0, are defined by

R0 = IdM, Rn = Yn · · ·Y1, n ≥ 1.

Let Z be anM-valued r.v. which is independent of the r.v.’sYn, n ≥ 1. The
sequence(Zn)n≥0 defined by

Zn = RnZ, n ≥ 0,

is a Markov chain onM which is defined recursively by

Z0 = Z, Zn+1 = j (Yn+1,Zn) = Yn+1Zn, n ≥ 0.

Observe that we get here the general Lipschitz iterative model onM , which has
been considered by many authors; see Duflo (1997) and Diaconis and Freedman
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(1999) to get an overview of the subject. Consider particularly the case whereM is
the linear spaceRq . The generalized linear autoregressive model is obtained when
G is the semigroup of affine mappings ofM . Replace in the preceding the linear
part of the action by that of a fixed Lipschitz mappingf of M . An elementg of
the semigroupG is now defined by a vectorbg ∈ M , and it acts onM according
to the formulagx = f (x) + bg. In this context the probability distributionπ onG

is simply defined by a distribution onM ; thus we get the Lipschitz functional
autoregressive model.

Now let ξ be a real-valued measurable function onG × M . The aim of this
paper is to establish a central limit theorem with a rate of convergence and a local
central limit theorem for the sequence of r.v.’s(

ξ(Yn,Zn−1)
)
n≥1.

The interest of considering a functionξ of the couple(g, x) ∈ G × M rather than
a function only depending onx appears, for example, in the study of random
matrices products.

From the stochastic viewpoint, the context may be described as the study of
the sequence of r.v.’s obtained by composing the functionξ and the Markov chain
(Xn)n≥0 with state spaceG × M defined by

X0 = (IdM,Z), Xn = (Yn,Zn−1), n ≥ 1.

The main hypothesis will be a condition of contraction in the mean of the action
on M of the elements ofG under the probability distributionπ . This property
enables us to make use of a refinement of the spectral method. Recall that the
spectral method was initiated by Nagaev (1957), and then used and improved by
many authors. It is fully described in Hennion and Hervé (2001), where references
are given. The spectral method is based on a quasi-compactness property of the
transition probabilityQ of the chain(Xn)n≥0, and on a perturbation theorem
ensuring that, for small|t|, the Fourier kernelsQ(t) associated withQ and ξ

have spectral properties similar to those ofQ. In the present setting, the use of the
standard perturbation theory for operators leads to assume moments of exponential
type (cf. Milhaud and Raugi (1989) and Hennion and Hervé (2001), Chapter X,
Section 3). The main feature of this paper is the use of a perturbation theorem
of Keller and Liverani (1999) which is adapted to operators verifying a Doeblin–
Fortet inequality. By means of this theorem, we get the desired limit theorems
under moments of polynomial types.

Notice that there are several methods to cope with central limit theorems for
a function of a Markov chain; most known are regeneration and splitting, use of
central limit theorems for martingale increments and Lindeberg techniques. As
will be discussed later, when applied to the present context, some of these methods
can give a central limit theorem under hypotheses which are weaker than ours;
however, it seems that these methods have not yet been developed so far as to get
the central limit theorem with a rate of convergence and the local central limit
theorem of this paper. See Section 3 for more details.
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2. Statements of results. Forg ∈ G, we set

c(g) = sup
{

d(gx, gy)

d(x, y)
:x, y ∈ M, x �= y

}
,

by assumptionc(g) < +∞.
Forn ∈ N∗, we denote byπ∗n the distribution ofRn. We choose a fixed pointx0

in M . Forη ≥ 1 andn ∈ N∗, we define the integrals:

Mη =
∫
G

(
1+ c(g) + d(gx0, x0)

)η
dπ(g),

M′
η =

∫
G

c(g)
(
1+ c(g) + d(gx0, x0)

)η−1
dπ(g),

C(n)
η =

∫
G

c(g)max{c(g),1}η−1dπ∗n(g).

Notice that, sincec(·) is submultiplicative,M′
η < +∞ impliesC(n)

η < +∞.
The statements below will appeal, on the one hand to the moment conditions

Mη < +∞ and M′
η′ < +∞, on the other hand, to the average contractivity

conditionC(n)
η′ < 1, for a suitable choice ofη,η′ ≥ 1.

We consider a real-valued measurable functionξ onG × M satisfying:

CONDITION RS. There existr, s ∈ R+ and measurable nonnegative functions
R,S onG such that, for all x, y ∈ M andg ∈ G,

|ξ(g, x)| ≤ R(g)
(
1+ d(x, x0)

)r
,

|ξ(g, x) − ξ(g, y)| ≤ S(g) d(x, y)
(
1+ d(x, x0) + d(y, x0)

)s
.

Observe that, if the second condition in Condition RS holds, then the first one
is also valid withr = s + 1 andR(g) = |ξ(g, x0)| + S(g). However, it is worth
noticing that this condition may be verified for a smaller exponentr ; this is the
case, for example, whenξ is bounded. This remark also shows that, without
a significant loss of generality, we could add to Condition RS the inequality
r ≤ s + 1; yet, we notice that, whenr increases,R(g) decreases. The cases = 0
andr = 1 corresponds to functionsξ such thatξ(g, ·) is Lipschitz for allg ∈ G.
At last, notice that, ifα ∈]0,1], thend(·, ·)α is a distance onM ; consequently,
Condition RS involves the case of functionsξ such thatξ(g, ·) is locallyα-Hölder
for all g ∈ G.

As in the Introduction, we denote byZ a r.v. inM defined on(�,F ,P ), and
independent of the r.v.Yn, n ≥ 1. We set

SZ
n =

n∑
k=1

ξ(Yk,Zk−1), n ≥ 1.
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We now state central limit theorems for the sequence(SZ
n )n; more precise results

concerning the behavior of the sequence(RnZ,SZ
n )n are given in Section 9.

A preliminary to all these statements is the existence of a probability distribution
on M which is preserved by the action ofπ . More precisely, the action onM of
the sequence of random mappings(Rn)n≥0 defines a Markov chain: fory0 ∈ M ,
the sequence(Rny0)n≥0 is Markov with state spaceM , initial distributionδy0, and
transition probabilityP defined by

y ∈ M, B ∈ M, P (y,B) =
∫
G

1B(gy) dπ(g).

THEOREM I (Invariant probability measure).Assume that there existγ ≥ 0
and an integern0 ≥ 1 such thatMγ+1 < +∞ andC(n0)

γ+1 < 1.
Then there exists on(M,M) a uniqueP -invariant probability distributionν.

Moreover, we have ∫
M

d(x, x0)
γ+1 dν(x) < +∞,

and the geometric ergodicity holds in the Prohorov distancedP. Namely, there exist
positive real numbersC andκ0 < 1, such that, for any probability distributionµ
onM satisfyingµ(d(·, x0)) < +∞, and alln ≥ 1,

dP (µP n, ν) ≤ Cκ
n/2
0 .

It must be noted that such an ergodicity result holds under much weaker
hypotheses; see the survey of Diaconis and Freedman (1999) and a recent result
in Bhattacharya and Majumdar (2004). In fact, the above statement is just the one
which fits the general hypotheses of the paper.

In the sequel our hypotheses will involve a parameterγ0 > 0 and:

CONDITIONS H(γ0). For

Mγ0+1 < +∞, M′
2γ0+1 < +∞,

there existsn0 ∈ N∗ such thatC(n0)
2γ0+1 < 1.

SinceC(n0)
γ0+1 ≤ C(n0)

2γ0+1, if the above conditions hold, then theP -invariant distri-

butionν, whose existence is ensured by Theorem I, is such thatν(d(·, x0)
γ0+1) <

+∞; consequently, if the numberr and the functionR in Condition RS verify
r ≤ γ0

2 + 1
2 and

∫
G R(g)2 dπ(g) < +∞, we have∫

M

∫
G

ξ(g, x)2 dπ(g) dν(x) < +∞.

From now on we shall assume that

m =
∫
M

∫
G

ξ(g, x) dπ(g) dν(x) = 0.
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This causes no loss of generality since it is always possible to replaceξ by ξ − m.
Otherwise, we shall keep in mind that, ifZ has theP -invariant distributionν,
then we haveE[d(Z,x0)

γ0+1] < +∞. However, unless otherwise stated, in the
sequelZ is not supposed to beν-distributed.

At last, we define forg ∈ G,

δ̃(g) = 1+ c(g) + d(gx0, x0),

and forτ > 0 and positive real valued measurable functionsU , V onG, we set

Jτ (U,V ) =
∫
G

U(g)c(g)δ̃(g)2τ dπ(g) +
∫
G

V (g)δ̃(g)τ+1 dπ(g),

or more shortlyJτ (U,V ) = π(Uc δ̃2τ ) + π(V δ̃τ+1).

THEOREM A (Central limit). AssumeH(γ0) with γ0 > r + max{r, s + 1} and
that ∫

G
R2dπ < +∞, Jγ0−r (R,R + S) < +∞.

Then there exists a real numberσ 2 ≥ 0 such that, under the condition

E[d(Z,x0)
γ0+1] < +∞, the sequence( SZ

n√
n
)n≥1 converges in distribution to a

N (0, σ 2)-distributed r.v.

As already mentioned, this statement is not the best known one; using our
spectral method, it is a stage to the two following results.

THEOREM B (Central limit with a rate of convergence).AssumeH(γ0) with
γ0 > 3r + max{r, s + 1} and that∫

G
R3dπ < +∞, Jγ0−r (R,R + S) + Jγ0−2r

(
R2, (R + S)R

)
< +∞.

Then, if σ 2 > 0, there exists a constantC such that, when Z verifies
E[d(Z,x0)

γ0+1] < +∞, we have, for all n ≥ 1,

sup
u∈R

∣∣P[
SZ

n ≤ uσ
√

n
] − N (0,1)

(] − ∞, u])∣∣ ≤ C
1+ E[d(Z,x0)

γ0+1]√
n

.

We denote byL the Lebesgue measure onR. Furthermore, a complex-valued
function onM is said to be locally Lipschitz if it is Lipschitz on every compact
subset ofM .

THEOREM C (Local central limit). Assume that the conditions of TheoremA
hold, and thatξ verifies the nonarithmeticity condition: there is not ∈ R, t �= 0,
no λ ∈ C, |λ| = 1, no bounded locally Lipschitz functionw on M with nonzero
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constant modulus on the supportν of ν, such that we have, for all x ∈ ν and all
n ≥ 1,

eitSx
n w(Rnx) = λnw(x), P-a.s.

Then, if σ 2 > 0, and if Z is such thatE[d(Z,x0)
γ0+1] < +∞, we have, for every

continuous functionh onR such thatlim |u|→+∞ u2h(u) = 0,

lim
n

σ
√

2πnE[h(SZ
n )] = L(h).

We end with a result which gives a criterion forσ 2 > 0 and definesσ 2

asymptotically.

THEOREM S. AssumeH(γ0) with γ0 > 2r + s + 1 and that

Jγ0−r (R,R + S) + Jγ0−2r (R2, (R + S)R
)
< +∞.

(i) If σ 2 = 0, then there exists a real-valued locally Lipschitz functionξ̃1 onM

satisfyingν(ξ̃ 2
1 ) < +∞, and such that we have, with Z distributed according toν,

ξ(Y1,Z) = ξ̃1(Z) − ξ̃1(Y1Z), P-a.s.

(ii) If the distribution ofZ verifiesE[d(Z,x0)
γ0+1] < +∞, then

σ 2 = lim
n

1

n
E[(SZ

n )2].

It will be seen later on (Theorems C′ and S′) that the functionsw and ξ̃1 in
the two last statements must not be merely locally Lipschitz; they must belong to
certain spaces to be defined in the sequel.

In the following section, we show how these theorems apply to some cases of
interest. This being done, the rest of the paper is devoted to the proofs; the reader
will find in Section 4.2 a brief outline of the subsequent work.

3. Applications.

3.1. Sequences of type(χ(Zn))n. Let χ be a real-valued locally Lipschitz
function onM , and suppose that there existC, s ∈ R+ such that, for allx, y ∈ M,

|χ(x) − χ(y)| ≤ Cd(x, y)
(
1+ d(x, x0) + d(y, x0)

)s
.

Using martingale methods, it is proved that the central limit theorem for
(χ(Zn))n holds for any initial distribution under the moment condition

∫
G d(gx0,

x0)
4(s+1) dπ(g) < +∞ and the contraction property

∫
G c(g)4(s+1) dπ(g) < 1;

see Duflo (1997). By means of similar techniques, it is established in Benda
(1998) that, whens = 0, the same result is valid under the weaker hypotheses
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∫
G c(g)2dπ(g) < 1 and

∫
G d(gx0, x0)

2 dπ(g) < +∞. Considering the stationary
chain with initial probabilityν, Wu and Woodroofe (2000) have established a
central limit theorem for functionsχ which are not Lipschitz and not even
continuous.

Let us now apply the results of the preceding section: we setξ(g, x) = χ(x).
The moment hypotheses of Theorem A are the same as those of Theorem C, so that
it can be seen from Theorem 3.1 that they are stronger than the ones previously
stated. However, to our knowledge, Theorems B and C are new. They can be stated
as follows. Recall that̃δ(g) = 1+ c(g) + d(gx0, x0).

THEOREM 3.1. Suppose that there existε > 0 and integersn0 ≥ 1,k ≥ 0 such
that

π
(
δ̃k(s+1)+1+ε/2 + cδ̃2k(s+1)+ε

)
< +∞,

and
π∗n0

(
c max{1, c}2k(s+1)+ε) < 1,

and assume thatν(χ) = 0, whereν is theP -invariant probability measure.
If k takes the values4 and 3, respectively, then the assertions of Theorems

B andS, respectively, apply to

SZ
n =

n∑
k=1

χ(Zk−1).

Moreover, if χ is nonarithmetic and if the above integral conditions are satisfied
for k = 2, then the assertion of TheoremC holds.

PROOF. The function ξ on G × M defined by ξ(g, y) = χ(y) verifies
Condition RS with the exponentsr = s + 1 and s associated with constant
functionsR andS. These have moments of all orders. Consequently the moment
conditions of Theorems B, S, and C reduce toH(γ0) with γ0 = k(s + 1) + ε

2; this
gives the desired results.�

Let us point out thatPollicott (2001) has stated a central limit theorem with a
rate of convergence and a large deviations theorem in the case where the support
of the probability measureπ is finite. However, this study is based on the assertion
without proof that, on a suitable space of Lipschitz functions, the Fourier kernels
P (t) (see Section 4) are analytic perturbed operators ofP . Also notice that, if it
is proved that the stationary chain with initial probability distributionν is strongly
mixing and Harris recurrent, then we can apply Bolthausen (1982) to obtain a
central limit theorem with ann−1/2 rate of convergence. However, on one hand,
this requires some additional hypotheses onπ [see Meyn and Tweedie (1993),
page 140, for a sufficient condition in the context of the following section]; on the
other hand, this only covers the stationary case.
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3.2. Generalized autoregressive processes.Denote byG the semigroup of all
affine mappings ofM = Rq , q ≥ 1. An elementg ∈ G is identified with a couple
(a(g), b(g)), wherea(g) is an endomorphism ofRq andb(g) is a vector inRq .
For y ∈ M , we setgy = a(g)y + b(g). The associated generalized autoregressive
process(Zn)n≥0 is then defined by

Z0 = Z, Zn+1 = a(Yn+1)Zn + b(Yn+1), n ≥ 0.

Let ξ be a function fromG × Rq to R, and suppose that there exist a norm‖ · ‖
on Rq , α ∈]0,1], r, s ∈ R+ and nonnegative measurable functionsR andS on G

such that, for allg ∈ G andx, y ∈ Rq , we have

|ξ(g, x)| ≤ R(g)(1+ ‖x‖)αr ,

|ξ(g, x) − ξ(g, y)| ≤ S(g)‖x − y‖α(1+ ‖x‖ + ‖y‖)αs .

For instance, these properties hold withα = 1 whenξ is a polynomial function of
the entries of the matrix representinga(g) and of the coordinates of the vectors
b(g) andx.

Let us consider the distanced defined onRq by d(x, y) = ‖x − y‖α , and
choosex0 = 0 ∈ Rq . We havec(g) = ‖a(g)‖α andd(gx0, x0) = ‖b(g)‖α . Then
the statements B, C, S apply straightforwardly. To compare with former results, let
us rewrite Theorem B. Let̃δ(g) = (1+ ‖a(g)‖ + ‖b(g)‖)α , then

THEOREM 3.2. The hypotheses in the central limit theorem with a rate of
convergence(TheoremB) are satisfied if there existγ0 > 3r + max{r, s + 1} and
n0 ∈ N∗ such that

π(δ̃γ0+1 + ‖a‖αδ̃2γ0) < +∞ and π∗n0(‖a‖α max{1,‖a‖}2γ0α) < 1,

and when the functionsR(·) andS(·) satisfy the moment conditions∫
G

R3 dπ < +∞, Jγ0−r(R,R + S) + Jγ0−2r
(
R2, (R + S)R

)
< +∞.

In this context, convergence rates in the central limit theorem have already
been established by Milhaud and Raugi (1989) and by Cuny (2004). The spectral
method used in Milhaud and Raugi (1989) is, in substance, similar to the one
developed here, but it appeals to the standard perturbation theorem. For this reason
(see Section 6.1), the following conditions ona(·) andb(·) are required:‖a(·)‖ < 1
π -p.s, and there exist real numbersρ > 0 andβ ∈]0,1] such that we have the
exponential moment condition∫

G
eρ‖b(g)‖β (

R(g) + S(g)
)5(1− ‖a(g)‖β)−5α/β(1+max{r,s+1})

dπ(g) < +∞.

The hypotheses on botha(·) and b(·) are significantly less restrictive in Theo-
rem 3.2. The study in Cuny (2004) is based on martingale methods. The contrac-
tion condition is the same as in Milhaud and Raugi (1989), and it is supposed
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that, for all� ∈ N,
∫ ‖b(g)‖� dπ(g) < +∞. Under these conditions, for functions

ξ which are not necessarily Hölder of the variablex, it is proved that the rate of
convergence in the central limit theorem isn−p for everyp < 1

2.

3.3. Products of positive random matrices.Let G be the semigroup ofq × q

matrices with nonnegative entries which are allowable, namely, every row and
every column contains a strictly positive element, and denote byG◦ the ideal ofG
composed of matrices with strictly positive entries.

Forg ∈ G andw ∈ Rq , we denote byg(w) the image ofw underg; the cone

C = {w :w = (w1, . . . ,wq) ∈ Rq,wk > 0, k = 1, . . . , q}
is invariant under allg ∈ G. DefineM to be the intersection of the hyperplane
{w :w ∈ Rq,

∑q
k=1 wk = 1} of Rq with C.

The linear spaceRq is endowed with the norm‖ · ‖ defined by

w = (w1, . . . ,wq) ∈ Rq, ‖w‖ =
q∑

k=1

|wk|,

and for eachg ∈ G, we set

‖g‖ = sup{‖g(y)‖ :y ∈ M}, v(g) = inf{‖g(y)‖ :y ∈ M}.
The semigroupG being equipped with its Borelσ -field G, we consider a
probability distributionπ on G for which there exists an integern0 such that the
support of the r.v.Rn0 contains a matrix ofG◦. Denote byg∗ the adjoint ofg. It is
shown in Hennion (1997) that, if∫

G

(| ln‖g∗‖ | + | lnv(g∗)|)2
dπ(g) < +∞,

then there existsγ1 ∈ R such that, fory ∈ M , the sequence( 1√
n
(ln‖Rn(y)‖ −

nγ1))n≥1 converges to theN (0, σ 2) distribution; moreover, the caseσ 2 = 0 is
investigated. Using Theorems B and C, it is possible to state a central limit theorem
with a rate of convergence and a local central limit theorem. Notice that similar
theorems have already been given in Hennion and Hervé [(2001), Section X.5],
but under more restrictive moment hypotheses.

To see how this case enters the present frame, we set, forg ∈ G andy ∈ M ,

gy = g(y)

‖g(y)‖ , a(g, y) = ln‖g(y)‖.

It is easy to check that the first formula defines an action ofG on M , while
the function defined by the second one verifies the property of additive cocycle
associated with this action:

a(gg′, y) = a(g, g′y) + a(g′, y), g, g′ ∈ G, y ∈ M.
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Consequently, settingξ(g, y) = a(g, y) − γ1, for (g, y) ∈ G × M, we can write,
for y ∈ M ,

ln‖Rn(y)‖ − nγ1 =
n∑

k=1

ξ(Yk,Rk−1y).

Furthermore, whenM is endowed with a suitable metricdH called the Hilbert
metric [see Bapat and Raghavan (1997)], everyg ∈ G is Lipschitz with constant
c(g) ≤ 1, and we havec(g) < 1 if and only if all entries ofg are strictly
positive. Therefore, if the support ofRn0 contains such a matrixg, we have

C(n0)
η = ∫

G c(g) dπ∗n0(g) < 1 for all η ≥ 1.
Forη ≥ 0, set

Lη =
∫
G

(| ln‖g‖ | + | lnv(g) | + | lnv(g∗) |)η dπ(g).

THEOREM 3.3. Suppose that there exists an integern0 such that the support
of the r.v. Rn0 contains a matrix ofG◦, and letε > 0.

(i) AssumeL4+ε < +∞; then, if σ 2 > 0, there exists a nonnegative constantC

such that, in case the r.v. Z of M verifiesE[dH(Z, x0)
2+ε/2] < +∞, we have, for

all n ≥ 1,

sup
u∈R

∣∣P[
ln‖Rn(Z)‖ − nγ1 ≤ uσ

√
n

] − N (0,1)(] − ∞, u])∣∣

≤ C
1+ E[dH(Z,x0)

2+ε/2]√
n

.

(ii) AssumeL3+ε < +∞, σ 2 > 0, and that the support ofRn0 contains two
matrices g1, g2 ∈ G◦ whose spectral radiiρ1, ρ2 verify ln ρ2

ρ1
/∈ Q. Then, if

E[dH(Z,x0)
2+ε/2] < +∞, we have, for any real valued continuous functionh on

R such thatlim |u|→+∞ u2h(u) = 0,

lim
n

σ
√

2πnE[h(ln‖Rn(Z)‖ − nγ1)] = L(h).

PROOF. First notice that the number‖g∗‖ associated to any endomorphismg
of Rq defines a new norm which is equivalent to the one already considered.
Consequently, there exists a constantC such that, for everyg ∈ G, we have
| ln‖g∗‖ | ≤ C + | ln‖g‖ |.

We denote by(ek)
q
k=1 and by〈·, ·〉 the canonical basis and scalar product onRq .

If y, y′ ∈ M , we set

mH(y, y′) = min
{ 〈y, ek〉

〈y′, ek〉 :k = 1, . . . , q

}
,

dH(y, y′) = − ln
(
mH(y, y′)mH(y′, y)

)
,
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dH is the Hilbert distance onM [see Bapat and Raghavan (1997)]. The space
(M,dH) is not compact, but each closed ball in it is compact. Setx0 =
(1/q, . . . ,1/q) ∈ M ; we have

d(gx0, x0) = ln
maxi〈gx0, ei〉
minj 〈gx0, ej 〉 = ln

maxi ‖g∗ei‖
minj ‖g∗ej‖

= ln
‖g∗‖
v(g∗)

≤ C + | ln‖g‖ | + | lnv(g∗) |.
The functionξ(g, ·) is bounded by|γ1| + | ln‖g‖| + | lnv(g)|. From ‖gy‖ ≥
mH(y, y′)‖gy′‖, we deduce thatS(g) = 1 and s = 0 [see Hennion (1997),
Lemma 5.3]. Therefore, Condition RS is verified withR(g) = 2(| ln‖g‖| +
| lnv(g)|), r = 0, andS(g) = 1, s = 0.

The above estimations prove that the required moment conditions of Theorems
B and C hold if we have, respectively,L4+ε < +∞ andL3+ε < +∞.

It remains to prove that the additional hypothesis in (ii) implies the nonarith-
meticity of ξ . Let k = 1,2. It follows from the Perron–Frobenius theorem that
ρk > 0 and that, for all� ≥ 1, we haveg�

k = ρ�
k(pk + h�

k), wherepk ∈ G◦ and the
endomorphismhk of Rq has a spectral radius< 1. Consequently, for anyx ∈ M ,
we have ln‖g�

kx‖ = � lnρk + rk,�(x), with lim� rk,�(x) = ln‖pk(x)‖. Suppose that
there existt ∈ R, t �= 0, λ ∈ C, |λ| = 1, and a bounded locally Lipschitz function
w on M which has a nonzero constant modulus on the supportν of ν, and such
that we have, for allx ∈ ν and alln ≥ 1,

λn w(x) = eitSx
n w(Rnx) = eit (ln‖Rn(x)‖−nγ1)w(Rnx), P-a.s.

From the continuity of the functions used in the two members, we deduce that, for
any� ≥ 1 andx ∈ µ, we have

eit (ln‖g�
k(x)‖−n0�γ1)w(g�

kx) = λn0� w(x).

It follows that

eit� ln(ρ2/ρ1) = w(g�
1x)

w(g�
2x)

eit (r1,n0�(x)−r2,n0�(x)).

The second member converges when�→+∞, while the countable set of complex
numbers defined by the first one is dense in{z : z ∈ C, |z| = 1}. This contradiction
completes the proof.�

4. Preliminaries.

4.1. P -invariant probability measure( proof of TheoremI). Here the hy-
potheses are those of Theorem I:Mγ+1 < +∞, C(n0)

γ+1 < 1(γ ≥ 0, n0 ∈ N∗). For
λ ∈]0,1], x ∈ M , andg ∈ G, we set

pλ(x) = 1+ λd(x, x0),

δλ(g) = max{c(g),1} + λd(gx0, x0) and δ̃(g) = 1+ c(g) + d(gx0, x0).
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LEMMA 4.1. We have for allg ∈ G and0 ≤ λ ≤ 1

sup
x∈M

pλ(gx)

pλ(x)
≤ δλ(g) ≤ δ̃(g).

The functionsc(·) and δ̃(·) are submultiplicative.

PROOF. Let x ∈ M andg ∈ G; then

pλ(gx)

pλ(x)
= 1+ λd(gx, x0) − λd(gx0, x0)

1+ λd(x, x0)
+ λd(gx0, x0)

1+ λd(x, x0)

≤ 1+ λd(gx, gx0)

1+ λd(x, x0)
+ λd(gx0, x0) ≤ 1+ λc(g) d(x, x0)

1+ λd(x, x0)
+ λd(gx0, x0)

≤ max{1, c(g)} + λd(gx0, x0).

The fact thatc(·) is submultiplicative is obvious. Finaly forh,g ∈ G, we get

δ̃(hg) ≤ 1+ c(h)c(g) + [d(hgx0, x0) − d(hx0, x0)] + d(hx0, x0)

≤ 1+ c(h)c(g) + c(h)d(gx0, x0) + d(hx0, x0) ≤ δ̃(h)δ̃(g). �

Recall that, forn ∈ N∗, π∗n denotes the law ofRn.

LEMMA 4.2. Letφλ(x) = d(x, x0)pλ(x)γ for λ ∈ [0,1]. Then:

(a) For all n ≥ 1 andx ∈ M , we haveP nφλ(x) < +∞.
(b) For λ0 ∈]0,1] small enough, we have

∫
G c(g)δλ0(g)γ dπ∗n0(g) < 1.

(c) There exist constantsε ∈]0,1[, C ∈ R+ such that

P n0φλ0 ≤ C + εφλ0.

PROOF. (a) Forn ≥ 1 andx ∈ M , we have

P nφλ(x) =
∫
G

d(gx, x0)pλ(gx)γ dπ∗n(g)

≤
∫
G

d(gx0, x0)pλ(gx)γ dπ∗n(g)

+
∫
G
[d(gx, x0) − d(gx0, x0)]pλ(gx)γ dπ∗n(g)

≤ pλ(x)γ
∫
G

d(gx0, x0)δλ(g)γ dπ∗n(g)

+ d(x, x0)pλ(x)γ
∫
G

c(g)δλ(g)γ dπ∗n(g).

The functions in the two integrals above are dominated byδ̃(·)γ+1. Since this
function is submultiplicative andπ -integrable, Fubini’s theorem ensures that these
integrals are finite. ThusP nφλ(x) < +∞.
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Since c δ
γ
λ0

≤ δ̃γ+1 and δ̃ is submultiplicative, assertion (b) is a direct
consequence of hypotheses and Lebesgue’s theorem.

Set ε′ = ∫
G c(g)δλ0(g)γ dπ∗n0(g). From the above inequality applied with

λ = λ0 andn = n0, there exists a constantD0 such that

P n0φλ0 ≤ D0p
γ
λ0

+ ε′φλ0.

Using continuity and limd(x,x0)→+∞
pλ0(x)γ

φλ0(x)
= 0, we see that there exists a

constantC such thatD0p
γ
λ0

≤ C + 1−ε′
2 φλ0. HenceP n0φλ0 ≤ C + εφλ0 with

ε = 1+ε′
2 . �

Now let us prove Theorem I. For convenience we setφ = φλ0. By induction and
Lemma 4.2, we obtain, for everyq ≥ 1, P qn0φ ≤ εqφ + C(1+ ε + · · · + εq−1) ≤
φ + C

1−ε
. Let n ∈ N∗. Writting n = qn0 + r with r ∈ {0, . . . , n0 − 1} and setting

E = max{P kφ(x0), k = 0, . . . , n0 − 1}, we getP nφ(x0) ≤ E + C
1−ε

. Therefore,
the sequence(P nφ(x0))n is bounded by a constant, sayK . Forn ≥ 1, letνn be the
probability measure on(M,M) defined by

B ∈ M, νn(B) = 1

n

n−1∑
k=0

(P k1B)(x0).

Observe that, for eachn ≥ 1, we haveνn(φ) ≤ K . Since limd(x,x0)→+∞ φ(x) =
∞, the subset[φ ≤ α] is compact for eachα > 0. The Markov inequality implies
that, for alln ≥ 1, we haveνn([φ > α]) ≤ νn(φ)

α
≤ K

α
, so that the sequence(νn)n

is tight. Therefore, we can select a subsequence(νnk
)k converging to a probability

measureν. It is clear thatν is P -invariant.
For p ∈ N∗, set φp(·) = min(φ(·),p). For k ≥ 0 and p ≥ 0, we have

νnk
(φp) ≤ νnk

(φ) ≤ K ; consequently, for allp ≥ 0, limk νnk
(φp) = ν(φp) ≤ K .

The monotone convergence theorem givesν(φ) < +∞, that is,ν(d(·, x0)
γ+1) <

+∞.
Now let us prove thatν is the uniqueP -invariant probability distribu-

tion. First observe that, sinceE[ln c(Rn0)] ≤ lnE[c(Rn0)] = lnC(n0)
1 < 0, the

law of large numbers asserts that lim supq c(Rqn0)
1/q ≤ limq(

∏q
�=1 c(Y�n0 · · ·

Y(�−1)n0+1))
1/q < 1 on a set�1 such thatP(�1) = 1. Forx, y ∈ M andq ≥ 1, we

can writed(Rqn0x,Rqn0y) ≤ c(Rqn0) d(x, y), so that limq d(Rqn0x,Rqn0y) = 0
on �1. Let ν′ be aP -invariant probability distribution onM . For each bounded
continuous functionf onM , we have

ν′(f ) − ν(f ) =
∫
M

E
[
f

(
Rqn0x

) − f
(
Rqn0y

)]
dν′(x) dν(y);

passing to the limit, we getν′(f ) − ν(f ) = 0. We conclude thatν′ = ν.
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It remains to establish the geometric ergodicity in the Prohorov distancedP.
Let f be a bounded uniformly Lipschitz function onM . Then, for allx, y ∈ M

andn ≥ 1, we have

|P nf (x) − P nf (y)| ≤
∫
G

|f (gx) − f (gy)|dπ∗n(g)

≤ m0(f )d(x, y)

∫
G

d(gx,gy)

d(x, y)
dπ∗n(g)

≤ m0(f ) d(x, y)C(n)
1 ,

wherem0(f ) = sup{ |f (x)−f (y)|
d(x,y)

, x, y ∈ M, x �= y}. Let µ be the law ofZ, and
assume thatφ0(·) = d(·, x0) is µ-integrable. By integrating the previous inequality
with respect to bothdν(x) and dµ(y), it follows that |ν(f ) − µP n(f )| ≤
C(n)

1 m0(f )(ν(φ0) + µ(φ0)). This bound proves thatν − µP n is a continuous
linear functional on the space of all bounded uniformly Lipschitz functions onM

endowed with its canonical norm. Moreover, we have‖ν − µP n‖ ≤ C′C(n)
1 with

C′ = ν(φ0) + µ(φ0). Writing n = qn0 + r with r ∈ {0, . . . , n0 − 1} and using the
fact thatc(·) is submultiplicative, we easily see thatC(n)

1 ≤ C′′(C(n0)
1 )n/n0. Since

dp(ν,µP n) ≤ 2‖ν −µP n‖1/2 [see Dudley (1989)], the last assertion of Theorem I

follows with κ0 = (C(n0)
1 )1/n0.

4.2. Outlines ofthe method. As mentioned in the Introduction, the main idea
of this work consists in applying the method described in Hennion and Hervé
(2001) to the functionξ and to the Markov chain(Xn)n≥0 with the state space
G × M and the transition probabilityQ defined by

(g, y) ∈ G × M, B ∈ G × M, Q
(
(g, y),B

) =
∫
G

1B(h,gy) dπ(h).

However, we observed in Chapter X of Hennion and Hervé (2001), devoted to
Lipschitz kernels, that, because of the special form ofQ, the essential part of the
study can be performed with the help of the transition probabilityP and of the
Fourier kernelsP (t), t ∈ R, associated toP and ξ , which are defined, for any
bounded measurable functionf onM , by

y ∈ M, P (t)f (y) =
∫
G

eitξ(g,y)f (gy) dπ(g).

This is due to the fact that, for all functionsf as above, we haveQ(f ◦ j) =
(Pf ) ◦ j , wherej is the action ofG on M . Then, in the sequel, we shall only use
the kernelsP (t); the next statement indicates that these kernels are sufficient for
our purpose.

BASIC LEMMA . Let f be a bounded measurable function onM , and denote
byµ the distribution ofZ. Then we have, for n ≥ 1, t ∈ R,

E
[
f (RnZ)eitSZ

n
] = µ

(
P (t)nf

)
.
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PROOF. SetSZ
0 = 0. Forn ≥ 1, we have

E
[
f (RnZ)eitSZ

n
] = E

[
f (YnRn−1Z)eit(SZ

n−1+ξ(Yn,Rn−1Z))].
Since(Z,Y1, . . . , Yn−1) andYn are independent r.v.’s, Fubini’s theorem gives

E
[
f (RnZ)eitSZ

n
] = E

[
eitSZ

n−1

∫
G

f (gRn−1Z)eitξ(g,Rn−1Z) dπ(g)
]

= E
[
eitSZ

n−1(P (t)f )(Rn−1Z)
]
.

The desired formula forn = 1 holds because the second member equals
E[P (t)f (Z)] = µ(P (t)f ). Suppose now that the stated formula is valid at
rank n − 1, n ≥ 2. Then, from the previous relation and the fact thatP (t)f

is a bounded measurable function onM , we conclude thatE[f (RnZ)eitSZ
n ] =

µ(P (t)n−1(P (t)f )). This completes the proof.�

Theorems A, B, C, S will be direct consequences of the extensions A′,B′,C′,S′
stated in Section 9. The outline of the argumentation is the following. In Section 5,
we shall introduce spacesBγ , which depend on a real parameterγ > 0 and are
composed of locally Lipschitz functions onM . Three norms, denoted byN∞,γ ,
Nγ andN1,γ , will be defined onBγ . It will be proved that they are equivalent,
but each of them will be suited to a part of the proof. In this way, in Section 5.3,
we shall see that the use ofNγ is convenient to establish that, for suitableγ , P is
quasi-compact onBγ , and furthermore that the number 1 is the unique peripheral
eigenvalue ofP . In Section 6, the normsN∞,γ will be helpful for the study of the
behavior of the functionP (t) neart = 0. For this purpose, it will be worth noticing
that, forγ ′ < γ , P (t) may be viewed as a bounded linear map fromBγ ′ to Bγ ;
indeed, the derivative kernels ofP (t), which in general do not define bounded
endomorphisms of(Bγ ,N∞,γ ), can be considered on the other hand as bounded
linear maps fromBγ ′ to Bγ for suitableγ ′ < γ . Of course, this will be a less
restrictive property because the spaceBγ strictly containsBγ ′ and is endowed
with a weaker norm. In Section 7, the normN1,γ will be an essential tool to apply
a perturbation theorem due to Keller and Liverani (1999), from which it will follow
thatP (t) are perturbed operators ofP for small|t|. The interest of this perturbation
theorem is that it only requiresP (·) to be continuous as a map taking values in the
space of bounded linear map from(Bγ ,N1,γ ) to (Bγ , ν(| · |)); this is the key
point of this study (see Section 6.1). In particular, this theorem ensures that, for
small |t|, P (t) has only one dominating simple eigenvalue,λ(t), on Bγ , and we
shall establish in Section 8 that the Taylor expansions forP (t) at t = 0 obtained
in Section 6 lead to expansions of the eigenelements belonging toλ(t). Then, in
Section 9, by using the previous preparation and by applying the method described
in Hennion and Hervé (2001), we shall be in a position to prove limit theorems.
Notice that renewal and large deviations theorems for the sequence(SZ

n )n≥1 might
be derived from similar techniques.



LIMIT THEOREMS FOR ITERATED MAPS 1949

5. The space Bγ and quasi-compactness of P .

5.1. Conventions and notation.From now on, we fixγ0 > 0 andn0 ∈ N∗ such
that ConditionH(γ0) holds, that is:

Mγ0+1 = π(δ̃γ0+1) < +∞,

M′
2γ0+1 = π(c δ̃2γ0) < +∞,

C(n0)
2γ0+1 = π∗n0(c max{c,1}2γ0) < 1.

According to the subsequent statements, some additional conditions will be
imposed onγ0.

LEMMA 5.1. There exists a real numberλ0 ∈]0,1] such that

ϑ0 =
∫
G

c(g)
(
max{c(g),1} + λ0d(gx0, x0)

)2γ0dπ∗n0(g) < 1.

PROOF. Sincec(g)(max{c(g),1} + λ0d(gx0, x0))
2γ0 ≤ c(g)δ̃(g)2γ0, and the

functions c, δ̃ are submultiplicative, the lemma follows from the two last
conditions ofH(γ0) and Lebesgue’s theorem.�

Now we fix aλ0 ∈]0,1] satisfying the previous inequality.
Forx, y ∈ M , g ∈ G, we set

p(x) = 1+ λ0d(x, x0),

δ(g) = max{c(g),1} + λ0d(gx0, x0).

Notice thatp ≤ 1 + d(·, x0) ≤ 1
λ0

p, andδ ≤ δ̃ ≤ 2
λ0

δ. Besides, forγ > 0, let us
write

�γ (x, y) = d(x, y)p(x)γ p(y)γ .

With the help of these elements, we now define the spaceBγ composed of locally
Lipschitz functions onM , and we define four equivalent norms on this space. Such
spaces, introduced in Le Page (1983), have already been used by several authors in
order to prove the quasi-compactness of probability kernels having a contracting
property; see Milhaud and Raugi (1989) and Peigné (1993). A similar statement
will be established in Section 5.3.

5.2. Definitions ofBγ and of the normsN∞,γ ,N∞,γ,γ̃ ,Nγ and N1,γ . For
γ > 0, we denote byBγ the space of all complex-valued locally Lipschitz
functions onM such that

mγ (f ) = sup
{ |f (x) − f (y)|

�γ (x, y)
, x, y ∈ M,x �= y

}
< +∞.
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The inequality �γ (x, x0) = d(x, x0)p(x)γ ≤ (1/λ0)p(x)γ+1 ensures that,
for all f ∈ Bγ , we have |f (x)| ≤ |f (x0)| + (1/λ0)mγ (f )p(x)γ+1; thus
supx∈M

|f (x)|
p(x)γ +1 < +∞. ConsequentlyBγ can be equipped with the norm

N∞,γ (f ) = mγ (f ) + |f |γ ,

where|f |γ = sup{ |f (x)|
p(x)γ +1 , x ∈ M}.

Let γ̃ > γ . As pγ̃+1 ≥ pγ+1, we have, forf ∈ Bγ , |f |γ̃ = supx∈M
|f (x)|

p(x)γ̃+1 <

+∞; we set

N∞,γ,γ̃ (f ) = mγ (f ) + |f |γ̃ .

Since Mγ0+1 < +∞ and C(n0)
γ0+1 ≤ C(n0)

2γ0+1 < 1, the P -invariant probability
measure,ν, whose existence is ascertained by Theorem I, is such that∫

M
d(x, x0)

γ0+1 dν(x) < +∞.

Therefore, for everyγ ∈]0, γ0], ν integratespγ+1, and thus integrates all the
functions ofBγ , so that we can define onBγ the following norms:

Nγ (f ) = mγ (f ) + |ν(f )|,
N1,γ (f ) = mγ (f ) + ν(|f |).

PROPOSITION 5.2. Let γ , 0 < γ ≤ γ0. The four normsN∞,γ , N∞,γ,γ̃ , Nγ

andN1,γ are equivalent onBγ . When equipped with one of these norms, Bγ is a
Banach space.

PROOF. The fact that(Bγ ,N∞,γ ) is a Banach space is well known.

(i) N∞,γ and N∞,γ,γ̃ are equivalent. Since |f |γ̃ ≤ |f |γ , we have
N∞,γ,γ̃ (f ) ≤ N∞,γ (f ). Conversely, forx ∈ M ,

|f (x)|
p(x)γ+1 ≤ |f (x0)| + (1/λ0)mγ (f )p(x)γ+1

p(x)γ+1 ≤ |f (x0)| + 1

λ0
mγ (f ).

The bounds|f (x0)| ≤ |f |γ̃ and 1≤ λ−1
0 prove that |f |γ ≤ λ−1

0 N∞,γ,γ̃ (f );
consequently,N∞,γ (f ) ≤ (1+ λ−1

0 )N∞,γ,γ̃ (f ).
To establish thatNγ (·) andN∞,γ (·) are equivalent, we proceed as in Hennion

and Hervé [(2001), Chapter X].

LEMMA 5.3. (Bγ ,Nγ ) is a Banach space.

PROOF. Let (fn)n be a Cauchy sequence in(Bγ ,Nγ ). Set gn = fn −
fn(y0), where y0 is any point of M . We have |gq(x) − gp(x)| ≤ mγ ×
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(gq −gp)�γ (x, y0) = mγ (fq −fp)�γ (x, y0) becausegn(y0) = 0. Henceν(|gq −
gp|) ≤ ν(�γ (·, y0))mγ (fq − fp). Recall thatν(pγ+1) < +∞, so thatν(�γ (·,
y0)) < +∞.

Consequently,(gn)n is a Cauchy sequence in the Lebesgue spaceL1(ν);
therefore it converges in this space, and(ν(gn))n converges inC. Moreover,
(ν(fn))n converges inC because, by assumption, it is a Cauchy sequence. It
follows that(fn(y0))n converges to a complex number, sayf (y0), and then that
(fn)n converges inL1(ν). Becausey0 is arbitrary,(fn)n converges pointwise tof .
We have limn→+∞ ν(f −fn) = 0. The propertiesf ∈ Bγ and limn→+∞ mγ (f −
fn) = 0 are obtained by standard arguments.�

(ii) Nγ andN∞,γ are equivalent. For f ∈ Bγ , we have|ν(f )| ≤ ν(|f |) ≤
|f |γ ν(pγ+1). Thus Nγ (f ) ≤ (1 + ν(pγ+1))N∞,γ (f ). Since (Bγ ,Nγ ) and
(Bγ ,N∞,γ ) are Banach spaces, the open mapping theorem yields the claimed
equivalence [see Dunford and Schwartz (1958)].

(iii) N1,γ and N∞,γ are equivalent. We have |f (y)| ≤ |f (x)| +
mγ (f ) d(x, y)p(x)γ p(y)γ for all x, y ∈ M . By integrating this inequality with
respect to the measureν, we obtain

|f (y)| ≤ ν(|f |) + mγ (f )p(y)γ
∫
M

d(x, x0)p(x)γ dν(x)

+ mγ (f ) d(y, x0)p(y)γ
∫
M

p(x)γ dν(x)

≤ ν(|f |) + 2λ−1
0 mγ (f )p(y)γ+1ν(pγ+1),

henceN∞,γ (f ) ≤ (1+ 2λ−1
0 ν(pγ+1))N1,γ (f ).

Finally, we haveN1,γ (f ) = mγ (f ) + ν(|f |) ≤ mγ (f ) + |f |γ ν(pγ+1) ≤ (1 +
ν(pγ+1))N∞,γ (f ). �

We conclude this section by giving a statement that will be useful for the spectral
study ofP (t).

LEMMA 5.4. (i)For 0< γ < γ̃ , the canonical embedding from(Bγ ,N∞,γ,γ̃ )

into (Bγ , | · |γ̃ ) is compact.
(ii) For γ ∈]0, γ0], the canonical embedding from(Bγ ,N1,γ ) into (Bγ , ν(| · |))

is compact.

PROOF. (i) Let (fn)n be a sequence of functions inBγ such that
N∞,γ,γ̃ (fn) ≤ 1 for all n. Then (fn)n is equicontinuous on every compact
set of M , and the diagonal process ensures that there exists a subsequence
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(fφ(n))n which converges uniformly on every compact set ofM to a function
f ∈ Bγ satisfyingN∞,γ,γ̃ (f ) ≤ 1. To prove (i), it suffices now to show that
limn |f − fφ(n)|γ̃ = 0. Observe that|f − fn|γ ≤ λ−1

0 N∞,γ,γ̃ (f − fn) ≤ 2λ−1
0

(proof of Proposition 5.2). Letε > 0. As γ < γ̃ , there exists a positive con-
stantc such that, for alln ∈ N and for all x ∈ M satisfyingd(x, x0) > c, we

have |f (x)−fn(x)|
p(x)γ̃+1 ≤ 2λ−1

0 p(x)γ +1

p(x)γ̃+1 ≤ ε. Besides, on the compact setMc = {x :x ∈
M,d(x, x0) ≤ c}, (fφ(n))n converges uniformly tof ; thus there existsN ∈ N such

that, for alln ≥ N and allx ∈ Mc, we have
|f (x)−fφ(n)(x)|

p(x)γ̃+1 ≤ ε. Consequently, for
n ≥ N , we obtain|f − fφ(n)|γ̃ ≤ ε.

(ii) Now let (fn)n be a sequence of functions inBγ such thatN1,γ (fn) ≤ 1.
Since N1,γ and N∞,γ are equivalent (Proposition 5.2), the sequence(fn)n is
bounded in(Bγ ,N∞,γ ) by a constantc′. As above, we can check that there
exists a subsequence(fφ(n))n which converges pointwise to a functionf ∈ Bγ .
Since|fn| ≤ c′pγ+1 andpγ+1 is ν-integrable, the Lebesgue theorem ensures that
limn ν(|f − fφ(n)|) = 0. �

5.3. Quasi-compactness ofP onBγ . The following statement shows that, for
γ ∈]0, γ0], P is a quasi-compact operator onBγ . This property will also follow
from arguments given in Section 7, but Theorem 5.5 provides a precise description
of the peripheral spectrum ofP : 1 is a simple eigenvalue and it is the unique
peripheral spectral value ofP .

THEOREM 5.5. For everyγ ∈]0, γ0], P is a bounded linear operator onBγ ,
and we have the following decomposition:

Bγ = (C · 1) ⊕ Hγ ,

whereHγ = {f :f ∈ Bγ , ν(f ) = 0} is a closedP -invariant subspace ofBγ

such thatr(P|Hγ ) ≤ (ϑ0)
1/n0 < 1; the real numberϑ0 < 1 has been defined in

Lemma5.1,andr(P|Hγ ) is the spectral radius of the restriction ofP to Hγ .

PROOF. Here it is convenient to considerBγ equipped with the normNγ . We
have, for allk ≥ 1,

∫
G

�γ (gx,gy)

�γ (x, y)
dπ∗k(g) =

∫
G

d(gx,gy)

d(x, y)

(
p(gx)

p(x)

)γ (
p(gy)

p(y)

)γ

dπ∗k(g)

≤
∫
G

c(g)δ(g)2γ dπ∗k(g) = Dk(γ ).

Sinceδ ≤ δ̃, andc andδ̃ are submultiplicative (Lemma 4.1), hypothesisM′
2γ0+1 <

+∞ and Fubini’s theorem ensure thatDk(γ ) < +∞. Let f ∈ Bγ . We have,
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for x, y ∈ M ,

|P kf (x) − P kf (y)| ≤
∫
G

|f (gx) − f (gy)|dπ∗k(g)

≤ mγ (f )�γ (x, y)

∫
G

�γ (gx,gy)

�γ (x, y)
dπ∗k(g)

≤ mγ (f )�γ (x, y)Dk(γ ).

With k = 1, the foregoing proves thatPf ∈ Bγ , andmγ (Pf ) ≤ D1(γ ) mγ (f ).
Sinceν(Pf ) = ν(f ), we see thatP is a bounded linear operator on(Bγ ,Nγ ). As
ν(pγ+1) < +∞, the distributionν defines a continuous linear functional onBγ ;
consequently,Hγ = Kerν is a closed subspace; it isP -invariant becauseνP = ν.

On the other hand, withk = n0, sinceDn0(γ ) ≤ ϑ0 (Lemma 5.1), we get
mγ (P n0f ) ≤ ϑ0mγ (f ), and by induction,mγ (P qn0f ) ≤ ϑ

q
0 mγ (f ) for every

q ≥ 0. In particular, ifh ∈ Hγ , then, for everyq ≥ 1, we haveν(P qn0h) = ν(h) =
0, thus Nγ (P qn0h) = mγ (P qn0h) ≤ ϑ

q
0mγ (h) = ϑ

q
0 Nγ (h). Thus r(P|Hγ ) =

(r(P
n0|Hγ

))1/n0 ≤ (ϑ0)
1/n0.

The identityf = ν(f ) · 1 + (f − ν(f ) · 1) leads to the stated decomposition.
�

6. Fourier operators on Bγ . Recall that the Fourier kernelsP (t), t ∈ R,

associated toP andξ are defined by

(P (t)f )(x) =
∫
G

eitξ(g,x)f (gx) dπ(g),

and thatξ is a real-valued function onG × M satisfying Condition RS.
We shall prove that, for suitableη′, P (t) acts continuously onBη′ . But, for

0 < η′ < η, it will also be convenient to seeP (t) as a bounded linear map from
Bη′ to Bη; this is true by virtue of the following topological embedding that will
be exploited repeatedly in the sequel:

if 0 < η′ < η, we haveBη′ ⊂ Bη and for allf ∈ Bη′,

N∞,η(f ) ≤ N∞,η′(f ).

Let L(Bη′ ,Bη) be the space of all bounded linear maps from(Bη′ ,N∞,η′)
to (Bη,N∞,η). We denote by‖ · ‖η′,η the operator norm onL(Bη′ ,Bη); when
η′ = η, we merely set‖ · ‖η = ‖ · ‖η,η .

6.1. Preliminary remarks about the functionP (·). As already mentioned in
Section 2, the spectral method described in Hennion and Hervé (2001) consists in
applying perturbation theory toP (t), so that the mapP (·) has to be sufficiently
regular.

In order to understand what are the restrictions imposed here by this property,
suppose that Condition RS holds withr > 0, and let us study the quantity
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|P (t)f − Pf |γ for f ∈ Bγ . Let ε ∈]0,1]. From the inequality|eiu − 1| ≤ 2|u|ε,
Condition RS, and Lemma 4.1, we have, for allx ∈ M ,

|P (t)f (x) − Pf (x)|
≤

∫
G

∣∣eitξ(g,x) − 1
∣∣ |f (gx)|dπ(g)

≤ 2|t|ε(1+ d(x, x0)
)rε|f |γ p(x)γ+1

∫
G

R(g)ε
p(gx)γ+1

p(x)γ+1 dπ(g)(I′)

≤ 2C|t|ε |f |γ p(x)γ+1(1+ d(x, x0)
)rε(I)

with C = ∫
G R(g)εδ(g)γ+1 dπ(g). Because(1 + d(·, x0))

rε is not bounded
on M , this estimation does not imply that limt →0 |P (t)f − Pf |γ = 0. Similar
complications appear when one considersmγ (P (t)f − Pf ).

To get around these difficulties in the special case of autoregressive processes
(Section 3), Milhaud and Raugi (1989) have used a space of locally Lipschitz func-
tions similar toBγ , which is defined by replacingp(·)γ+1 with p(·)γ+1eλd(·,x0),
whereλ is a positive parameter. In this case, provided the strict contraction and
exponential moment conditions given in the above mentioned paper are satisfied,
one can verify that the right member of (I′) is bounded, and more generally, that
P (·) is a regular function from a neighborhood oft = 0 to L(Bγ ).

In this paper, we use another method which enables us to weaken the contraction
and moment hypotheses considered in previous papers. This method is based on
the two following facts:

1. By integrating (I) with respect to the measureν, we obtainν(|P (t)f − Pf |) ≤
C′|t|εN1,γ (f ). This weak continuity property will be sufficient to apply toP (t)

a perturbation theorem of Keller and Liverani (1999).
2. Let 0< η′ < η. Forf ∈ Bη′ , we have

|P (t)f (x) − Pf (x)| ≤ 2Cλ−rε
0 |t|ε|f |η′p(x)η

′+rε+1,

so that, ifη′ + rε ≤ η, we get|P (t)f − Pf |η ≤ 2Cλ−rε
0 |t|ε|f |η′ . This leads

us to investigate the continuity and, more generally, the existence of the Taylor
expansions ofP (t) at t = 0 whenP (·) is viewed as anL(Bη′,Bη)-valued map
[instead of anL(Bη′)-valued map]; this is the aim of Sections 6.2 and 6.3. Let
us mention that similar methods are used in Le Page (1989) and Hennion (1991)
for other purposes.

6.2. Taylor expansions ofP (t) at t = 0. For τ > 0 and any nonnegative
measurable functionsU , V onG, we set

Iτ (U,V ) =
∫
G

U(g) c(g) δ(g)2τ dπ(g) +
∫
G

V (g) δ(g)τ+1 dπ(g).
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Iτ (U,V ) is an additive positively homogeneous function of bothU andV , and an
increasing function of the variableτ becauseδ(·) ≥ 1.

Observe that, for 0< γ ≤ γ0, we haveIγ (1,1) ≤ M′
2γ0+1 + Mγ0+1 < +∞.

Let us state the three main results of this section.

PROPOSITION6.1. Supposes + 1≤ γ0, and letγ be a real number such that
s + 1≤ γ ≤ γ0 and

Iγ (0, S) =
∫
G

S(g)δ(g)γ+1 dπ(g) < +∞.

Then, for all t ∈ R, P (t) ∈ L(Bγ ). Besides, there exists a constantC such that we
have, for all f ∈ Bγ ,

|P (t)n0f |γ ≤ Iγ (0,1) |f |γ , mγ

(
P (t)n0f

) ≤ ϑ0mγ (f ) + C|t|Iγ (0, S)|f |γ ,

whereϑ0 < 1 is the real number defined in Lemma5.1.

PROPOSITION6.2. Suppose that the following condition holds:

U0(η
′, η) : 0 < η′ ≤ γ0, η′ < η, s + 1 ≤ η, Iη′

(0, S) < +∞.

Then

lim|t|→0
‖P (t) − P ‖η′,η = 0.

With the view of obtaining the Taylor expansions ofP (t) at t = 0, let us
introduce, for k ∈ N∗, the kernels

(Lkf )(x) =
∫
G

(
iξ(g, x)

)k
f (gx) dπ(g).

PROPOSITION6.3. Letn ≥ 1. Suppose that the following condition holds:

Un(η
′, η) : 0< η′ ≤ γ0, η′ + nr < η, s + 1+ (n − 1)r < η,

Iη′(
Rn, (R + S)Rn−1) < +∞.

Then, for k = 1, . . . , n, Lk ∈ L(Bη′ ,Bη) and

lim|t|→0

1

|t|n
∥∥∥∥∥P (t) − P −

n∑
k=1

tk

k!Lk

∥∥∥∥∥
η′,η

= 0.

6.3. Proofs of Propositions6.1–6.3. The main tool is Lemma 6.4, which will
be stated in the next technical context.

Let k ∈ N∗. Consider a complex-valued measurable functionq onGk × M .
Let α,β ∈ R+, and letA,B be nonnegative measurable functions onGk × M .

We shall say that the inequalities (A) and (B) are satisfied if, for allh ∈ Gk and for
all (x, y) ∈ M2 satisfyingd(x0, y) ≤ d(x0, x), we have:
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(A) |q(h, x)| ≤ A(h,x)p(x)α,

(B) |q(h, x) − q(h, y)| ≤ B(h,x) d(x, y)p(x)β .

For x ∈ M , we denote byAx andBx the nonnegative functions defined onGk

by Ax(h) = A(h,x) andBx(h) = B(h,x).
For h = (h1, . . . , hk) ∈ Gk , we seth� = h1 · · ·hk , and we denote byπ⊗k the

product measure onGk. If x ∈ M and if f is a measurable function onM such
thath �→ q(h, x)f (h�x) is π⊗k-integrable, then we set

(Kf )(x) =
∫
Gk

q(h, x)f (h�x) dπ⊗k(h).

For τ > 0 and for any nonnegative measurable functionsU , V onGk, we set

Iτ
k (U,V ) =

∫
Gk

U(h)c(h�)δ(h�)2τ dπ⊗k(h) +
∫
Gk

V (h)δ(h�)τ+1 dπ⊗k(h).

This integral only occurs in the following technical lemma; notice that it equals
Iτ (U,V ) whenk = 1.

LEMMA 6.4. Let 0 < η′ ≤ η. Suppose that, for all x ∈ M , we have

I
η′
k (Ax,Ax + Bx) < +∞. Then, for f ∈ Bη′ and x ∈ M , Kf (x) is defined;

moreover, for x, y ∈ M such thatx �= y and d(y, x0) ≤ d(x, x0), we have the
inequalities

|Kf (x)|
p(x)η+1

≤ I
η′
k (0,Ax)

p(x)η−η′−α
|f |η′,

|Kf (x) − Kf (y)|
�η(x, y)

≤ I
η′
k (Ax,0)

p(x)η−η′−α
mη′(f ) + I

η′
k (0,Bx)

p(x)η−β−1 |f |η′ .

To apply this lemma, it will be worth noticing that, forη > 0 and for any function
f onM , we have, owing to symmetry,

mη(f ) = sup
{ |f (x) − f (y)|

�η(x, y)
, x, y ∈ M,x �= y, d(y, x0) ≤ d(x, x0)

}
.

PROOF OFLEMMA 6.4. We shall use the inequalities supx∈M p(gx)/p(x) ≤
δ(g) (Lemma 4.1) and|f (g ·)| ≤ |f |η′p(g ·)η′+1. Let f , x and y be as in the
statement. We have∫

Gk
|q(h, x)f (h�x)|dπ⊗k(h) ≤ p(x)α|f |η′

∫
Gk

A(h, x)p(h�x)η
′+1 dπ⊗k(h)

≤ p(x)α+η′+1|f |η′Iη′
k (0,Ax).

It follows thatKf (x) is defined and verifies the first stated inequality.
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To prove the second one, let us write

|Kf (x) − Kf (y)| ≤ A1(x, y) + A2(x, y)

with

A1(x, y) =
∫
Gk

|q(h, x)| |f (h�x) − f (h�y)|dπ⊗k(h),

A2(x, y) =
∫
Gk

|f (h�y)| |q(h, x) − q(h, y)|dπ⊗k(h).

Then
A1(x, y)

�η(x, y)
≤ mη′(f )p(x)α

×
∫
Gk

A(h, x)
d(h�x,h�y)p(h�x)η

′
p(h�y)η

′

d(x, y)p(x)ηp(y)η
dπ⊗k(h)

≤ mη′(f )

(
p(x)α

p(x)η−η′

)(
1

p(y)η−η′

)

×
∫
Gk

A(h, x)c(h�)δ(h�)2η′
dπ⊗k(h)

≤ I
η′
k (Ax,0)

p(x)η−η′−α
mη′(f ) [becausep(y)η−η′ ≥ 1].(M1)

Consider now the quantityA2(x, y). By using the inequalityd(y, x0) ≤ d(x, x0),
we obtain

A2(x, y) ≤ |f |η′d(x, y)p(x)β
∫
Gk

B(h, x)p(h�y)η
′+1 dπ⊗k(h)

≤ |f |η′ d(x, y)p(x)β p(y)η
′+1 I

η′
k (0,Bx)

≤ |f |η′ d(x, y)p(x)β+1 p(y)η
′
I

η′
k (0,Bx),(M′2)

and fromp(y)η
′ ≤ p(y)η, we get

A2(x, y)

�η(x, y)
≤ I

η′
k (0,Bx)

p(x)η−β−1 |f |η′ .(M2)

We conclude by combining (M1) and (M2).�

We shall also need the next bounds.

LEMMA 6.5. For n ∈ N andx ∈ R, we setφn(x) = eix − ∑n
k=0

(ix)k

k! .
For all x, y ∈ R, we have:

(i) |φn(x)| ≤ 2|x|n min{1, |x|},
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(ii) |eiy − eix | ≤ |y − x|,
(iii) for n ≥ 1, |φn(y) − φn(x)| ≤ 2|y − x|(|x|n−1 min{1, |x|} + |y|n−1 ×

min{1, |y|}).
PROOF. The assertion (ii) is clear, and it implies that|φ0(x)| ≤ min{2, |x|} ≤

2 min{1, |x|}.
Let n ≥ 1. The Taylor formula to the ordersn andn−1 with integral remainder

shows that

|φn(x)| ≤ |x|n+1

(n + 1)! and |φn(x)| =
∣∣∣∣φn−1(x) − (ix)n

n!
∣∣∣∣ ≤ 2

|x|n
n! .

Hence

|φn(x)| ≤ min
{

2|x|n
n! ,

|x|n+1

(n + 1)!
}

≤ 2|x|n min{1, |x|}.
Since φ′

n(x) = iφn−1(x) for n ≥ 1, we have|φn(x) − φn(y)| ≤ |x − y| ×
sup{|φn−1(t)| : t ∈ [x, y]}. This inequality and point (i) prove assertion (iii).�

Now let us prove Propositions 6.1–6.3.

PROOF OFPROPOSITION6.1. Letk ∈ N∗. By induction, we easily prove that
(
P (t)kf

)
(x) =

∫
Gk

eitξk(h,x)f (h�x) dπ⊗k(h),

with ξk(h, x) = ξ(hk, x) + ξ(hk−1, hkx) + · · · + ξ(h1, h2 · · ·hkx), for all h =
(h1, . . . , hk) ∈ Gk. ThereforeK = P (t)k is associated to the kernelq(h, x) =
eitξk(h,x). We have |q(h, x)| = 1; Condition RS and Lemma 4.1 give, for
g1, g2 ∈ G,

|ξ(g1, g2x) − ξ(g1, g2y)| ≤ S(g1) d(g2x,g2y)
(
1+ d(g2x, x0) + d(g2y, x0)

)s
≤ λ−s

0 d(x, y)S(g1)c(g2)
(
p(g2x) + p(g2y)

)s
≤ λ−s

0 d(x, y)S(g1)c(g2)δ(g2)
s
(
p(x) + p(y)

)s
.

Hence, ifd(x0, y) ≤ d(x0, x), we get

|ξ(g1, g2x) − ξ(g1, g2y)| ≤ 2sλ−s
0 d(x, y)S(g1) c(g2)δ(g2)

sp(x)s .

Finally, by using Lemma 6.5(ii) and the facts thatδ(·) ≤ δ̃(·) and thatc(·), δ̃(·)
are submultiplicative (Lemma 4.1), we obtain thatq(h, x) verifies the inequalities
(A) and (B) with

A(h,x) = 1, α = 0, B(h, x) = 2sλ−s
0 |t|Bk(h), β = s,

whereBk(h) = ∑k
i=1 S(hi) c(hi+1) · · · c(hk) δ̃(hi+1)

s · · · δ̃(hk)
s . We have

I
η
k(A,A + B) = I

η
k(1,1+ 2sλ−s

0 |t|Bk) ≤ I
γ0
k (1,1) + 2sλ−s

0 |t|Iγ0
k (0,Bk).
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Sincecδ2γ0 ≤ cδ̃2γ0, δγ0+1 ≤ δ̃γ0+1, and the functionsc, δ̃ are submultiplicative,
hypothesesMγ0+1 < +∞, M′

2γ0+1 < +∞, and Fubini’s theorem imply that

I
γ0
k (1,1) < +∞. Besides, we have

I
γ
k (0,Bk) ≤

k∑
i=1

∫
Gk

S(hi)c(hi+1) · · · c(hk)δ̃(hi+1)
s

· · · δ̃(hk)
s δ̃(h1)

γ+1 · · · δ̃(hk)
γ+1dπ⊗k(h).

We have δ̃ ≤ 2
λ0

δ, and
∫
G S(g)δ(g)γ+1 dπ(g) < +∞, thus

∫
G S(g) ×

δ̃(g)γ+1 dπ(g) < +∞. Moreover, we havec(g)δ̃(g)γ+1+s ≤ c(g)δ̃(g)2γ0. It fol-
lows from hypothesisM′

2γ0+1 < +∞ and Fubini’s theorem thatIγ
k (0,Bk) < +∞.

Now let us apply Lemma 6.4 withη′ = η = γ ≤ γ0.
Fork = 1, we get, for allf ∈ Bγ ,

|P (t)f |γ ≤ Iγ (0,1) |f |γ .

On the other hand, sinceγ ≥ s + 1, we havep(x)γ−s−1 ≥ 1; hence, sinceB1 = S,

mγ (P (t)) ≤ Iγ (1,0)mγ (f ) + 2sλ−s
0 |t|Iγ (0, S)|f |γ .

This proves thatP (t) ∈ L(Bγ ).
For k = n0, the first inequality is still valid forP (t)n0, while the second one

becomes

mγ

(
P (t)n0f

) ≤ Iγ
n0

(1,0)mγ (f ) + 2sλ−s
0 |t|Iγ

n0

(
0,Bn0

)|f |γ ,

with I
γ
n0(1,0) ≤ I

γ0
n0(1,0) = ∫

G c(h)δ(h)2γ0 dπ∗n0(h) = ϑ0. �

To establish Propositions 6.2 and 6.3, we shall employ the notation

τ (t, g, x) = min
{
1, |t|R(g)

(
1+ d(x0, x)

)r}
.

LEMMA 6.6. Let η > 0 and letU , V be nonnegative measurable functions
onG such thatIη(U,V ) < +∞. Then, for all ε > 0,

lim|t|→0

(
sup
x∈M

Iη(U(·)τ (t, ·, x),V (·)τ (t, ·, x))

(1+ d(x, x0))ε

)
= 0.

PROOF. Let ρ > 0. We haveτ ≤ 1 and, for 1+ d(x0, x) ≤ ρ, we can
write τ (t, g, x) ≤ min{1, |t|R(g)ρr} = τρ(t, g). Therefore, comparingρ with
1+ d(x0, x), we obtain, for allx ∈ M ,

Iη(U(·)τ (t, ·, x),V (·)τ (t, ·, x))

(1+ d(x, x0))ε

≤ ρ−εIη(U,V ) + Iη
(
U(·)τρ(t, ·),V (·)τρ(t, ·)).



1960 H. HENNION AND L. HERVÉ

Since lim|t|→0 τρ(t, g) = 0 and τρ ≤ 1, the dominated convergence theorem
implies that

lim sup
|t|→0

(
sup
x∈M

Iη(U(·)τ (t, ·, x),V (·)τ (t, ·, x))

(1+ d(x, x0))ε

)
≤ ρ−εIη(U,V ).

Sinceρ is arbitrary, this provides the desired statement.�

PROOF OF PROPOSITION 6.2. Let us consider the kernelq(g, x) =
eitξ(g,x) − 1, x ∈ M , g ∈ G, which defines the operatorKt = P (t) − P . By
Lemma 6.5(i) withn = 0, and then (ii), we have, forx ∈ M andg ∈ G,

|q(g, x)| = ∣∣eitξ(g,x) − 1
∣∣ ≤ 2 min{1, |t| |ξ(g, x)|} ≤ 2τ (t, g, x),

and, ifd(y, x0) ≤ d(x, x0),

|q(g, x) − q(g, y)| ≤ |t| |ξ(g, x) − ξ(g, y)| ≤ 2s |t|S(g) d(x, y)
(
1+ d(x0, x)

)s
.

Lemma 6.4 applied withk = 1, and

A(g,x) = 2τ (t, g, x), α = 0, B(g, x) = 2sλ−s
0 |t|S(g), β = s,

yields

|Kt f (x)|
p(x)η+1 ≤ 2λ

η′−η
0

Iη′
(0, τ (t, ·, x))

(1+ d(x, x0))η−η′ |f |η′,

|Kt f (x) − Kt f (y)|
�η(x, y)

≤ 2λ
η′−η
0

Iη′
(τ (t, ·, x),0)

(1+ d(x, x0))η−η′ mη′(f )

+ 2sλ
1−η
0 |t| Iη′

(0, S(·))
(1+ d(x, x0))

η−s−1 |f |η′ .

Since η − η′ > 0, η − s − 1 > 0, Iη′
(0,1) ≤ Mγ0+1 < +∞, and Iη′

(1,0) ≤
M′

2γ0+1 < +∞, we conclude by using Lemma 6.6 with(U,V ) = (0,1) and
(U,V ) = (1,0). �

PROOF OFPROPOSITION6.3. Let us consider the kernelq(g, x) = eitξ(g,x) −∑n
k=0

(itξ(g,x))k

k! , and setKt = P (t) − P − ∑n
k=1

tk

k!Lk .
Assertion (i) of Lemma 6.5 implies that we have, forx ∈ M andg ∈ G,

|q(g, x)| ≤ 2|t|n|ξ(g, x)|n min{1, |t| |ξ(g, x)|}
≤ 2|t|nR(g)n

(
1+ d(x0, x)

)nr
τ (t, g, x),

while assertion (iii) shows that, ford(x0, y) ≤ d(x0, x),

|q(g, x) − q(g, y)|
≤ 2|t|n|ξ(g, x) − ξ(g, y)|(|ξ(g, x)|n−1 min{1, |t| |ξ(g, x)|}

+ |ξ(g, y)|n−1 min{1, |t| |ξ(g, y)|})

≤ 2s+2|t|nS(g) d(x, y)R(g)n−1(1+ d(x0, x)
)s+(n−1)r

τ (t, g, x).
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Therefore inequalities (A) and (B) hold withk = 1, and

A(g,x) = 2λ−nr
0 |t|nRn(g)τ (t, g, x), α = nr,

B(g, x) = 2s+2λ
−β
0 |t|nS(g)Rn−1(g)τ (t, g, x), β = s + (n − 1)r.

From Lemma 6.4 withk = 1, it follows that

|Kt f (x)|
p(x)η+1 ≤ 2λ

η′−η
0 |t|n Iη′

(0,Rn(·)τ (t, ·, x))

(1+ d(x, x0))η−η′−nr
|f |η′,

|Kt f (x) − Kt f (y)|
�η(x, y)

≤ 2λ
η′−η
0 |t|n Iη′

(Rn(·)τ (t, ·, x),0)

(1+ d(x, x0))η−η′−nr
mη′(f )

+ 2s+2λ
1−η
0 |t|n Iη′

(0, S(·)Rn−1(·)τ (t, ·, x))

(1+ d(x, x0))
η−β−1 |f |η′ .

Sinceη − η′ − rn > 0, η − β − 1 = η − s − (n − 1)r − 1 > 0, andIη′
(Rn, (R +

S)Rn−1) < +∞, the previous inequalities imply thatKt ∈ L(Bη′,Bη); then, by
using Lemma 6.6, we get

lim|t|→0

1

|t|n ‖Kt‖η′,η = 0.

Finally, it remains to prove that, fork = 1, . . . , n, Lk ∈ L(Bη′ ,Bη). This derives
from the following: on the one hand,P,P (t) ∈ L(Bη′ ,Bη) (Proposition 6.2), and

on the other hand, by the above, we haveP (t) − P − ∑n′
k=1

tk

k!Lk ∈ L(Bη′,Bη)

for n′ = 0, . . . , n. �

To end this section, we give an additional statement which completes Proposi-
tion 6.1 and will be helpful in the proof of Proposition 7.4.

PROPOSITION6.7. Assumes + 1 < γ0, and letη andη̃ be real numbers such
that s + 1+ (η̃ − η) ≤ η < η̃ < γ0 and

Iη̃(0, S) < +∞.

Then there exists a constantC such that we have, for all t ∈ R andf ∈ Bη,

mη

(
P (t)n0f

) ≤ ϑ0mη(f ) + C|t| |f |η̃.
PROOF. First, we establish the following with the notation of Lemma 6.4.

LEMMA 6.8. Suppose that inequalities(A) and(B) hold. Let0 < η < η̃.
If α = 0, β + 1+ η̃ < 2η, and if, for all x ∈ M , I

η
k(Ax,0) + I

η̃
k (0,Bx) < +∞,

then we have, for all f ∈ Bη,

mη(Kf ) ≤ I
η
k(Ax,0)mη(f ) + I

η̃
k (0,Bx) |f |η̃.
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PROOF. Let us write, as in the proof of Lemma 6.4,|Kf (x) − Kf (y)| ≤
A1(x, y) + A2(x, y), and let us return to inequalities (M1) and (M′2).

With η′ = η andα = 0, (M1) givesA1(x,y)
�η(x,y)

≤ I
η
k(Ax,0)mη(f ).

Inequality (M′2) holds for anyη′ > 0; in particular, it is satisfied withη′ = η̃.
Besides, ifd(y, x0) ≤ d(x, x0), we havep(y)η̃ = p(y)η̃−ηp(y)η ≤ p(x)η̃−ηp(y)η.
Hence A2(x, y) ≤ |f |η̃ d(x, y)p(x)β+1+η̃−ηp(y)η I

η̃
k (0,Bx).

Sinceβ + 1+ η̃ − η < η, we obtain

A2(x, y)

�η(x, y)
≤ I

η̃
k (0,Bx) |f |η̃.

We conclude by combining the two previous bounds.�

Let us now prove the proposition. Consider the kernelq(g, x) = eitξn0(h,x), h ∈
Gn0, x ∈ M , definingP (t)n0 (see proof of Proposition 6.1); it verifies inequalities
(A) and (B) with k = n0, andα,β,A,B given in the proof of Proposition 6.1.
Lemma 6.8 applies to this kernel becauseβ +1+ η̃ = s +1+ η̃ ≤ 2η, Iη

n0(Ax,0) =
I

γ0
n0(1,0) ≤ ϑ0, and I

η̃
n0(0,Bx) < +∞; this last point can be shown by using

hypothesisIη̃(0, S) < +∞ and a method similar to that employed in the proof
of Proposition 6.1. This proves the proposition. �

7. The spectrum of P (t) acting on Bγ . We use the standard notation
σ(T ) and r(T ) to name the spectrum and the spectral radius of an operatorT

[see Dunford and Schwartz (1958)]. We denote byB ′
γ the topological dual space

of Bγ , and by〈·, ·〉 the canonical bilinear functional onB ′
γ × Bγ .

Forγ ≤ γ0, theP -invariant probability distributionν defines an element ofB ′
γ ,

and Theorem 5.5 shows thatP ∈ L(Bγ ), that

σ(P ) ⊂ {1} ∪ {z : z ∈ C, |z| ≤ κ0} with κ0 = ϑ
1/n0
0 < 1,

and that there existsN(γ ) ∈ L(Bγ ), with spectral radiusr(N(γ )) ≤ κ0 < 1, such
that, forn ≥ 1 andf ∈ Bγ ,

P nf = 〈ν,f 〉1+ N n
(γ )f.

The following statement, which is obtained by applying toP (·) a perturbation
theorem of Keller and Liverani (1999), asserts first that, for small|t|, the spectrum
of P (t) is close to that ofP ; second, that a spectral decomposition of the preceding
type is still valid forP (t); and third, that the resolvents are uniformly bounded in
t for z ranging outside a neighborhood of the spectrum ofP .

We shall use the following notation. Letκ ′
0 andκ ′′

0 be real numbers such that
0 < κ0 < κ ′

0 < κ ′′
0 < 1. Let D0 andD1 be the open discs of the complex plane
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defined by

D0 = {z : z ∈ C, |z| < κ ′
0}, D1 = {z : z ∈ C, |z − 1| < 1− κ ′′

0 }.
We denote by�0 and �1 the oriented circles defined, respectively, as the
boundaries ofD0 and ofDc

1. We set

R = C \ (D0 ∪ D1) = {z : z ∈ C, |z| ≥ κ ′
0, |z − 1| ≥ 1− κ ′′

0 }.

PROPOSITION7.1. Assume thats +1 ≤ γ0. Letγ be such thats +1 ≤ γ ≤ γ0
and

Iγ (0, S) =
∫
G

S(g)δ(g)γ+1 dπ(g) < +∞.

Then, for all t ∈ R, P (t) ∈ L(Bγ ). Moreover, there exists an open intervalIγ

containingt = 0 such that we have the following spectral properties, for t ∈ Iγ ,
and forP (t) acting onBγ :

(a) σ(P (t)) ⊂ D0∪D1, and there existsλ(γ )(t) ∈ C such thatσ(P (t))∩D1 =
{λ(γ )(t)},

(b) there exists a unique functionv(γ )(t), belonging toBγ , such that we have
〈ν, v(γ )(t)〉 = 1 andP (t)v(γ )(t) = λ(γ )(t)v(γ )(t),

(c) we haveMγ = sup{‖(z − P (t))−1‖γ , t ∈ Iγ , z ∈ R} < +∞,
(d) there existφ(γ )(t) ∈ B ′

γ andN(γ )(t) ∈ L(Bγ ) such that

∀f ∈ Bγ , ∀n ∈ N∗, P (t)nf = λ(γ )(t)
n
〈
φ(γ )(t), f

〉
v(γ )(t) + N(γ )(t)

nf,

with ‖N(γ )(t)
n‖γ ≤ Mγ

2π
(κ ′

0)
n.

Notice that, for t = 0, we haveλ(γ )(0) = 1, v(γ )(0) = 1, φ(γ )(0) = ν and
N(γ )(0) = N(γ ). From the inclusionBγ ′ ⊂ Bγ , for 0 < γ ′ < γ , and from
Proposition 7.1, we deduce the following corollary.

COROLLARY 7.2. Under the conditions of Proposition7.1, if s + 1 ≤ γ ′ <

γ ≤ γ0, then, for all t ∈ Iγ ′ ∩ Iγ , we have

λ(γ )(t) = λ(γ ′)(t), v(γ )(t) = v(γ ′)(t),

φ(γ )(t)|Bγ ′ = φ(γ ′)(t), N(γ )(t)|Bγ ′ = N(γ ′)(t).

NOTATION. In accordance with this corollary, when Proposition 7.1 applies
to P (t) acting onBγ , we set

λ(t) = λ(γ )(t), v(t) = v(γ )(t), φ(t) = φ(γ )(t), N(t) = N(γ )(t).

It will follow from the proof of Proposition 7.1 that we have the following:
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COROLLARY 7.2′. Under the conditions of Proposition7.1, for s + 1 ≤ γ ≤
γ0 and fort ∈ Iγ , the elementsN(t), v(t), φ(t) are given by the following formulae
in which integration is considered in the spaceL(Bγ ):

N(t) = 1

2iπ

∫
�0

(
z − P (t)

)−1
dz,

v(t) = 1

ν(�(t)1)
�(t)1,

φ(t) = �(t)∗ν,

where

�(t) = 1

2iπ

∫
�1

(
z − P (t)

)−1
dz.

Moreover, we have

N(t)n = 1

2iπ

∫
�0

zn
(
z − P (t)

)−1
dz and ‖N(t)n‖γ ≤ Mγ

2π
(κ ′

0)
n.

PROOF OFPROPOSITION 7.1. The hypotheses are those of Proposition 6.1.
Consequently, for allt ∈ R, P (t) ∈ L(Bγ ).

To establish the assertions (a)–(d), we shall use the results of Keller and Liverani
(1999). Let us specify the context of this paper: the space (hereBγ ) on which the
collection of operators [hereP (t), t ∈ R] acts, is endowed with a norm (hereN1,γ ,
Section 5.2) with respect to which the space is complete, and with an auxiliary
norm which is dominated by the preceding one. An easy adaption shows that the
results of Keller and Liverani (1999) are still valid with an auxiliary seminorm
[hereν(| · |)]. The lemma below proves that the required hypotheses are fulfilled.

LEMMA 7.3. Under the hypotheses of Proposition7.1:

(i) for t ∈ R, n ∈ N∗ andf ∈ Bγ , we haveν(|P (t)nf |) ≤ ν(|f |),
(ii) there existJ ∈ R+ and an open intervalIγ containingt = 0 such that, for

t ∈ Iγ , we have

∀f ∈ Bγ , N1,γ

(
P (t)n0f

) ≤ (κ ′
0)

n0N1,γ (f ) + Jν(|f |),
(iii) for all t ∈ Iγ , the essential spectral radius ofP (t) is ≤ κ ′

0,
(iv) there exists a positive continuous functionϕ, vanishing att = 0, such that

we have, for all f ∈ Bγ , ν(|P (t)f − Pf |) ≤ ϕ(t)N1,γ (f ).

We refer to Hennion and Hervé [(2001), Chapter XIV] for the notion of essential
spectral radius of an operator. The property (iv) above means that, in a weak sense,
for small|t|, P (t) is a perturbation ofP .
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PROOF OFLEMMA 7.3. (i) AsP is nonnegative, we get|P (t)nf | ≤ P n|f |;
hence the inequality of point (i), sinceν is P -invariant.

(ii) From Proposition 6.1, we have, for allf ∈ Bγ ,

mγ

(
P (t)n0f

) ≤ κ
n0
0 mγ (f ) + C|t|Iγ (0, S) |f |γ .

As a consequence of the equivalence of the normsN∞,γ and N1,γ , we get a
constantK ′, such that, for allf ∈ Bγ , we have

mγ

(
P (t)n0f

) ≤ κ
n0
0 mγ (f ) + K ′|t|N1,γ (f ) = (κ

n0
0 + K ′|t|)mγ (f ) + K ′|t|ν(|f |).

so that, for|t| ≤ κ
′n0
0 −κ

n0
0

K ′ , we obtain

mγ

(
P (t)n0f

) ≤ (κ ′
0)

n0mγ (f ) + (κ
′n0
0 − κ

n0
0 )ν(|f |),

Using point (i), we getN1,γ (P (t)n0f ) ≤ (κ ′
0)

n0N1,γ (f ) + Jν(|f |) with J =
κ

′n0
0 − κ

n0
0 + 1.

(iii) Recall that the essential spectral radius of an operator is smaller than its
spectral radius; consequently, point (iii) is clear whenr(P (t)) ≤ κ ′

0.
Assume thatr(P (t)) > κ ′

0. Then, from point (i) and the Doeblin–Fortet
inequality established in point (ii), andfrom the fact that the canonical embedding
of (Bγ ,N1,γ ) into (Bγ , ν(| · |)) is compact (Lemma 5.4), we deduce by means
of the Ionescu-Tulcea and Marinescu theorem or more precisely of Corollary 1

in Hennion (1993) that, for|t| ≤ κ
′n0
0 −κ

n0
0

K ′ , P (t) is quasi-compact, and that its
essential spectral radius is≤ κ ′

0.
(iv) Using the inequality|f (gx)| ≤ |f |γ p(gx)γ+1 ≤ |f |γ δ̃(g)γ+1 p(x)γ+1

(Lemma 4.1), we obtain

ν
(|P (t)f − Pf |) ≤

∫
G

∫
M

∣∣eitξ(g,x) − 1
∣∣ |f (gx)|dπ(g) dν(x) ≤ |f |γ ε(t),

with

ε(t) =
∫
G

∫
M

∣∣eitξ(g,x) − 1
∣∣δ̃(g)γ+1p(x)γ+1dπ(g) dν(x).

Sinceν(pγ+1) < +∞ andπ(δ̃γ+1) = Mγ+1 ≤ Mγ0+1 < +∞, it follows From
Lebesgue’s theorem thatε is a continuous function onR, which vanishes att = 0.
Point 4 is deduced from the above inequality and the equivalence of the norms
N∞,γ andN1,γ . �

Now assertions (a) and (c) of Proposition 7.1 follow directly from the results of
Keller and Liverani (1999) which, moreover, assert that

�(γ )(t) = 1

2iπ

∫
�1

(
z − P (t)

)−1
dz
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is a rank-1 bounded projection fromBγ onto Ker(P (t) − λ(t)), and that
ν(|�(γ )(t)1− �(γ )(0)1|) = ν(|�(γ )(t)1 − 1|) converges to 0 witht .

Therefore, for sufficiently small|t|, we haveν(�(γ )(t)1) �= 0, and we can set

v(γ )(t) = 1

ν(�(γ )(t)1)
�(γ )(t)1;

this function verifies condition (b) of Proposition 7.1. Assertion (d) and Corol-
lary 7.2′ also follow from Keller and Liverani (1999).�

We conclude this section with a result that will be useful for the study of the
nonarithmeticity ofξ (cf. Section 9).

PROPOSITION7.4. Assume that the conditions of Proposition7.1are satisfied
and reinforced bys + 1 < γ < γ0 and by the existence of̃γ , γ < γ̃ < γ0, such
that Iγ̃ (0, S) < +∞. Let t ∈ R be such that, for P (t) acting onBγ , we have
r(P (t)) ≥ 1. Thenr(P (t)) = 1 andP (t) is quasi-compact onBγ .

PROOF. Since s + 1 < γ < γ0, we can suppose that̃γ verifies s + 1 +
(γ̃ − γ ) ≤ γ . For convenience, we set̃N(f ) = N∞,γ,γ̃ (f ) = mγ (f ) + |f |γ̃
(Section 5.2).

The first inequality of Proposition 6.1, when applied toγ̃ and to the kernel
q(g, x) = eitξ(g,x), shows that

|P (t)f |γ̃ ≤ Iγ̃ (0,1)|f |γ̃ ,

with Iγ̃ (0,1) ≤ Iγ0(0,1) < +∞. Moreover, Proposition 6.7 applied to the couple
(γ, γ̃ ) = (η, η̃) asserts that there exists a constantC such that, fort ∈ R and
f ∈ Bγ , we have

mγ

(
P (t)n0f

) ≤ κ
n0
0 mγ (f ) + C|t||f |γ̃ .

SettingC′ = C|t| + Iη̃(0,1), we get

Ñ
(
P (t)n0f

) ≤ κ
n0
0 Ñ(f ) + C′|f |γ̃ .

From the fact thatP (t) is bounded on(Bγ , | · |γ̃ ), and since the canonical
embedding of(Bγ , Ñ) in (Bγ , | · |γ̃ ) is compact (Lemma 5.4), we deduce by
means of Corollary 1 of Hennion (1993) that, under the conditionr(P (t)) ≥ 1,
P (t) is quasi-compact onBγ , and that its essential spectral radius is≤ κ0.
Consequently, there exists an eigenvalueλ of P (t) such that|λ| = r(P (t)). Letw ∈
Bγ be an eigenfunction associated withλ. Forn ≥ 1, we have|λnw| = |P (t)nw| ≤
P n|w|; hence|λn| |w|γ ≤ |P n|w| |γ ≤ ‖P n|w| ‖∞,γ . The spectral decomposition
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in Theorem 5.5 together with the equivalence of the considered norms onBγ yield
supn ‖P n|w| ‖∞,γ < +∞. Hence|λ| ≤ 1, and at lastr(P (t)) = 1. �

8. Taylor expansions for v(·), φ(·), N(·). The hypotheses in the subsequent
statements will imply those of Proposition 7.1 and of its corollaries; thus,
for small |t|, the eigenelements of the spectral decomposition described in
Proposition 7.1 are defined. We are going to use the Taylor expansions ofP (·)
written in Proposition 6.3 to obtain the Taylor expansions forv(·), φ(·) andN(·).

PROPOSITION8.1 (First-order Taylor expansions).Suppose that, for η′ < η,
the following condition holds:

V1(η
′, η) : s + 1 ≤ η′ ≤ η′ + r < η ≤ γ0, Iη−r (R,R + S) < +∞.

Then Proposition7.1 applies toP (t) acting onBη′ , and the functionsv(·), φ(·)
and N(·) from Iη′ in (Bη′,N∞,η), B ′

η′ and L(Bη′,Bη), respectively, have a
derivative att = 0. Moreover, there exists a constantK1 such that

∀n ≥ 1, ∀ t ∈ Iη′ ‖N(t)n − N(0)n‖η′,η ≤ K1|t|(κ ′
0)

n.

PROPOSITION 8.2 (Second-order Taylor expansions).Suppose that, for
η′ < η, the following condition holds:

V2(η
′, η) : s + 1≤ η′ ≤ η′ + 2r < η ≤ γ0,

Iη−r (R,R + S) + Iη′(
R2, (R + S)R

)
< +∞.

Then Proposition7.1 applies to P (t) acting on Bη′ , and the functionsv(·),
φ(·) andN(·), from Iη′ in (Bη′ ,N∞,η), B ′

η′ , andL(Bη′,Bη), respectively, have
second-order Taylor expansions att = 0. Moreover, we have, for all t ∈ Iη′ and
n ≥ 1,

N(t)n = N(0)n + t N1,n + t2

2
N2,n + t2εn(t),

with N1,n, N2,n, εn(t) ∈ L(Bη′ ,Bη), limt →0 supn≥1 ‖εn(t)‖η′,η = 0, and
supn≥1 ‖Nj,n‖η′,η < +∞ for j = 1,2.

The rest of this section is devoted to the proofs of these propositions. Recall that
R = {z : z ∈ C, |z| ≥ κ ′

0, |z − 1| ≥ 1− κ ′′
0 }. Forγ ∈]0, γ0], we set

Jγ = sup
z∈R

‖(z − P )−1‖γ < +∞ (Theorem 5.5).

Under conditionV1(η
′, η) or V2(η

′, η), we haveIη′
(0, S) ≤ Iη−r (0, S) < +∞

ands + 1 ≤ η′ ≤ γ0. Consequently, Proposition 7.1 applies toP (t) acting onBη′ .
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In particular, fort ∈ Iη′ and forz ∈ R, (z−P (t)) is invertible onBη′ , and we have

Mη′ = sup
{∥∥(

z − P (t)
)−1∥∥

η′, t ∈ Iη′, z ∈ R
}
< +∞.

We shall need the following formula. LetB be a Banach space. IfU andV are
bounded operators onB such thatU andU − V are invertible, we have

(U − V )−1 =
n∑

k=0

(U−1V )kU−1 + (U−1V )n+1(U − V )−1.(∗)

Actually, if W ∈ L(B), we haveI − Wn+1 = ∑n
k=0 Wk (I − W), and hence, if

I − W is invertible,

(I − W)−1 =
n∑

k=0

Wk + Wn+1(I − W)−1.

The claimed formula follows from the relation(U − V )−1 = (I − U−1V )−1U−1

and the above equality.
In the proofs below, we shall apply (∗) with U = z − P , V = P (t) − P , and

thusU − V = z − P (t). Observe that, in the sequel, all the space parametersγ

are betweens + 1 andγ0, so that conditionsU0(η
′, η) andUn(η

′, η), n ≥ 1, of
Propositions 6.2 and 6.3 can be rewritten as

U0(η
′, η) :η′ < η, Iη′

(0, S) < +∞,

Un(η
′, η) :η′ + nr < η, Iη′(

Rn, (R + S)Rn−1) < +∞.

Otherwise notice that, ifη′ < η1 < η and ifT ∈ L(Bη1,Bη), thenT ∈ L(Bη′ ,Bη)

and‖T ‖η′,η ≤ ‖T ‖η1,η.

PROOF OF PROPOSITION 8.1. The next lemma gives a first-order Taylor
expansion for the resolvent(z − P (t))−1. We setR(z, t) = (z − P (t))−1 and
R(z) = R(z,0) = (z − P )−1.

LEMMA 8.3. Under conditionV1(η
′, η), there exists a continuous functionR′·

fromR to L(Bη′,Bη), such that we have

lim
t→0

1

|t| sup
z∈R

∥∥(
z − P (t)

)−1 − (z − P )−1 − tR′
z

∥∥
η′,η = 0.

PROOF. Settingn to 1 andU andV to the values indicated a few lines above,
the formula (∗) gives, forz ∈ R andt ∈ Iη′ ,

R(z, t) = R(z) + R(z)
(
P (t) − P

)
R(z) + R(z)

(
P (t) − P

)
R(z)

(
P (t) − P

)
R(z, t).
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As, by assumption,η′ + r < η, we can chooseη1 such thatη′ < η1 ≤ η1 + r < η.
ConditionU0(η

′, η1) is verified becauseη′ < η1 andIη′
(0, S) ≤ Iη−r (0, S) <

+∞; hence limt→0 ‖P (t) − P ‖η′,η1 = 0. Condition U1(η1, η) holds because
η1 + r < η and Iη1(R,R + S) ≤ Iη−r (R,R + S) < +∞; henceP (t) − P =
tL1 + ϒ1(t), with L1,ϒ1(t) ∈ L(Bη1,Bη) and limt→0 |t|−1‖ϒ1(t)‖η1,η = 0
(Proposition 6.3). Now we write

R(z, t) = R(z) + tR′
z + �1(z, t) + �2(z, t),

with R′
z = R(z)L1R(z), and

�1(z, t) = R(z)ϒ1(t)R(z),

�2(z, t) = R(z)
(
P (t) − P

)
R(z)

(
P (t) − P

)
R(z, t).

SinceL1 ∈ L(Bη1,Bη) ⊂ L(Bη′ ,Bη) and sinceR(·) is continuous fromR to
both L(Bη′) andL(Bη), R′· is continuous fromR to L(Bη′ ,Bη). For t ∈ Iη′ ,
0 < |t| ≤ 1, andz ∈ R, we have

|t|−1‖�1(z, t)‖η′,η ≤ |t|−1‖�1(z, t)‖η1,η ≤ Jη |t|−1‖ϒ1(t)‖η1,ηJη1,

|t|−1‖�2(z, t)‖η′,η ≤ Jη

(‖L1‖η1,η + |t|−1‖ϒ1(t)‖η1,η

)
Jη1‖P (t) − P ‖η′,η1Mη′ .

The second members do not depend onz ∈ R and converge to 0 witht , this proves
the lemma. �

To establish Proposition 8.1, we now use the formulae of Corollary 7.2′. More
precisely, the linear maps�(t) andN(t) of the corollary are considered here as
elements ofL(Bη′ ,Bη) since they may be viewed as integrals of functions with
values inL(Bη′,Bη).

Then Lemma 8.3 shows that�(·) has a derivative att = 0 as anL(Bη′,Bη)-
valued function. Thus�(·)∗ has a derivative att = 0 as anL(B ′

η,B
′
η′)-valued

function. This proves the first-order Taylor expansions ofv(·) and φ(·). The
existence of a derivative forN(·) at t = 0 follows in a similar way from
Lemma 8.3. On the other hand, from the integral formulaN(t)n = 1

2iπ

∫
�0

zn(z −
P (t))−1 dz, we deduce the existence of a constantK such that, forn ≥ 1 and
t ∈ Iη′ ,

(κ ′
0)

−(n+1)‖N(t)n − N(0)n‖η′,η ≤ sup
z∈�0

∥∥(
z − P (t)

)−1 − (z − P )−1∥∥
η′,η

≤ |t|
(

sup
z∈�0

‖R′
z‖η′,η + K

)
;

hence the inequality of Proposition 8.1.�

PROOF OFPROPOSITION8.2. As above, we start with a Taylor expansion of
the resolvent(z − P (t))−1.
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LEMMA 8.4. Under conditionV2(η
′, η), there exist continuous functionsR′·

andR′′· fromR to L(Bη′ ,Bη), such that we have

lim
t→0

1

t2
sup
z∈R

∥∥∥∥(
z − P (t)

)−1 − (z − P )−1 − tR′
z − t2

2
R′′

z

∥∥∥∥
η′,η

= 0.

PROOF. Retaining the notation of Lemma 8.3 but settingn to 2, the formula
(∗) gives, forz ∈ R andt ∈ Iη′ ,

R(z, t) = R(z) + R(z)
(
P (t) − P

)
R(z) + R(z)

(
P (t) − P

)
R(z)

(
P (t) − P

)
R(z)

+ R(z)
(
P (t) − P

)
R(z)

(
P (t) − P

)
R(z)

(
P (t) − P

)
R(z, t).

Sinceη′ + 2r < η, we can chooseη1 andη2 such thatη′ < η1 ≤ η1 + r < η2 ≤
η2 + r < η.

The conditionU2(η
′, η) is verified; hence by Proposition 6.3,

P (t) − P = tL1 + t2

2
L2 + ϒ2(t),

with P,P (t),L1,L2,ϒ2(t) ∈ L(Bη′ ,Bη) and limt→0 t−2‖ϒ2(t)‖η′,η = 0.
The conditionsU1(η1, η2) andU1(η2, η) are satisfied since we haveη1 + r <

η2, η2 + r < η and Iη1(R,R + S) ≤ Iη2(R,R + S) ≤ Iη−r (R,R + S). Then
Proposition 6.3 withn = 1 shows that

P (t) − P = tL1 + ϒ1(t),

with L1,ϒ1(t) ∈ L(Bη1,Bη2) ∩ L(Bη2,Bη) and limt→0 |t|−1‖ϒ1(t)‖η1,η2 =
lim t→0 |t|−1‖ϒ1(t)‖η2,η = 0.

At last, sinceIη′
(0, S) ≤ Iη−r (0, S) < +∞, the conditionU0(η

′, η1) holds and
Proposition 6.2 ensures that

lim
t→0

‖P (t) − P ‖η′,η1 = 0.

We get

R(z, t) = R(z) + R(z)

(
tL1 + t2

2
L2 + ϒ2(t)

)
R(z)

+ R(z)
(
tL1 + ϒ1(t)

)
R(z)

(
tL1 + ϒ1(t)

)
R(z)

+ R(z)
(
tL1 + ϒ1(t)

)
R(z)

(
tL1 + ϒ1(t)

)
R(z)

(
P (t) − P

)
R(z, t),

hence

R(z, t) = R(z) + tR′
z + t2

2
R′′

z +
5∑

k=1

�k(z, t),

with

R′
z = R(z)L1R(z), R′′

z = R(z)L2R(z) + 2R(z)L1R(z)L1R(z),
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and

�1(z, t) = R(z)ϒ2(t)R(z),

�2(z, t) = tR(z)L1R(z)ϒ1(t)R(z),

�3(z, t) = tR(z)ϒ1(t)R(z)L1R(z),

�4(z, t) = R(z)ϒ1(t)R(z)ϒ1(t)R(z),

�5(z, t) = R(z)
(
tL1 + ϒ1(t)

)
R(z)

(
tL1 + ϒ1(t)

)
R(z)

(
P (t) − P

)
R(z, t).

SinceL1 ∈ L(Bη′,Bη) ∩ L(Bη′ ,Bη2) ∩ L(Bη2,Bη), L2 ∈ L(Bη′,Bη) andR(·)
is continuous fromR to L(Bη′), L(Bη2), andL(Bη), the functionsR′· andR′′·
are continuous fromR to L(Bη′,Bη).

We have, fort ∈ I , 0< |t| ≤ 1, andz ∈ R

t−2‖�1(z, t)‖η′,η ≤ Jη

(
t−2‖ϒ2(t)‖η′,η

)
Jη′,

t−2‖�2(z, t)‖η′,η ≤ t−2‖�2(z, t)‖η1,η

≤ Jη‖L1‖η2,ηJη2

(|t|−1‖ϒ1(t)‖η1,η2

)
Jη1,

t−2‖�3(z, t)‖η′,η ≤ t−2‖�3(z, t)‖η1,η

≤ Jη

(|t|−1‖ϒ1(t)‖η2,η

)
Jη2 ‖L1‖η1,η2 Jη1,

t−2‖�4(z, t)‖η′,η ≤ t−2‖�4(z, t)‖η1,η

≤ Jη

(|t|−1‖ϒ1(t)‖η2,η

)
Jη2

(|t|−1‖ϒ1(t)‖η1,η2

)
Jη1,

t−2‖�5(z, t)‖η′,η ≤ JηKη2,ηJη2Kη1,η2Jη1‖P (t) − P ‖η′,η1Mη′,

with Ka,b = sup{‖L1‖a,b + |t|−1‖ϒ1(t)‖a,b, t ∈ I, |t| ≤ 1}.
This proves the lemma because the right-hand members do not depend onz ∈ R

and tend to 0 witht . �

Let us now complete the proof of Proposition 8.2. The Taylor expansions for
v(·), φ(·) andN(·) can be deduced from the formulae of Corollary 7.2′. We just
specify how to get the expansion forN(·)n. Using integration inL(Bη′,Bη), we
set

N1,n = 1

2iπ

∫
�0

znR′
z dz and N2,n = 1

2iπ

∫
�0

znR′′
z dz.

We have ‖N1,n‖η′,η ≤ κ ′
0
n+1 supz∈�0

‖R′
z‖η′,η and ‖N2,n‖η′,η ≤ κ ′

0
n+1 ×

supz∈�0
‖R′′

z ‖η′,η. Lemma 8.4 yields

‖εn(t)‖η′,η = 1

2πt2

∥∥∥∥
∫
�0

zn

((
z − P (t)

)−1 − (z − P )−1 − tR′
z − t2

2
R′′

z

)
dz

∥∥∥∥
η′,η

≤ κ ′
0
n+1

t2 sup
z∈R

∥∥∥∥(
z − P (t)

)−1 − (z − P )−1 − t R′
z − t2

2
R′′

z

∥∥∥∥
η′,η

.
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Sinceκ ′
0
n+1 ≤ 1, we conclude that limt →0 supn≥1 ‖εn(t)‖η′,η = 0. �

9. Extensions and proofs of Theorems A, B, C, S. We return to the context
of Sections 1 and 2. Theorems A′, B′, C′ below concern the behaviour of the
sequence of r.v.’s((Zn,S

Z
n ))n.

9.1. TheoremsA ′, B′, C′, S′. Neglecting the technical parameterλ0 of the
preceding sections, we may defineBγ as the space of locally LipschitzC-valued
functionsf onM such that

�γ (f ) = sup
{ |f (x) − f (y)|

d(x, y)(1+ d(x, x0))
γ (1+ d(y, x0))

γ
, x, y ∈ M,x �= y

}
< +∞,

endowed with the norm

‖f ‖∞,γ = �γ (f ) + sup
x∈M

|f (x)|
(1+ d(x, x0))γ+1 ;

this norm is clearly equivalent to the ones previously defined onBγ .
Recall that, we set̃δ(g) = 1 + c(g) + d(gx0, x0). As previously we can omit

λ0 in the definition of the numbersIτ (U,V ) (Section 6.2) by replacing now the
function δ by δ̃, that is, by replacingIτ (U,V ) by Jτ (U,V ), already used in
Section 2, and defined by

Jτ (U,V ) =
∫
G

U(g)c(g)δ̃(g)2τ dπ(g) +
∫
G

V (g)δ̃(g)τ+1 dπ(g).

If (V,‖ · ‖) is a normed linear space and ifα > 0, we shall denote byV (α)

the closed ball inV with radiusα centered at 0. We nameC↓2(R) the space of
C-valued continuous functionsh onR such that lim|u|→+∞ u2h(u) = 0.

Under the hypotheses of the next statements, the real numberm =∫
M

∫
G ξ(g, x) dπ(g) dν(x) is defined, and supposed to be zero.

Recall that ConditionH(γ0) holds if there existγ0 ∈ R∗+ andn0 ∈ N∗ such that

Mγ0+1 = π(δ̃γ0+1) < +∞,

M′
2γ0+1 = π(cδ̃2γ0) < +∞,

C(n0)
2γ0+1 = π∗n0(c max{c,1}2γ0) < 1.

THEOREM A ′ (Central limit). AssumeH(γ0) with γ0 > r +max{r, s +1} and
that ∫

G
R2dπ < +∞, Jγ0−r (R,R + S) < +∞.

Then, there existsσ 2 ≥ 0 such that, if the r.v. Z satisfiesE[d(Z,x0)
γ0+1] < +∞,

we have, for f ≥ 0, f ∈ ⋃
γ<γ0−r Bγ , and for any bounded continuous functionh
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onR,

lim
n

E

[
f (Zn)h

(
SZ

n√
n

)]
= ν(f )N (0, σ 2)(h).

If h ∈ C↓2(R), this convergence holds uniformly when(µ,f ) ranges over
B ′

γ0
(α) × Bγ (α).

THEOREM B′ (Central limit with a rate of convergence).AssumeH(γ0) with
γ0 > 3r + max{r, s + 1} and that∫

G
R3 dπ < +∞, Jγ0−r(R,R + S) + Jγ0−2r

(
R2, (R + S)R

)
< +∞.

Then, if σ 2 > 0, the assertion of TheoremB holds.
Moreover, if Z has the distributionν, then, for 0 < γ < γ0 − r , there exists a

positive constantCγ such that, for f ∈ Bγ , f ≥ 0, satisfyingν(f ) > 0, we have

sup
u∈R

∣∣E[
f (Zn)1[SZ

n ≤uσ
√

n ]
] − ν(f )N (0,1)(] − ∞, u])∣∣ ≤ Cγ ‖f ‖∞,γ√

n
.

The statement of the local limit theorem appeals to the nonarithmeticity condition
for ξ with respect to the spaceBγ for γ ∈]s + 1, γ0 − r[:

CONDITION (N − A)γ . There is not ∈ R \ {0}, no λ ∈ C, |λ| = 1, and no
bounded functionw in Bγ with nonzero constant modulus on the supportν of ν,
such that we have, for all x ∈ ν and for alln ≥ 1,

eitSx
n w(Rnx) = λnw(x), P-a.s.

THEOREM C′ (Local central limit). Assume that the hypotheses of TheoremA ′
are satisfied. Letγ be a real number verifyingmax{r, s +1} < γ < γ0− r and such
that Condition(N–A)γ is fulfilled.

If σ 2 > 0, and if Z is such thatE[d(Z,x0)
γ0+1] < +∞, then for all f ≥ 0,

f ∈ Bγ , and for allh ∈ C↓2(R), we have

lim
n

sup
u∈R

∣∣σ√
2πnE[f (Zn)h(SZ

n − u)] − e−u2/(2nσ2)ν(f )L(h)
∣∣ = 0,

and this convergence holds uniformly when(µ,f ) ranges overB ′
γ0

(α) × Bγ (α).

THEOREM S′. AssumeH(γ0) with γ0 > 2r + s + 1 and that

Jγ0−r (R,R + S) + Jγ0−2r (R2, (R + S)R
)
< +∞.

Then the assertions of TheoremS hold with ξ̃1 ∈ Bγ0−r in point (i).
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9.2. Proofs of TheoremsA ′, B′, C′. These proofs are based on expansions of
the characteristic function of the r.vSZ

n .

PROPOSITION9.1. 1.Assume that the hypotheses of TheoremA ′ are fulfilled.
Let the parameterγ verifymax{r, s + 1} < γ < γ0 − r .

Then there exist an open intervalIγ containingt = 0, a C-valued functionλ(·)
andL(Bγ )-valued functionsL(·), N(·), defined on this interval, such that, if the
distribution µ of the r.v. Z verifiesµ(d(·, x0)

γ0+1) < +∞, we have, for n ≥ 1,
t ∈ Iγ , and forf ∈ Bγ ,

E
[
f (Zn)e

itSZ
n
] = 〈µ,P (t)nf 〉 = λ(t)n

(
ν(f ) + 〈µ,L(t)f 〉) + 〈µ,N(t)nf 〉.

For all t ∈ Iγ , we have|λ(t)| ≤ 1; there exists a real positive numberσ 2 ≥ m2 such
that

λ(t) = 1+ imt − σ 2 t2

2
+ o(t2),

and there exists a positive constantcγ such that:

(i) if, eitherf = 1 andµ ∈ B ′
γ0

, or f ∈ Bγ andµ = ν, then

|〈µ,N(t)nf 〉| ≤ cγ (κ ′
0)

n inf{|t|,1}‖µ‖∞,γ0 ‖f ‖∞,γ ,

(ii) ‖N(t)n‖γ ≤ cγ (κ ′
0)

n,
(iii) ‖L(t)‖γ,γ0 ≤ cγ inf{|t|,1}.

Moreover, if m = 0 andσ 2 > 0, then, for any real numbert such that t
σ

∈ Iγ , we
have:

(iv) |λ( t
σ
)| ≤ e−t2/4.

2. Suppose that the hypotheses of TheoremB′ hold. Then, if m = 0 andσ 2 > 0,
there exists a constantC1 such that we have, for all real t such that t

σ
√

n
∈ Iγ ,

(v) |λ( t
σ
√

n
)n − e−t2/2| ≤ C1√

n
|t|3e−t2/4.

Assume this proposition for a while. To prove Theorems A′, B′, C′, we
have only to use the method of Hennion and Hervé [(2001), Section IV.2 and
Chapter VI], which is an adaptation of standard Fourier techniques for sums of
i.i.d. r.v.’s. As already mentioned in Section 4.2, we consider here the Fourier
kernels P (t) instead of the Fourier kernelsQ(t) associated withξ and the
probability transitionQ onG × M defined in Section 4.2. Yet the needed changes
are obvious, and we shall not develop the argumentation; we only specify some
points.

First, the distributionµ of Z defines an element ofB ′
γ0

if and only if

E[d(Z,x0)
γ0+1] < +∞, and, in this case,‖µ‖∞,γ0 = E[(1 + d(Z,x0))

γ0+1].
Actually, we have, forf ∈ Bγ0, |f | ≤ ‖f ‖∞,γ0(1+ d(·, x0))

γ0+1; henceµ(|f |) ≤
‖f ‖∞,γ0E[(1+ d(Z,x0))

γ0+1].
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Second, because of the topological embedding of the spacesBγ , in the proofs of
Theorems A′ and B′, it will be sufficient to consider the case where the functionf

is in a spaceBγ with γ ∈]max{r, s + 1}, γ0 − r[.
At last, in the proof of Theorem C′, it is necessary to have some control on the

behavior ofP (t), for all t ∈ R. The following lemma shows how this is related to
Condition (N–A)γ .

LEMMA 9.1′. Assume conditions of TheoremC′ except Condition(N–A)γ .
Then P (t) is a bounded operator ofBγ for all t ∈ R. Let t ∈ R such that
r(P (t)) ≥ 1. Then there existλ ∈ C, |λ| = 1 and a bounded functionw ∈ Bγ ,
with nonzero constant modulus on the supportν of ν, such that we have, for all
x ∈ ν and alln ≥ 1,

eitSx
n w(Rnx) = λnw(x), P-a.s.

Consequently, under Condition(N–A)γ , for all t ∈ R \ {0}, we haver(P (t)) < 1.

PROOF. Letγ ∈]s +1, γ0−r[. The inequalityJγ (0, S) ≤ Jγ0−r (0, S) < +∞
together with Proposition 7.1 shows that the Fourier kernelsP (t) act continuously
onBγ for all t ∈ R.

By Proposition 7.4, if r(P (t)) ≥ 1, then r(P (t)) = 1, and P (t) is quasi-
compact. Consequently, there existw ∈ Bγ \ {0}, andλ ∈ C, |λ| = 1, such that,
for all n ≥ 1, we have

P (t)nw = λnw.

It follows that |w| ≤ P n|w|. Since, by Theorem 5.1, the sequence(P n|w|)n≥1
converges pointwise toν(|w|), we get|w| ≤ ν(|w|), so thatw is bounded. From the
above and equalityν(ν(|w|)1M −|w|) = 0, we deduce thatν({x :x ∈ M, |w(x)| =
ν(|w|)}) = 1; thus|w| is a nonzero constant function onν . Forx ∈ ν andn ≥ 1,
we write

E

[
1− eitSx

n w(Rnx)

λnw(x)

]
= 1− P (t)nw(x)

λnw(x)
= 0.

Since| eitSx
n w(Rnx)

λnw(x)
| = 1, it follows thateitSx

n w(Rnx) = λnw(x), P-a.s. �

To be complete on the properties required for local theorem, one needs to
establish the following.

LEMMA 9.1′′. Under the conditions of TheoremC′, for every compact
subsetK of R∗:

(i) We haverK = sup{r(P (t)), t ∈ K} < 1.
(ii) There existsC ≥ 0 and ρK < 1 such that we have, for all n ≥ 1,

supt∈K ‖P (t)n‖ ≤ Cρn
K .
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PROOF. (i) Suppose that supt∈K r(P (t)) ≥ 1. Then, by Lemma 9.1′,
supt∈K r(P (t)) = 1, thus there exists a sequence(τk)k in K such that
limk r(P (τk)) = 1. For eachk ≥ 1 consider a spectral valueλk of P (τk) satisfying
|λk| = r(P (τk)). By compactness, one can suppose that(τk)k and(λk)k converge.
Sett0 = limk τk, λ = limk λk , and observe thatt0 ∈ K , thust0 �= 0, and|λ| = 1.

We are going to show that the perturbation theorem of Keller and Liverani
(1999) applies to the action, on a certain spaceBγ , of the family {P (t), t ∈ R}
whent → t0. It will follows from this result, see page 145 of the above cited paper,
thatλ is a spectral value ofP (t0). But sincet0 �= 0 and|λ| = 1, this will contradict
Lemma 9.1′, so we shall get point (i).

Let γ, γ̃ be such thats + 1 + (γ̃ − γ ) ≤ γ < γ̃ < γ0 − r . We establish that
{P (t), t ∈ R} acting onBγ satisfies the four assertions of Lemma 7.3, where 0 is
replaced byt0 ∈ R∗, and the normN1,γ (·) [resp.ν(·)] is replaced byN∞,γ,γ̃ (resp.
| · |γ̃ ).

1. Using the inequality|P (t)nf | ≤ P n|f | ≤ |f |γ̃ P n(pγ̃+1) and assertion (c) of
Lemma 4.2 (observe thatpγ̃ and 1+ φλ are equivalent), one easily proves that
supn≥1 |P n(pγ̃+1)|γ̃ < +∞. It follows that{P (t)n, t ∈ R, n ≥ 1} is uniformly
bounded on(Bγ , | · |γ̃ ).

2. Proposition 6.7 implies the second point of Lemma 7.3 [with| · |γ̃ instead of
ν(| · |)].

3. If r(P (t)) > ϑ
1/n0
0 , whereϑ0 < 1 is the real number in Proposition 6.7, it

follows from Lemma 5.4, from the preceding assertion, and from Hennion
(1993), that the essential spectral radius ofP (t) is ≤ ϑ

1/n0
0 . If r(P (t)) ≤ ϑ

1/n0
0 ,

this is also valid because the essential spectral radius is always less than the
spectral radius.

4. In the same way as Proposition 6.2, it can be proved that there exists a real
continuous functionε(·), vanishing att = t0, such that we have‖P (t)f −
P (t0)f ‖∞,γ̃ ≤ ε(t)‖f ‖∞,γ for all f ∈ Bγ . Since‖ · ‖∞,γ ≤ C ‖ · ‖∞,γ,γ̃

(Proposition 5.2), we obtain

|P (t)f − P (t0)f |γ̃ ≤ ‖P (t)f − P (t0)f ‖∞,γ̃ ≤ Cε(t)‖f ‖∞,γ,γ̃ .

(ii) Let ρK be such that max{ϑ1/n0
0 , rK} < ρK < 1, and let� be the oriented

circle {|z| = ρK} in C. For t ∈ K , we haver(P (t)) ≤ rK < ρK , thusP (t)n =
1

2iπ

∫
� zn(z − P (t))−1 dz. Moreover, the theorem of Keller–Liverani ensures

that, for anyt0 ∈ K , there exists an open intervalI , containingt0, such that
sup{‖(z − P (t))−1‖γ , t ∈ I, |z| = ρK} < +∞. By compactness, we get sup{‖(z −
P (t))−1‖γ , t ∈ K, |z| = ρK } < +∞. This gives (ii). �

Proof of assertion1 of Proposition9.1. Let γ , max{r, s + 1} < γ < γ0 − r .
We haves + 1 < γ < γ0 andJγ (0, S) ≤ Jγ0−r (0, S) < +∞. Thus Proposi-

tion 7.1 applies toP (t) acting onBγ . For convenience, the intervalIγ will be
denoted byI .
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LEMMA 9.2. The mapsv(·), φ(·), and N(·) have derivatives att = 0 as
functions with values in(Bγ ,‖ · ‖∞,γ0), B ′

γ , and L(Bγ ,Bγ0), respectively, and
there exists a constantK such that we have, for all n ≥ 1 and all t ∈ I ,

‖N(t)n − N(0)n‖γ,γ0 ≤ K|t|(κ ′
0)

n.

Moreover, there existsγ2, 0 < γ2 < γ , such thatP (·) has a derivative att = 0 as
anL(Bγ2,Bγ )-valued function.

PROOF. We haves + 1 < γ ≤ γ + r < γ0 andJγ0−r (R,R + S) < +∞, so
that the conditionV1(γ, γ0) is fulfilled and the assertions uponv(·), φ(·) andN(·)
follow from Proposition 8.1.

Since r < γ < γ0 − r , there existsγ2 such that 0< γ2 ≤ γ2 + r < γ ≤
γ + r < γ0.

To establish thatP (t) has a derivative, we apply Proposition 6.3. Actually, the
conditionU1(γ2, γ ) holds: we haveγ2 + r < γ , s + 1 < γ andJγ2(R,R + S) ≤
Jγ0−r (R,R + S) < +∞. �

The formula forE[eitSnf (Xn)] is obtained by using the basic lemma stated in
Section 4.2, the decomposition ofP (t) given in Proposition 7.1, and by setting
L(t)f = 〈φ(t), f 〉v(t) − 〈ν,f 〉1.

Under the conditions of (i), we have〈µ,N(0)nf 〉 = 0, so that the considered
inequality follows from Lemma 9.2.

Inequality (ii) already appears in Corollary 7.2′.
To obtain (iii), it suffices to remark that, since the functionsv(·) andφ(·) have

derivatives in(Bγ ,‖ · ‖∞,γ0) andB ′
γ , there exist constantsC1 andC2 such that,

for f ∈ Bγ ,

‖L(t)f ‖∞,γ0 ≤ |〈φ(t), f 〉| ‖v(t) − 1‖∞,γ0 + |〈φ(t) − ν,f 〉| ‖1‖∞,γ0

≤ C1|t| ‖φ(t)‖∞,γ ‖f ‖∞,γ + C2|t| ‖f ‖∞,γ ‖1‖∞,γ0.

It remains to prove the properties ofλ(·).
From Proposition 7.1, we haveλ(0) = 1 andλ(t)n = 〈ν,P (t)nv(t)〉. Appealing

to the invariance ofν, we get|λ(t)|n ≤ 〈ν,P n|v(t)|〉 = 〈ν, |v(t)|〉. It follows that
|λ(t)| ≤ 1.

To prove thatλ(·) can be expanded to the second order and to identify the terms
of its expansion, we proceed as in Lemma IV.4′ of Hennion and Hervé (2001).

LEMMA 9.3. For t ∈ I , setp(t) = 〈φ(t),1〉, ν̃(t) = 〈ν,P (t)1〉 and u(t) =
P (t)1− ν̃(t)1. Thenu(0) = 0, 〈ν,u(t)〉 = 0, and

λ(t) = 1

p(t)
〈φ(t) − ν,u(t)〉 + ν̃(t).
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PROOF. The two first equalities are obvious. From the decomposition of
Proposition 7.1, we haveP (t)1 = λ(t)p(t)v(t) + N(t)1. As 〈φ(t), v(t)〉 = 1 and
φ(t)N(t) = 0, the formula forλ(t) follows from

〈φ(t), u(t)〉 = 〈φ(t), λ(t)p(t)v(t) + N(t)1− ν̃(t)1〉 = λ(t)p(t) − ν̃(t)p(t). �

Notice thatν̃(·) is the characteristic function ofξ under the distributionπ ⊗ ν, so
that the next lemma results from the moment propertyν(d(·, x0)

γ0+1) < +∞.

LEMMA 9.4. Let n ∈ N∗. Assume that
∫
G R(g)n dπ(g) < +∞ and thatr ≤

γ0+1
n

.
Then ν̃(·) has continuous derivatives up to ordern, with ν̃(k)(0) =

ik
∫
G ξ(g, x)k dπ(g) dν(x) for k = 1, . . . , n.

We can now obtain the second-order Taylor expansion ofλ(·).
LEMMA 9.5. u(·) has a derivative att = 0 as aBγ -valued function, and we

have

λ(t) = 1+ imt − σ 2 t2

2
+ o(t2),

with

σ 2 = (π ⊗ ν)(ξ2) − 2〈φ′(0), u′(0)〉 ≥ m2.

PROOF. By assumption, we have
∫
G R(g)2 dπ(g) < +∞ andr <

γ0
2 ≤ γ0+1

2 ,

so that ν̃(t) = 1 + imt − (π ⊗ ν)(ξ2) t2

2 + o(t2). From Lemma 9.2, we know
that P (·)1 and〈ν,P (·)1〉 have derivatives att = 0 as functions with values in
Bγ andC, respectively. Thereforeu(·) has a derivative att = 0 as aBγ -valued
function.

We get, first inB ′
γ , φ(t) − ν = φ(t) − φ(0) = tφ′(0) + o(t); second inBγ ,

u(t) = tu′(0)+o(t), and thirdly inC, p(t) = 1+O(t). Settingc = 2〈φ′(0), u′(0)〉,
we have

1

p(t)
〈φ(t) − ν,u(t)〉 =

(
1+ O(t)

)(
c
t2

2
+ o(t2)

)
= c

t2

2
+ o(t2).

We obtain the Taylor expansion ofλ(·) by adding the expansion ofν̃ to the last
one.

We now prove thatσ 2 ≥ m. Settingv(t)(·) = v(t)(·), we haveP (−t)v(t) =
λ(t) v(t) and, by uniqueness [cf. Proposition 7.1(a)], we getλ(−t) = λ(t). It
follows that σ 2 ∈ R. As 1 ≥ |λ(t)|2 = 1 − (σ 2 − m2)t2 + o(t2), we obtain
σ 2 − m2 ≥ 0. Lemma 9.5 is proved.�

Whenm = 0 andσ 2 > 0, it follows from the preceding expansion that, for small

|t|, |λ( t
σ
)| ≤ 1− t2

2 + t2

4 ≤ e−t2/4, that is, (iv).



LIMIT THEOREMS FOR ITERATED MAPS 1979

Proof of the assertion2 of Proposition 9.1. The claimed inequality follows
[cf., e.g., Hennion and Hervé (2001)] from the fact that, under the additional
hypotheses in 2, the remainder of the second-order expansion ofλ(·) can be
specified as follows.

PROPOSITION9.6. We haveλ(t) = 1+ imt − σ 2 t2

2 + O(t3).

PROOF. We need the following lemma.

LEMMA 9.7. There exists0 < γ2 < γ0 such that the functionsφ(·) andP (·)1
have a second-order Taylor expansion att = 0 as functions with values inB ′

γ2
and

in Bγ2, respectively.

PROOF. By assumption, we haveγ0 > 3r + max{r, s + 1}; therefore, 4r < γ0

ands + 1 + r < γ0 − 2r . It follows that there existγ4 andγ2 such that 0< γ4 ≤
γ4 + 2r < γ2 ≤ γ2 + 2r < γ0 ands + 1+ r < γ2.

To establish the assertion onφ(·), we apply Proposition 8.2. This is possible
since the conditionV2(γ2, γ0) is satisfied; indeed, we haves + 1 ≤ s + 1 + r <

γ2 ≤ γ2 + 2r < γ0, andJγ0−r (R,R + S) + Jγ2(R2, (R + S)R) < +∞ because
γ2 < γ0 − 2r .

Moreover, the conditionU2(γ4, γ2) is verified: we have 0< γ4 ≤ γ4 + 2r <

γ2, s + 1 + r < γ2, and thenJγ4(R2, (R + S)R) < +∞ sinceγ4 < γ0 − 2r .
Proposition 6.3 shows thatP (·) has a second-order Taylor expansion att = 0 as
anL(Bγ4,Bγ2)-valued function, hence the claimed property forP (·)1. �

To conclude, we appeal once more to the formula of Lemma 9.3. Since∫
G R(g)3 dπ(g) < +∞ and r <

γ0
4 ≤ γ0+1

3 , the characteristic functioñν(·) has
now three continuous derivatives, so that the remainder of its second-order Taylor
expansion isO(t3). Using the preceding lemma, we haveφ(t) = ν + tφ′(0) +
t2φ2 + o(t2) in B ′

γ2
and u(t) = tu′(0) + t2u2 + o(t2) in Bγ2. Consequently,

1
p(t)

〈φ(t) − ν,u(t)〉 = (1+ O(t))(c t2

2 + O(t3)) = c t2

2 + O(t3). It follows that the

remainder of the second-order expansion ofλ(·) at t = 0 is O(t3). �

9.3. Proof of TheoremS′.

PROPOSITION9.8. AssumeH(γ0) with γ0 > r + max{r, s + 1} and that
∫
G

R(g)2 dπ(g) < +∞, Jγ0−r (R,R + S) < +∞,

and thatm = 0.
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(i) We setθ(x) = ∫
G ξ(g, x) dπ(g), x ∈ M . There exists a unique real-valued

functionw ∈ Bγ0−r such that

〈ν,w〉 = 0, (1− P )w = θ,

and we haveσ 2 = (π ⊗ ν)(ξ(ξ + 2w ◦ j)).
(ii) Moreover, suppose thatγ0 > 2r + s + 1 and that

Jγ0−2r
(
R2, (R + S)R

)
< +∞.

Suppose that the r.v. Z has a distributionµ which defines an element ofB ′
γ0

. Then,

for all n ≥ 1, the characteristic functionϕn(t) = E[eitSZ
n ] = 〈µ,P (t)n1〉 has the

Taylor expansionϕn(t) = 1+ ant + bn
t2

2 + on(t
2), with supn≥1 |bn +nσ 2| < +∞.

Recall thatj defines the action ofG onM .

PROOF OF PROPOSITION 9.8. The hypothesis
∫
G R(g)2 dπ(g) < +∞ im-

plies thatθ is well defined.

Proof of assertion(i). To begin, we state the differential properties that we
shall use.

Let γ be such that max{r, s + 1} < γ < γ0 − r . Then there existγ2, γ
′ such that

0 < γ2 ≤ γ2 + r < γ ′ < γ ≤ γ + r < γ0 ands + 1 < γ ′. It is easily checked that
we have the following properties and their consequences:

1. V1(γ, γ0); thereforeφ(·) has a derivative att = 0 as aB ′
γ -valued function

(Proposition 8.1).
2. U1(γ2, γ

′); thereforeP (·) has the derivativeL1 at t = 0 as anL(Bγ2,

Bγ ′)-valued function (Proposition 6.3).
3. U1(γ

′, γ0); thereforeP (·) has the derivativeL1 at t = 0 as anL(Bγ ′,
Bγ0)-valued function (Proposition 6.3).

4. U0(γ
′, γ ); thereforeP (·) is continuous att = 0 as anL(Bγ ′,Bγ )-valued

function (Proposition 6.2).

Lemma 9.4 asserts thatν̃(·) has a continuous derivative, with̃ν′(0) = im = 0.
The property 2 above ensures thatu(·) has a derivative att = 0 as aBγ ′-valued
function, and thatu′(0)(x) = L11(x) − ν̃′(0) = i

∫
G ξ(g, x) dπ(g) = iθ(x); thus

u′(0) = iθ . It follows that θ ∈ Bγ ′ . Since〈ν, θ〉 = im = 0, Theorem 5.5 shows
that there exists a uniquew ∈ Bγ ′ such that〈ν,w〉 = 0 and(1 − P )w = θ , and
thatw is the sum inBγ ′ of the series

∑
n≥0P nθ . As θ is real valued, so isw. At

last, sinceγ ′ < γ0 − r , we havew ∈ Bγ0−r .
On the basis of the formula of Lemma 9.5, we get

σ 2 = (π ⊗ ν)(ξ2) − 2i〈φ′(0), θ〉 = (π ⊗ ν)(ξ2) − 2i〈φ′(0), (1− P )w〉.
The following lemma allows us to conclude.
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LEMMA 9.9. We have

〈φ′(0), (1− P )w〉 = i(π ⊗ ν)(ξ w ◦ j).

PROOF. It is known that, for small|t|, (λ(t) − P (t))∗φ(t) = φ(t)(λ(t) −
P (t)) = 0. Hence, settingS(t) = λ(t) − P (t), we have
(

φ(t) − φ(0)

t

)
S(t)w+φ(0)

(
S(t)w − S(0)w

t

)
= φ(t)S(t)w − φ(0)S(0)w

t
= 0.

Observe thatλ(t) has a derivative att = 0 because the conditions of point (1) in
Proposition 9.1 hold. Therefore, sincew ∈ Bγ ′ andφ(0) = ν ∈ B ′

γ0
, the above

properties (1) and (4), and then (3) enable us to pass to the limit in the equality.
We get

φ′(0)(S(0)w) + ν(S′(0)w) = 0,

or else φ′(0)(1 − P )w = ν[(L1 − λ′(0))w] = ν(L1w) = i
∫
M

∫
G ξ(g, x) ×

w(gx)dπ(g) dν(x). �

Proof of assertion(ii) . We know thatλ(t) = 1 − σ 2 t2

2 + o(t2). Otherwise,
sinces + 1 < γ0 − 2r , there existsη such thats + 1 < η ≤ η + 2r < γ0. Since
Jγ0−r (R,R + S) < +∞ andJη(R2, (R + S)R) < +∞ ( becauseη < γ0 − 2r),
the conditionV2(η, γ0) holds. Consequently, Proposition 8.2 applies. It follows
that v(·), φ(·), N(·) have second-order Taylor expansions att = 0 as functions
with values in(Bη,N∞,γ0), in B ′

η, and inL(Bη,Bγ0), respectively. We get, for
all n ≥ 1,

〈φ(t),1〉〈µ,v(t)〉 = 1+ tB + t2

2
C + o(t2) (A,B ∈ C),

〈µ,N(t)n1〉 = 〈µ,N(0)n1〉 + t〈µ,N1,n1〉 + t2

2
〈µ,N2,n1〉 + on(t

2).

SinceN(0)1= 0 andϕn(t) = 〈µ,P (t)n1〉 = λ(t)n〈φ(t),1〉〈µ,v(t)〉+〈µ,N(t)n1〉,
with λ(t)n = 1 − nσ 2 t2

2 + on(t
2), the coefficientbn of t2

2 in the Taylor
expansion ofϕn is C − nσ 2 + 〈µ,N2,n1〉. This enables us to conclude because
supn≥1 ‖N2,n‖η,γ0 < +∞. �

End of the proof of TheoremS′.

Proof of (ii) . Let us prove thatE[(SZ
n )2] < +∞. Actually, since 2r ≤ γ0, we

have, fork ≥ 1,

E[ξ(Yk,Zk−1)
2] ≤ E[R(Yk)

2]E[ψ(Zk−1)] =
∫
G

R2dπ

∫
M

P k−1ψ dµ,
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with ψ(x) = (1+d(x, x0))
γ0. Sinceψ ∈ Bγ0−1 ⊂ Bγ0, P ∈ L(Bγ0), andµ ∈ B ′

γ0
,

we getE[ξ(Yk,Zk−1)
2] < +∞; hence the claimed property. The functionϕn(·) has

therefore a second-order derivative att = 0 andϕ′′
n(0) = −E[(SZ

n )2]. With the help
of Proposition 9.8(ii), we obtainE[(SZ

n )2] = −bn, henceσ 2 = limn
1
n
E[(SZ

n )2].

Proof of (i). The method of the proof of Theorem IV.7 of Hennion and Hervé
(2001) applies here to the transition probabilityQ introduced in Section 4.2, yet
we give below an adaptation of this method only usingP . Set

ξ̃ = ξ + w ◦ j,

wherew is the function in Proposition 9.8 (it can be checked thatξ̃ − Qξ̃ = ξ ).
Recall thatσ 2 = (π ⊗ ν)[ξ(ξ + 2w ◦ j)] (Proposition 9.8). From the equality
ξ2 + 2ξ w ◦ j = (ξ + w ◦ j)2 − (w ◦ j)2 = ξ̃2 − (w ◦ j)2, we get

σ 2 = (π ⊗ ν)
(
ξ̃2 − (w ◦ j)2).

Assume thatν(w2) < +∞. Then, using the invariance ofν, we can write

σ 2 = (π ⊗ ν)(ξ̃2) − ν(w2) =
∫
M

dν(x)

∫
G

(
ξ̃ (g, x)2 − w(x)2)dπ(g).

But∫
G

ξ̃(g, x) dπ(g) =
∫
G

ξ(g, x) dπ(g) + Pw(x) = θ(x) + (
w(x) − θ(x)

) = w(x),

so that

σ 2 =
∫
M

dν(x)

∫
G

(
ξ̃ (g, x) − w(x)

)2
dπ(g)

=
∫
M

dν(x)

∫
G

(
ξ(g, x) + w(gx) − w(x)

)2
dπ(g).

If σ 2 = 0, we therefore getξ(g, x) = w(x) − w(gx) π ⊗ ν a.e.
To complete the proof of Theorem S′, it now suffices to show that the

hypothesisσ 2 = 0 implies ν(w2) < +∞. We know that, for all x ∈ M ,
w(x) = ∑

n≥0 P nθ(x). Since P nθ(x) = E[θ(Rnx)] = E[∫ ξ(g,Rnx) dπ(g)] =
E[ξ(Yn+1,Rnx)], we have, for allx ∈ M , w(x) = limn E[Sx

n ].
Assume thatZ has the distributionν and thatσ 2 = 0. Then the point (ii) of

Proposition 9.8 and the fact thatbn = −Eµ[(SZ
n )2] show that supn E[(SZ

n )2] =
ϑ < +∞. From the inequalities

∫
E[Sx

n ]2 dν(x) ≤ ∫
E[(Sx

n )2]dν(x) = E[(SZ
n )2]

and Fatou’s Lemma, we deduce thatν(w2) ≤ ϑ .

EXAMPLE (Study of σ 2 for sequences of type(u(Yn)χ(Zn−1))n). Suppose
that the functionξ is of the formξ(g, x) = u(g)χ(x), whereu is a nonzero real
valued measurable function onG andχ is a real-valued locally Lipschitz function
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onM satisfying|χ(x)−χ(y)| ≤ Cd(x, y)(1+d(x, x0)+d(y, x0))
s . Observe that

Condition RS holds withr = s + 1 andR(s) = S(g) = C|u(g)|.
In this context, the next statement, based on both Theorem S′ and 5.5, gives a

simple sufficient condition forσ 2 > 0.

PROPOSITION S′′. Suppose that the conditions of TheoremS hold [with
r = s + 1 andR(s) = S(g) = |u(g)|], that

∫
G u(g) dπ(g) = 0, and thatχ(x) �= 0

for somex in the supportν of theP -invariant measureν. Thenσ 2 > 0.

PROOF. Observe thatm = π ⊗ ν(ξ) = 0. By Theorem S′, we shall getσ 2 > 0
if we prove that there is no real-valued functionχ̃1 in Bγ0−r such that, for all
x ∈ ν , we haveξ(g, x) = u(g)χ(x) = ξ̃1(x) − ξ̃1(gx) π -a.e.

Let ξ̃1 be such a function. Then, by integrating the above equality with respect to
the measureπ , we getξ̃1(x) = ∫

G ξ̃1(gx) dπ(g) = (P ξ̃1)(x) for all x ∈ ν . Since
ν is an absorbing set [for allx ∈ ν , we haveP (x,ν) = 1], this can be rewritten
as ξ̃1|ν = Pν(ξ̃1|ν ), wherePν denotes the kernel induced byP on ν . From
Ker(P − 1) = C · 1 (Theorem 5.5), it can be easily proved that the functions of
Bγ0−r whose restriction onν is Pν -invariant are constant onν . It follows that
ξ̃1|ν is constant; thus, for allx ∈ ν , u(g)χ(x) = 0 π -a.e. This is impossible.�
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